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Foreword 
 
The word “mathematics” comes from the Greek word “manthānein,” 
which means “to learn.” Mathematics is mainly about forming ways to see 
problems in order to solve them by combining logical rigor, imagination, 
and intuition. Furthermore, mathematics is a peculiar sense that enables us 
to perceive realities that would otherwise be inaccessible to us. In fact, 
mathematics is our sense for patterns, relations, and logical connections. 
The development of mathematical intuition depends on learning the basic 
concepts (thus, creating a powerful intellectual toolbox), using your 
intellectual toolbox in order to solve problems, and creative thinking 
(rather than simply memorizing mathematical tools). 
Regarding my competence in mathematics, mathematical modelling, and 
epistemology, I would like to acknowledge the contribution of the 
following persons to my scientific education: Dr. Themistocles M. Rassias 
(Fellow of the Royal Astronomical Society of London and Accademico 
Ordinario of the Accademia Tiberina in Rome), who taught me Calculus I, 
II & III, Advanced Calculus, Linear Algebra, Differential Equations, and 
Number Theory, and supervised my research work in the foundations of 
mathematical analysis and differential dynamics at the University of La 
Verne, where I completed my studies in mathematics (a part of the 
research work and the dissertation that I completed at the University of La 
Verne under the supervision of Dr. Th. M. Rassias was published in 1998 
as the volume no. 24 of the scientifically advanced Series in Pure 
Mathematics of the World Scientific Publishing Company); Dr. Christos 
Koutsogeorgis, who taught me Discrete Mathematics, Abstract Algebra, 
and Probability Theory (University of La Verne, 1994–96); Dr. 
Chamberlain Foes, who taught me PASCAL (programming language) and 
introduced me to mathematical informatics and management information 
systems (University of La Verne, 1995); and Dr. Giuliano Di Bernardo, 
who held the Chair of Philosophy of Science and Logic at the Faculty of 
Sociology of the University of Trento from 1979 until 2010, and with 
whom I cooperate in the context of several philosophical projects.  
Furthermore, regarding my philosophical education and my interest in 
studying the interplay between philosophy and mathematics as well as the 
history of civilization, I would like to acknowledge the following persons: 
my colleagues at the Faculty of Philosophy at the Theological Academy of 
Saint Andrew (Academia Teológica de San Andrés),  Veracruz, Mexico, 
where I completed a series of Ph.D. courses (specifically, Methodology of 
Philosophical Investigation I & II, Theology and Philosophy I–IV, 
Selected Topics in Christian Philosophy I–IV, Seminar on Investigation in 
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Christian Philosophy I–IV, and Interpretation of Philosophical Texts, I & 
II), and the Dean of that Theological Academy, Metropolitan Dr. Daniel 
de Jesús Ruiz Flores of Mexico and All Latin America of the Ukrainian 
Orthodox Church (Iglesia Ortodoxa Ucraniana en México), who helped 
me to explore and appreciate the interdisciplinary nature of Patristics and 
Philosophy and signed my Doctoral Degree in Christian Philosophy; the 
historian Dr. Vassilios Christides (affiliated with the Institute for 
Advanced Study, Princeton, U.S.A.), who taught me a comprehensive set 
of courses on the history of world civilization during my studies at the 
University of La Verne; the historian Dr. Paul Angelides, who taught me 
the courses “U.S. Intellectual History” and “Development of American 
Democracy” during my studies at the University of La Verne; the political 
scientist Dr. Blanca Ananiadis, who taught me European politics and 
political institutions during my studies at the University of La Verne; the 
political scientist Dr. Hazel Smith (Professor Emerita in International 
Security at Cranfield University, UK, and Fellow of the Royal Society of 
Arts, London) and the economist and epistemologist Dr. Michael 
Nicholson (University of Sussex), who supervised my research work in the 
epistemology and the mathematical modelling of International Relations 
and Political Economy during 1997-99 at the University of Kent’s London 
Centre of International Relations; as well as Roman V. Romachev, the 
Founder and C.E.O. of the Moscow-based, international private 
intelligence company R-Techno Ltd, who has encouraged my scholarly 
endeavors and has honorably appointed me as a Partner in this prestigious 
corporation. My work as a mathematician and philosopher of science has 
focused on the mathematical study of a variety of practical real-world 
problems and on the investigation of specific problems and questions 
ranging from mathematical physics and mathematical biology to 
mathematical economics, mathematical psychology, and strategy, but also 
includes a broader effort to use mathematical thinking to identify and 
analyze structures and patterns, in general. 
This book is the fruit of my work as a mathematical modelling consultant 
and as an analyst in various companies and academic/research institutions. 
It expresses my efforts to educate various groups of people in 
mathematical thinking and epistemology, starting with the basics. When I 
am given a practical problem, I transform it into a conceptual problem 
(that is, I create a corresponding conceptual model), and I often proceed to 
transform this conceptual problem (conceptual model) into a mathematical 
problem (mathematical model). Thus, I approach and tackle practical 
problems in a logical-mathematical way.  
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The study of mathematics is hard and takes a lot of effort, but this book 
may even enable one who has little or no mathematics background to learn 
mathematics on his/her own. Do not feel defeated or stupid if you do not 
understand everything immediately―it is normal. This book is self-
contained; so think deeply and persist in studying it. At bottom, self-study 
is fun and an enriching experience, because you study for the sake of 
learning and at your own pace.  
In addition, this book enables one to understand the significance of 
mathematical modelling both in the context of the natural sciences and in 
the context of the social sciences. Science builds knowledge through logic 
and testable explanations and predictions. Thus, it contrasts prejudice, 
superstition, personal opinion, subjective political beliefs, and, generally, 
irrational passions.  
As Steve Halperin (Introduction to Proof in Analysis, p. 9) has pointedly 
argued, by the term “mathematical proof,” one should understand “a 
sequence of statements which establish that certain assumptions (the 
hypotheses) imply that a certain statement (the conclusion) is true,” and 
the statements that constitute a proof must satisfy the following 
requirements: (i) “each is clear and unambiguous”; (ii) “each is true, and 
its truth follows immediately from the truth of the preceding statements 
and the hypotheses”; and (iii) “the final statement is the conclusion.” Thus, 
in the context of a mathematical proof, we may use several techniques, 
such as direct proof (involving arguing step by step, starting from what we 
know until we have demonstrated the truth of some conclusion), 
mathematical induction, counterexamples (since a single counterexample 
suffices to prove that a statement claiming necessity and universality is 
wrong), reductio ad absurdum (i.e., the form of argument that attempts to 
prove a statement by proving that the negation of the given statement leads 
to absurdity or contradiction), proof by contraposition (i.e., inferring a 
conditional statement from its contrapositive; the contrapositive of the 
statement “if 𝐴, then 𝐵” being the statement “if not 𝐵, then not 𝐴”), etc. In 
addition, the concept of a mathematical proof is inextricably linked to the 
concept of a definition, that is, to a deep and rigorous understanding of the 
essence of the object under consideration.  
The primary purpose of this book is to equip the reader with a 
mathematical compendium that contains and explains all the basic 
concepts and methods of mathematics. Moreover, this book aims to equip 
every aspiring person with a mathematical textbook for self-study and a 
self-contained reference work.  
 
© Nicolas Laos, 2023 
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Introduction: 
Mathematical Philosophy 

 
Every scientific activity is based on consciousness, thinking, perception, 
memory, judgment, imagination, volition, emotion, attention, as well as 
intuition.  
Consciousness can be construed as an existential state that allows one to 
develop the functions that are necessary in order to know both one’s 
existential environment as well as the events that take place around oneself 
and within oneself. Thinking is based on symbols, which represent various 
objects and events, and it is a complex mental faculty characterized by the 
creation and the manipulation of symbols, their meanings, and their mutual 
relations. Perception is a process whereby a living organism organizes and 
interprets sensory-sensuous data by relating them to the results of previous 
experiences. In other words, perception is not static, but a developing 
attribute of living organisms; it is active in the sense that it affects the raw 
material of scattered and crude sensory-sensuous data in order to organize 
and interpret them; and it is completed with the reconstruction of the 
present (present sensory-sensuous data) by means of the past (data 
originating from previous experiences). Therefore, perception is intimately 
related to memory and judgment. Judgment is one’s ability to compare and 
contrast ideas or events, to perceive their relations with other ideas or 
events, and to extract correct conclusions through comparison and 
contrast. Memory is one’s ability to preserve the past within oneself―or, 
equivalently, the function whereby one retains and accordingly mobilizes 
preexisting impressions. Imagination is a mental faculty that enables one 
to form mental images, representations, that do not (directly) derive from 
the senses. Imagination is not subject to the principle of reality, as the 
latter is formed by the established institutions, and it develops because 
consciousness cannot conceive the absolute being in an objective way. 
Volition, or will, is one’s ability to make decisions and implement them 
kinetically. Emotion or affect is the mental faculty that determines one’s 
mood. Attention is a mental faculty that focuses conscious functions on 
particular stimuli in a selective way, and it operates as a link between 
perception and consciousness. Intuition means that consciousness 
conceives a truth (that is, it formulates a judgment about the reality of an 
object) according to a process of conscious processing that starts from a 
minimum empirical or logical datum and rises to a whole abstract system 
with which consciousness realizes that it is connected or to which 
consciousness realizes that it belongs (logical intuition is intimately related 
to a type of subconscious thinking). 
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By the term “knowledge,” we mean: (i) the mental action through which 
an object is recognized as an object of consciousness; (ii) the mental action 
through which consciousness conceives the substance of its object; (iii) the 
object whose image or idea is contained in consciousness; and (iv) that 
conscious content which is identified with the substance of the object of 
knowledge. Therefore, the term “knowledge” can be construed as a firm 
consideration of an object as something that corresponds to reality. 
Logical knowledge, in particular, is a form of knowledge that derives from 
the rational faculty of consciousness, and it is characterized by 
indisputable and logically grounded truths (judgments about the reality of 
things). Rationality means the use of logical knowledge to attain goals. 
Logic is a theory of correct reasoning. Any relation between concepts is 
formulated by means of propositions. According to Aristotle’s Organon, 
the backbone of any science is a set of propositions, so that, starting from 
the very primitive principles and causes, one can proceed to learn the rest. 
Aristotle’s logic is focused on the notion of deduction (syllogism), which 
was defined by Aristotle, in the first book of his work entitled Prior 
Analytics, as follows: “A deduction is speech (logos) in which, certain 
things having been supposed, something different from those supposed 
results of necessity because of their being so”; each of the things 
“supposed” is a premise of the argument, and what “results of necessity” is 
the conclusion.  
 By the term “concept,” we mean the set of all predicates of a thing (or of a 
set of conspecific things) that express the substance of the given thing (or 
of the given set of conspecific things). In the scholarly discipline of logic, 
the “intension” of a concept is the set of all predicates of the given 
concept, or the set of all those elements due to which and by means of 
which the given concept can be known and distinguished from every other 
concept. In other words, the intension of a concept is its formal definition. 
For instance, the properties of the three angles and the three sides of a 
geometric figure constitute the intension of the concept of a triangle. 
Moreover, in the scholarly discipline of logic, “extension” indicates a 
concept’s range of applicability by naming the particular objects that it 
denotes. In other words, the extension of a concept encompasses all those 
things to which the given concept refers. For instance, the extension of the 
concept of a tree consists of all particular trees; the extension of the 
concept of a human being consists of all particular humans, etc.  
By the term “genus” (plural: “genera”), we mean a concept whose 
extension includes other concepts, known as “species” or “kinds,” which 
fall within it. In other words, “genera” are concepts with an extension 
bigger than that of other concepts, whereas “species” or “kinds” are 
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concepts with an extension smaller than that of other concepts. For 
instance, the concept of a geometric figure is a genus with regard to the 
concept of a triangle, whereas the concept of a triangle, which appertains 
to the concept of a geometric figure, is a kind with regard to the concept of 
a geometric figure.  
Through the process of “abstraction,” we decrease the intension of 
concepts and increase their extension. Thus, due to abstraction, the 
concept of a human being can be gradually generalized into the following 
concepts: “vertebrate,” “mammal,” “animal,” “living being,” and “being”; 
“being” is the most general concept, in the sense that its intension is 
minimum and its extension is maximum. “Being,” to which every other 
concept is reducible, cannot be further analyzed into other concepts. 
Concepts of such general type, which are not susceptible to further 
analysis into simpler concepts, and to which other concepts are reducible, 
are called “categories.” Aristotle, in his book Categories, attempted to 
enumerate the most general species, or kinds, into which beings in the 
world are divided. In particular, in Categories (1b25), Aristotle lists the 
following as the ten highest categories of things “said without any 
combination”: “substance” (for instance, man, horse), “quantity” (for 
instance, four-foot, five-foot), “quality” (for instance, white, grammatical), 
“relation” (for instance, double, half), “place” (for instance, in the 
Lyceum, in the market-place), “date” (for instance, yesterday, last year), 
“posture” (for instance, is lying, is sitting), “state” (for instance, has shoes 
on, has armor on), “action” (for instance, cutting, burning), and “passion” 
(for instance, being cut, being burned).    
No material object or system of objects—nor any connection or interaction 
that exists between them in material reality—is the direct object of 
mathematical study. In order for mathematical tools to be used to study the 
processes, the phenomena, and the individual objects that exist in reality, it 
is necessary to construct the corresponding mathematical models. By the 
term “mathematical model,” we mean a system of mathematical relations 
that symbolically describes the processes or the phenomena under study. 
For the construction of mathematical models, a variety of mathematical 
tools are used—such as: equations (algebraic, differential, and integral 
ones), graphs, matrices and determinants, relations of mathematical logic, 
geometric constructions, etc. In fact, the basic type of mathematical 
activity, the fundamental problem of mathematics, is the construction, the 
study, and the application of mathematical models. 
No model can represent all the properties and all the relations of the 
original object. In other words, a model is a simplification, an approximate 
representation of the original object, but, simultaneously, a model 
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highlights and describes an important pattern of the properties and the 
relations of the original object. The dialectical process of knowledge of 
reality consists of two processes: firstly, the replacement of existing 
models by others in which a more complete representation of the 
properties of the original object is achieved; and, secondly, the combined 
application of various models. 
As I have already mentioned, mathematics is concerned with the 
construction of such models of objects (namely, of things, processes, and 
phenomena) that reflect the corresponding objects’ quantitative and/or 
qualitative attributes as well as their spatial and structural peculiarities. For 
instance, geometry is the scientific study of the quantitative and the 
qualitative properties of spatial forms and relations (the criteria for 
equality of triangles provide instances of qualitative geometric knowledge, 
and the computation of lengths, areas, and volumes exemplifies 
quantitative geometric knowledge). 
The constituent elements of a model are symbols and signs. Symbols are 
forms that express commonly accepted intentions and actions, and they 
can be organized into particular systems that are called codes, and the 
elements of such a code are called signs. In the context of mathematical 
modelling, the character of these signs can vary, since these signs can be 
schematic images (namely, shapes, drawings, and graphs), collections of 
numerical symbols, and elements of artificial or natural languages. 
Furthermore, symbols are subject to transformations according to specific 
symbol transformation rules. The symbols and their transformations are 
definitely interpreted in terms of the original objects. The combinations of 
symbols used and their transformations are dictated and determined by the 
properties of the original objects and by the associations selected and 
included in the corresponding model. 
Mathematical models—which, with the help of the human senses, are 
directly extracted from material objects—usually express the primary 
simplest abstractions of a quantitative and spatial character, such as, for 
instance, enumeration, dimensions, form, position in space, etc. If a human 
being relies only on the sense organs, then he/she cannot achieve deep 
knowledge of the world around him/her nor of his/her inner world. Nature, 
acting on the sense organs, can only produce in humans a limited set of 
sensations, impressions—namely, that type of knowledge which we call 
“empirical.” 
The accumulation of empirical data constitutes the basis of generalizations 
and abstractions. The formulation of generalizations and abstractions 
provides the intellectual setting in which the application of mathematical 
tools becomes possible and meaningful. In the course of the historical 
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development of mathematics, the construction of models of increasingly 
complex systems has been achieved, including systems that consist of 
multiple abstractions. With regard to its theoretical essence, mathematics 
can be construed as a science of modelling; and, therefore, both the reality 
of the world and the reality of consciousness are fundamental to 
mathematics. 
The demand for computational precision goes hand in hand with the 
demand for conceptual precision and logical rigor. As the renowned 
French mathematician and philosopher René Thom has pointed out—in 
mathematics and, generally, in science—in addition to descriptive 
accuracy, explanatory accuracy is also required. Furthermore, Cybernetics 
and Systems Science have given rise to a transdisciplinary approach to 
scientific modelling, since they are characterized by an attempt to build 
general, domain-independent theories. The scientifically rigorous 
conception of mathematical modelling is based on the concepts of 
homomorphism and isomorphism. In mathematics, the term 
“homomorphism” describes the transformation of one data set (or 
“system”) into another while preserving relationships between elements in 
both sets. In other words, a homomorphism is a structure-preserving 
mapping. The mathematical term “isomorphism” is more specialized, 
since it refers to a structure-preserving mapping between two systems of 
the same type that can be reversed by an inverse mapping. In other words, 
an isomorphism is a special type of homomorphism, a bijective 
homomorphism. In fact, homomorphisms can lose some information about 
the object, but isomorphisms always preserve all the information. In view 
of the foregoing, a general definition of a mathematical model can be 
formulated as follows: Given two data sets, or systems A and B, each is a 
model of the other if there exist a homomorphism from data set A to a data 
subset Aʹ (read “A prime”) of B and a homomorphism from data set B to a 
data subset Bʹ (read “B prime”) of A, where systems Aʹ and Bʹ are 
isomorphic to each other. 
According to such renowned mathematicians and logicians as Jacques 
Hadamard, Nicolas Bourbaki, René Thom, Hermann Weyl, Ljubomir 
Iliev, Andrey Kolmogorov, and Leonid Kantorovich the order of 
operations involved in the construction of mathematical models can be 
summarized as follows: 

1. Determining and formulating the problem as clearly as possible. 
2. Identification of the variable quantities that determine the process 

under study or are chosen for the study of the given problem.  
3. Definition of the relations between these variables and the 

parameters on which the state of the process under study depends. 
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4. Formulation of a hypothesis (or hypotheses) about the nature of 
the conditions under study. 

5. Construction of the model so that its properties coincide with the 
initially defined ones. 

6. Conducting experimental tests. 
7. Checking the hypothesis accepted for the construction of the 

model, and evaluating it according to the outcome of 
experimental tests.  

8. Acceptance, rejection, or modification of the hypothesis on the 
basis of repeated experimental tests and conclusions. 

The symbolic language of mathematics is equipped with rules for handling 
concepts. In addition, the logical construction of mathematical models is 
rigorously determined in the context of, and my means of, a hypothetico-
deductive system. In a “hypothetico-deductive” (or “axiomatic”) system, 
there are two requirements that must be met in order that we agree that a 
proof is correct: (i) acceptance of certain statements, called “axioms,” 
without proof, on the basis of their intrinsic merit, or because they are 
regarded as self-evident; and (ii) agreement on how and when one 
statement “follows logically” from another, that is, agreement on certain 
rules of reasoning. Inextricably linked to the aforementioned two 
requirements is the requirement that every person who applies 
hypothetico-deductive reasoning to a particular discourse understands the 
meaning of the words and the symbols that are used in that discourse. The 
more consistent and the more complete a hypothetico-deductive system is, 
the more its imposition is safeguarded. By the term “consistency,” we 
mean that the axioms of a hypothetico-deductive system neither contain 
nor produce contradictions. By the term “completeness,” we mean that the 
truth value of any proposition that belongs to a hypothetico-deductive 
system can be determined within the given hypothetico-deductive system 
(that is, according to the terms and the rules of the given hypothetico-
deductive system). All these are philosophical questions. 
In general, there is a close affinity between mathematics and philosophy. 
Mathematics, like philosophy, is done by consciousness. Mathematics 
provides a model of knowledge of a particular kind, and, in fact, 
philosophers have highlighted the particular nature of mathematical 
knowledge and have argued that all knowledge could possibly aspire to the 
particular nature of mathematical knowledge. According to the German 
mathematician and philosopher Friedrich Ludwig Gottlob Frege, unlike 
other kinds of knowledge, mathematical knowledge is characterized by 
rigor and objectivity, because mathematics is constituted as a logical 
system. 
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The model of knowledge that is provided by mathematics has the 
following characteristics: (i) certainty (in the sense that, if something is 
true and known in mathematics, then it is undoubted), (ii) incorrigibility 
(in the sense that the development of mathematical knowledge is internally 
consistent), (iii) eternity (in the sense that mathematical knowledge is not 
subject to time), and (iv) necessity (in the sense that mathematical truths 
are not contingently true but necessarily true). Being aware of these 
attributes of mathematical knowledge, Plato had the phrase “Let no one 
ignorant of geometry enter” engraved at the door of his Academy. In the 
context of Plato’s philosophy, geometry is concerned with the 
understanding of the reason (“logos”) of the world. Thus, Plato, in his 
Republic, 527c, argues that “geometry is the knowledge of the eternally 
existent,” and that, therefore, geometry “would tend to draw the soul to 
truth, and create the spirit of philosophy, and would be productive of a 
philosophical attitude of mind.” 
One of the reasons why ancient Greeks regarded geometry, rather than 
arithmetic, as the more foundational and superior branch of mathematics is 
the crisis that erupted in the foundations of Pythagoras’s mathematical 
theory. Pythagoras is famous for finding out that, for any right-angled 
triangle, the square of the hypotenuse is equal to the sum of the squares of 
the other two sides. However, this geometric theorem, which is known as 
the Pythagorean theorem, presented a problem to Pythagoras and his 
disciples. Pythagoras was a philosopher, a mathematician, and a sort of 
cult leader in ancient Greece. Pythagoras and his school (the so-called 
“Pythagoreans”) were dedicated to the mysticism of numbers, and they 
maintained that everything in the world could be expressed as a number. 
But they had a rather inadequate understanding of the concept of a 
number. 
From the Pythagorean perspective of mathematics, the relations between 
the objects of the world (e.g., magnitudes) correspond to the relations 
between natural (and, generally, integral) numbers. However, it was soon 
realized that things are not so simple, since it was realized that there exist 
magnitudes that do not have a common measure. 
According to the Pythagoreans, two objects (magnitudes) are 
“commensurable,” that is, they have a common measure, if and only if 
there is a magnitude of the same kind contained an integral number of 
times in both of them. In other words, two magnitudes are 
“commensurable” if and only if their ratio is a rational number. However, 
the Pythagoreans encountered “incommensurable” magnitudes, namely, 
magnitudes whose ratio is an irrational number. For instance, the length of 
a diagonal of a unit square, namely, of a square whose sides have length 1, 
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is, according to the Pythagorean Theorem, equal to √2 , which is an 
irrational number; similarly, a circle’s circumference and its diameter are 
incommensurable. Pythagoras swore his disciples to secrecy about the 
existence of irrational numbers. Nevertheless, the awareness that there 
exist incommensurable magnitudes compelled ancient Greek 
mathematicians to inquire into the relations between incommensurable 
magnitudes. This event marked a major crisis in ancient mathematics. 
According to ancient Greek mathematicians, quantities (magnitudes) are 
continuous and uniform objects, which are best represented by straight line 
segments, whereas their division into parts, namely, their measurement in 
terms of a “unit of measurement” (that is, a definite magnitude of a 
quantity), represents the notion of discreteness. Ancient Greek 
mathematicians used the term “ratio of magnitudes” in order to refer to the 
relation between two magnitudes that can be measured in terms of a 
common unit of measurement, and, thus, the ancient Greek concept of a 
ratio is most similar to the more abstract modern concept of a number. In 
the context of ancient Greek mathematics, the objects of mathematics were 
quantities (represented by straight line segments), and the ratio between 
two quantities was a meta-object, namely, something that was used in 
order to study mathematical objects without being treated as a 
mathematical object itself. In other words, in the context of ancient Greek 
mathematics, a ratio (namely, a number) was construed as a measuring 
relationship between two quantities, and such a measuring relationship 
could be built up (and, hence, proved) in finitely many steps, using a 
common unit of measurement. Nevertheless, the discovery of 
incommensurable ratios demonstrated that a ratio could not be interpreted 
as a measuring relationship in the aforementioned way. In fact, as a result 
of the discovery of incommensurable ratios, the concept of a ratio (or a 
number) acquired its conceptual autonomy, and, instead of being treated as 
a meta-object, it started being treated as an object of mathematics. 
Therefore, ancient Greek mathematicians had to transcend the system of 
mathematics that was based on commensurable ratios (notice that a 
commensurable ratio could easily become an object of mathematical 
theory, since it is a rational number, and, therefore, it can be constructed in 
finitely many steps, whereas the decimal representation of an irrational 
number neither terminates nor infinitely repeats but extends forever 
without regular repetition). 
The discovery of irrational numbers undermined the faith in numbers as 
the foundational conceptual system of mathematics, and led to the belief in 
the superiority of geometry. The belief in the superiority of geometry was 
reinforced by the realization that, in geometry, an irrational number can be 
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constructed—as is the case, for example, when we draw a diagonal of a 
unit square, namely, √2—whereas, in arithmetic, an irrational number, 
such as √2, cannot be expressed as a ratio of two whole numbers. The 
aforementioned crisis in the foundations of mathematics was ultimately 
overcome by Eudoxus’s theory of proportions and by the method of 
exhaustion, which derives from Eudoxus’s theory of proportions, and it 
was used by Archimedes. 
The overcoming of crises in the foundations of mathematics is intimately 
related to set-theoretical concepts and axioms and to the concept of 
infinity in particular. I would like you to address these issues in your 
answer regarding the relationship between philosophy and mathematics. 
The concept of modern mathematics that is semantically most similar to 
Aristotle’s concept of a “potential infinity” is the convergence of a 
sequence of natural numbers. Thus, from the perspective of ancient Greek 
mathematics, infinity is not a being (specifically, it is not an actual state)—
namely, it cannot be simultaneously considered in its whole extension—
but it can only be considered as a becoming (specifically, as a process). In 
this way, the concept of an infinite approach helps us to overcome the 
contradiction between incommensurable ratios and commensurable ratios, 
since we can think of an incommensurable ratio infinitely approaching a 
commensurable ratio and vice versa. Similarly, the concept of an infinite 
approach helps us to overcome the contradiction between broken lines and 
curves as well as the contradiction between continuity and discreteness. 
This reasoning is endorsed by Euclid, and, therefore, in his Elements, he 
does not consider infinitely extended straight lines, but he always works 
with straight line segments, which, as he says, can be extended as much as 
one needs. Moreover, in view of the foregoing, Archimedes was very 
careful in the use of infinite processes, and, therefore, he approximated the 
irrational number 𝜋  (i.e., the ratio of a circle’s circumference to its 
diameter) by using the fact that the circumference of a circle is bounded by 
the perimeter of an inscribed polygon and the perimeter of a 
circumscribed polygon. According to Eudoxus’s theory of proportions and 
Archimedes’s method of exhaustion—which incorporate the Aristotelian 
concept of a “potential infinity” and the modern mathematical concept of a 
convergent sequence—there is always a ratio between any two 
magnitudes, and we can always make any magnitude smaller or greater 
than a given magnitude. 
Whereas, from the perspective of ancient mathematicians, numbers are 
things by means of which we count, Cartesianism (as the intellectual 
“school” of Descartes is known) is based on the algebraization of 
geometry, thus giving rise to the idea that numbers can be thought of as 
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positions on the number line. Fusing geometry and arithmetic is an 
arduous task. In order to understand the difficulties that originate from 
fusing geometry and arithmetic, let us consider, for instance, the famous 
irrational number √2, which was discovered by Pythagoreans when they 
attempted to compute the length of a diagonal of a unit square. The 
Pythagoreans realized that the diagonal of a unit square is not 
commensurable with the side of the given square, but, by keeping 
geometry and arithmetic separate from each other (that is, by refusing to 
identify numbers with lengths of straight line segments), ancient Greek 
mathematicians could argue as follows: given a straight line segment 
whose length is one, we can construct a straight line segment whose length 
is √2, and, in general, irrational numbers are geometrically constructible 
(and, hence, geometrically explicable and manageable), even though, from 
the perspective of arithmetic, irrational numbers are ideal quantities, in the 
sense that the calculation of irrational numbers (such as √2) is an infinite 
process (since irrational numbers have infinitely many decimal digits). On 
the other hand, in the nineteenth century, having endorsed the Cartesian 
approach to mathematics, mathematicians realized that they had to clarify 
some still ambiguous fundamental concepts (such as that of a real 
number), to formulate new methods of doing mathematics in a logically 
rigorous way, and to create a rigorous theory of the arithmetic continuum, 
specifically, a rigorous theory of real numbers and their arithmetic. 
Another important crisis in the foundations of mathematics broke out in 
the seventeenth century. Whereas ancient Greek mathematics (as it is 
expounded and systematized by Euclid in his Elements) is based on a 
geometric way of thinking, modern European mathematics is more 
inclined to an algebraic way of thinking (and, hence, it tends to give 
primacy to arithmetic over geometry). This shift was typified by the 
reduction of geometry to arithmetic in the context of analytic geometry, 
which is characterized by the use of coordinates and by the 
correspondence between curves and equations. The use of coordinate 
systems implies that space itself is encoded by 𝑛 -tuples (namely, by 
sequences, or ordered lists, of 𝑛 numbers), and, specifically, that the 2-
dimensional space, the “plane,” is encoded by pairs of numbers, so that the 
conception of space becomes subordinate to the conception of arithmetic. 
In the seventeenth century, mathematicians (primarily the initiators and 
developers of calculus) were preoccupied with such geometric problems as 
the computation of areas and volumes of arbitrary geometric figures and 
the construction of tangents to curves as well as with such physical 
problems as the formulation of the law that determines the rate of change 
of velocity and of acceleration (with respect to time) when one knows the 
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law that determines the rate of change of displacement of an object 
(namely, its velocity) and vice versa. The tendency towards the study of 
the aforementioned types of geometric and physical problems was 
reinforced by Galileo’s physical theory, which constrained Aristotle’s 
theory of motion (according to which the term “motion” referred to any 
kind of change, development, and growth) to the study of change in the 
relative position of physical objects. 
The most prominent seventeenth-century mathematicians realized that, 
when we treat geometric figures and the motions of physical bodies as 
“wholes,” we cannot demonstrate significant apparent similarities between 
them, but, when we analyze them into (sufficiently) “small” pieces, they 
display great similarities to each other. Hence, the major problem of 
seventeenth-century mathematics consisted of determining the proper 
processes for dividing the “whole” into “small” parts, which would be 
more easily and more rigorously studied than the “whole,” as well as of 
determining the proper processes for resynthesizing the behavior of the 
“whole” from the behavior of its “small” parts. However, the “small” parts 
into which an object of scientific research is divided are similar to the 
“small” parts into which another object of scientific research is divided, 
and, thus, they give rise to generalizations (such as natural laws), only 
when the dimensions of such “small” parts tend to zero, and, thus, only 
when the number (namely, the population size) of such “small” parts tends 
to infinity. Therefore, the need for the use of infinite processes, 
specifically, infinitesimals, became prominent again. 
Even though “infinitesimal methods” could lead to correct results and 
useful applications, they lacked the logical rigor that characterized ancient 
Greek mathematics, particularly, Euclid’s Elements, and they were 
susceptible to contradictions. Some mathematicians argued that lengths 
consisted of (infinitely many) infinitesimal lengths, areas consisted of 
(infinitely many) infinitesimal areas, and volumes consisted of (infinitely 
many) infinitesimal volumes, while other mathematicians argued that lines 
consisted of an infinite number of points, surfaces consisted of an infinite 
number of lines, and solid bodies consisted of an infinite number of 
surfaces. In that era, namely, in the seventeenth century, the mathematical 
concept of a limit was not yet clarified. It is worth pointing out that the 
famous French Enlightenment scholar Voltaire described infinitesimal 
calculus as “the art of measuring exactly a thing whose existence cannot 
be conceived,” thus expressing his bewilderment at the fact that the 
seventeenth-century infinitesimal calculus was a useful and powerful 
scientific instrument, but the actual things that it was talking about were 
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almost beyond conception (quoted in: Andrew Simoson, Voltaire’s Riddle, 
U.S.A.: The Mathematical Association of America, 2010, p. 51). 

In infinitesimal calculus, the usual derivative, denoted by 
ௗ௬

ௗ௫
, is an operator 

(actually, a function) that describes how a function 𝑦 = 𝑓(𝑥)  changes 
relative to its argument 𝑥. Newton defined the derivative of a function as 
the “ultimate ratio” of “vanishing quantities,” and Leibniz argued that the 
quantities 𝑑𝑦 and 𝑑𝑥, which appear in the definition of the derivative of a 
function, are infinitely small yet non-zero quantities. These ambiguities 
ignited heated debates regarding the foundations of infinitesimal calculus. 
In fact, the major problem pertaining to the development of infinitesimal 
calculus in the seventeenth and the eighteenth centuries was the reduction 
of a continuous entity, namely, a “whole,” to discrete entities, namely, 
infinitesimals (meaning infinitely small parts of the corresponding 
“whole”), by means of a non-well-defined concept, namely, the concept of 
infinity. However, the effectiveness of the application of infinitesimal 
methods to physics and astronomy played a significant role in the 
acceptance and the further development of infinitesimal calculus. In 
general, many eighteenth-century mathematicians drew their subject 
matter from many branches of physics, astronomy, navigation, 
cartography, commerce, and finance. Infinitesimal calculus was put in a 
rigorous conceptual setting by the French mathematician Augustin-Louis 
Cauchy (1789–1857), who explained the concept of a limit of a function in 
a clear, formal, and arithmetic, rather than geometric, way by arguing as 
follows: “when the successive values attributed to a variable approach 
indefinitely a fixed value so as to end by differing from it by as little as 
one wishes, this last is called the limit of all the others” (quoted in: Carl B. 
Boyer, The History of Calculus and Its Conceptual Development, New 
York: Dover, 1959, p. 272). 
In view of the peculiar model of knowledge that is provided by 
mathematics, as I have delineated it, we have to answer the following 
fundamental questions: Which are the underpinnings of mathematical 
knowledge, and what exactly is it that endows mathematical knowledge 
with the characteristics that I have already mentioned—namely, certainty, 
incorrigibility, eternity, and necessity? Moreover, why do other types of 
knowledge differ from mathematical knowledge and cannot be adapted to 
the requirements of the mathematical model of knowledge? 
Firstly, we have to consider mathematical Platonism. According to 
mathematical Platonism, numbers are forms, specifically, abstract, 
objectively existing objects. This thesis seems to be corroborated by the 
fact that numbers are not intrinsic characteristics of objects, but they are 
applicable to objects, and they seem to be the contents of objective truths, 
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irrespective of any contingency and any particular object of the sensible 
world. From this perspective, numbers are objects themselves. In 
particular, according to mathematical Platonism, numbers are a peculiar 
kind of objects, since they exist objectively, but they cannot be grasped by 
the senses, they are not part of the material space-time, and they are not 
subject to the laws of material space-time. Far from negating the thesis 
that numbers are objects, the fact that numbers are not subject to the 
spatio-temporal structure of our sensible world corroborates the Platonic 
thesis that the world of forms is the reality par excellence, which 
underpins the logical constitution of our sensible world, which, in Platonic 
parlance, can be regarded as a “shadow” of the world of forms. This 
reasoning underpins the Platonic argument that, whereas the knowledge 
that is provided by the senses is subject to revision, the knowledge that is 
provided by forms, such as numbers, is incorrigible; and, therefore, reason 
(“logos”), which consists of thought and language, is superior to the 
senses. This is how mathematical Platonism explains the peculiar 
characteristics of the mathematical truth—namely, the certainty, the 
incorrigibility, the eternity, and the necessity of the mathematical truth. 
Mathematical Platonism is a variety of dualistic realism. In philosophy, the 
term “realism” refers to a philosophical model that is based on objectively 
existing objects, thus giving primacy to a consciousness-independent 
world, as opposed to “idealism,” which gives primacy to the reality of 
consciousness. According to philosophical realism, the fact that experience 
furnishes consciousness with images—even unrelated to each other—of a 
reality that seems to lie outside the dominion of consciousness implies that 
the reality of the world is the cause of the particular images of the world 
that are present within consciousness. From the realist perspective, the 
principle of causality points us in the direction of the claim that the 
autonomous existence of reality is naturally and logically necessary. Even 
though the aforementioned reasoning is sound, dualistic realism, with its 
doubling of the world, leads to contradictions and logical gaps, especially 
regarding the existence of, and the relationship between, the world of 
forms and the world of “shadows,” namely, their sensible images. 
Aristotle attempted to overcome the contradictions and the logical gaps of 
Plato’s dualistic realism by reformulating dualistic realism in a way that 
does not depend on a Platonic doubling of the world and bridges the gap 
between the world of forms and the human mind. In particular, 
Aristotelianism highlights the structural mode of being. 
The cohesive bond between substance and form is the structure of a being. 
The deepest reality of a being is its substance, the external aspect and the 
existential otherness of that reality are the form of the given being—
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namely, an element that animates the given being—and these two 
elements (modes of being) concur with each other in the context of the 
structural mode of being. From the perspective of structuralism, Platonic 
realism corresponds to the ante rem structuralism (“before the thing”), in 
the sense that, according to Platonism, the ideational structure of mental 
life is a real but transcendent principle vis-à-vis the mind itself and the 
sensible world, and philosophical consciousness tries to partake of and 
progress in the world of forms, while Aristotelian realism corresponds to 
the in re structuralism (“in the thing”), in the sense that, according to 
Aristotelianism, structures are held to exist inasmuch as they are 
exemplified by some concrete system, and the mind itself, not the world of 
forms, is a real and transcendent principle vis-à-vis the sensible world, and 
it conceives forms as abstractions. According to Plato’s dualistic realism, 
forms are objectively existing objects, of which the objects of the sensible 
world are images, or “shadows.” According to Aristotle’s dualistic 
realism, forms are mental abstractions, the objects of the sensible world 
are material exemplifications, materializations of forms, forms are 
conceived by the mind, and the mind, rather than the world of forms itself, 
is transcendent to the sensible world. For this reason, Aristotle argued that 
the mind is the “entelechy”—that is, the program of actualization—of the 
body, generally, of the human organism. 
According to mathematical Aristotelianism, mathematics refers to truths of 
the sensible world, in the sense that, even though numbers are not sensible 
things, they are properties of sensible things—specifically, abstract entities 
which can be predicated of sensible things. In other words, numbers are 
not objects themselves, they do not exist independently of objects, but they 
are features of objects, and they exist within objects. For instance, when 
we see ten people, the number ten is a property of the given collection of 
people that we see. 
In the context of mathematical Aristotelianism, numbers are not self-
subsistent forms, objects, but still numbers are properties of other things in 
an objective way. In general, according to Aristotle and according to 
Thomas Aquinas’s variety of Aristotelianism (in the context of medieval 
scholasticism), consciousness is a passive mirror of reality, and truth refers 
to an objective correspondence between thinking consciousness and its 
object. But Descartes reversed the aforementioned relation between the 
intellect and its object, arguing that understanding (or intellection) is the 
basic reality, and that understanding is activated by conceiving itself; 
hence, Descartes’s famous dictum: “cogito ergo sum,” meaning “I think 
therefore I am.” By assigning this active role to consciousness, Descartes 
emerged as the rigorous initiator and founder of modern philosophy. 
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Gradually, modern philosophy gave rise to a new general model, which is 
known as idealism. According to modern philosophical terminology, there 
are two general models whereby philosophers interpret the world: one 
gives primacy to the reality of the world, and it is known as philosophical 
realism, whereas the other gives primacy to the reality of consciousness, 
and it is known as philosophical idealism. According to idealism, the 
nature of consciousness is not totally different from or opposite to the 
nature of extra-conscious reality. The idealists’ way of thinking can be 
summarized as follows: if the nature of reality were totally different from 
the nature of consciousness, then the human being would be unable to 
know reality. Thus, ultimately, idealism construes and studies the world 
not as something reflected in consciousness, but as an extension and a 
projection of consciousness outside itself and as part of consciousness. 
In the nineteenth century, the German mathematician and philosopher 
Friedrich Ludwig Gottlob Frege departed from the traditional realist 
philosophy of mathematics, and, in contrast to mathematical 
Aristotelianism, he argued that, even though mathematical knowledge is 
objective, numbers are not objective, consciousness-independent 
properties of other things. According to Frege, any number 𝑛 can be used 
in order to count any 𝑛-membered set, but the formulation of a claim 
concerning which number belongs to a set is determined by the way in 
which mathematical consciousness conceptualizes that set. For instance, 
consider the Tarot. The Tarot consists of 78 cards. Moreover, it has two 
distinct parts: the Major Arcana, consisting of 22 cards without suits, and 
the Minor Arcana, consisting of 56 cards divided into 4 suits of 14 cards 
each. Depending of whether we are thinking in terms of Tarot cards in 
general, or in terms of the Major Arcana Tarot cards, or in terms of the 
Minor Arcana Tarot cards, or in terms of the suits of the Minor Arcana 
Tarot cards, different numbers will belong to that particular set of cards. 
Hence, we have to decide if that particular set has the property 78, or the 
property 22, or the property 56, or the property 4. Similarly, a pair of shoes 
is one pair of shoes, but it consists of two shoes, and, therefore, we have to 
decide which number belongs to this physical object: the number one or 
the number two. Thus, according to Frege, numbers are not objective 
properties of objects, but objects acquire numbers as properties according 
to the ways in which consciousness thinks of the corresponding objects. 
Frege’s argument about the active role of consciousness in mathematical 
creation—especially in the light of Kant’s philosophy—may lead one to 
the conclusion that we have to do away with mathematical objectivity 
completely. Before explaining the way in which Frege prevented 
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mathematical philosophy from sinking into arbitrary idealism, it is 
important to summarize Kant’s theses. 
Immanuel Kant—who wrote the seminal book Critique of Pure Reason 
(1781/1787) and is one of the paradigmatic representatives of the 
European Enlightenment—formulated a theory of mathematical 
philosophy that is focused on the following question: given that 
mathematical knowledge is necessarily, intrinsically true, and, 
simultaneously, it is applicable to the sensible world—since the sensible 
world seems to conform to the laws of arithmetic, which transcend the 
sensible world—how is it possible to know something about the world that 
is necessarily true, or, in other words, how can we have knowledge of the 
world independent of recourse to experience? In order to tackle this 
question, Kant distinguished between two kinds of sentences: analytically 
true sentences and synthetically true sentences. 
An analytically true sentence is necessarily true on purely logical 
grounds—that is, solely in virtue of its meaning—and, in reality, it 
elucidates meanings already implicit in the subject. For instance, the 
sentence “Pediatricians are medical doctors who specialize in the medical 
care of infants, children, adolescents, and young adults” is an analytic 
statement, because it is true by definition. By contrast, the sentence 
“Pediatricians are rich” is not necessarily true; since it is not part of the 
definition of a pediatrician that a pediatrician is rich, but it is part of the 
definition of a pediatrician that a pediatrician is a medical doctor who 
specializes in the medical care of infants, children, adolescents, and young 
adults. The sentence “Pediatricians are rich” is a synthetic statement. 
The distinction between analytic and synthetic statements is based on 
whether we are dealing with one concept or two concepts. If you say that 
“Pediatricians are rich,” you are making a synthesis of two unrelated 
concepts—namely, the concept of being a medical doctor specialized in 
pediatrics and the concept of being rich. By contrast, if you say that 
“Pediatricians are medical doctors who specialize in the medical care of 
infants, children, adolescents, and young adults,” you are not synthesizing 
two unrelated concepts, but you are analyzing a feature of one concept—
namely, the concept of being a pediatrician. 
Furthermore, Kant made another important epistemological distinction in 
order to clarify the manner in which we know things to be true—
specifically, he distinguished between a priori philosophical methods and 
a posteriori philosophical methods. The major attribute of the a priori 
methods is that they are based on primitive hypotheses usually intuitively 
conceived and axiomatically accepted, which deductively give rise to 
series of syllogisms, which, in turn, lead to ultimate conclusions, which 
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are related to the preceding propositions in a logically rigorous way. For 
instance, we know that “pediatricians are medical doctors who specialize 
in the medical care of infants, children, adolescents, and young adults” a 
priori, that is, prior to any testing and any surveying. On the other hand, a 
posteriori philosophical methods are based on empirical research. For 
instance, the truth value of the statement that “pediatricians are rich” can 
only be determined a posteriori, that is, on the basis of doing some 
empirical research. 
In view of the aforementioned Kantian epistemological distinctions, 
analytic statements are a priori, and synthetic statements are a posteriori. 
But mathematical knowledge exhibits the following peculiar feature: it is 
necessarily true, and, therefore, a priori, but, simultaneously, it is true of 
the world, and, therefore, synthetic. In fact, Kant observed that 
mathematical knowledge is a peculiar hybrid, in the sense that it is 
synthetic a priori. In other words, according to Kant, mathematical 
propositions, such as “1 + 2 = 3,” are synthetic statements, abstractions 
from the sensing of objects, and, yet, they are a priori, in the sense that we 
do not need to do any experiments in order to verify them. Thus, Kant 
came up with the following question: how can we know things that are 
synthetic a priori? In order to answer this question, he developed a whole 
system of metaphysics that he called transcendental idealism and 
expounded in his Critique of Pure Reason. 
Kant’s metaphysical system is founded on the thesis that we do not know, 
and cannot know, the essence of things, the things-in-themselves, which 
he called “noumena”—meaning objects or events that exist independently 
of human sense and/or perception—but we can only know things as they 
appear to consciousness, which are called “phenomena.” In Kant’s 
philosophy, a phenomenon is a faded, dissolved declaration of the 
corresponding noumenon, the manner in which the corresponding 
noumenon (thing-in-itself) appears to an observer. According to Kant, 
phenomena have been put through a kind of mental filter, which is the way 
in which consciousness perceives the world, and mathematics is that kind 
of mental filter. In particular, Kant maintains that geometry is the spatial 
form through which consciousness perceives the world, and arithmetic—
specifically, the one-dimensional sequence of numbers—is the temporal 
form through which consciousness perceives the world. Hence, according 
to Kant, we do not receive mathematics from the system of space-time 
itself, but we use mathematics, our spatio-temporal intuitions and 
intellectual glasses, in order to understand and organize the world, and this 
is the reason why mathematics is a priori. Geometry is the way in which 
we organize space, and arithmetic is the way in which we organize time, 
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and, when we combine geometry with arithmetic, we obtain the 
intellectual framework of the spatio-temporal world that we experience. 
In his Transcendental Aesthetic, Kant refers to the followers of Newton’s 
position as the “mathematical investigators” of nature, who contend that 
space and time “subsist” on their own; and he refers to the followers of 
Leibniz’s position as the “metaphysicians of nature,” who think that space 
and time “inhere” in objects and their relations. At the ontological level, 
Kant’s position is that space and time do not exist independently of human 
experience, but they are “forms of intuition” (i.e., conditions of perception 
imposed by human consciousness). In this way, he managed to reconcile 
Newton’s and Leibniz’s arguments: he agrees with Newton that space is 
an irrefutable reality for objects in experience (i.e., for the elements of the 
phenomenal world, which are the objects of scientific inquiry), but he also 
agrees with Leibniz that space is not an irrefutable reality in terms of 
things-in-themselves. At the epistemological level, unlike David Hume, 
Kant argues that the axioms of Euclidean geometry are not self-evident or 
true in any logically necessary way. For Kant, the axioms of Euclidean 
geometry are logically synthetic, that is, they may be denied without 
contradiction, and, therefore, consistent non-Euclidean geometries are 
possible (as Lobachevski, Bolyai, and Riemann actually accomplished). 
However, Kant argues that the axioms of Euclidean geometry are known a 
priori, specifically, they depend on our intuition of space, that is, space as 
we can imaginatively visualize it. After the publication of Kant’s 
philosophical works, numerous attempts have been made to articulate 
methods of philosophical research that synthesize idealism and positivism, 
or that at least combine aspects of idealism and positivism with each other. 
Kant has correctly highlighted and elucidated the active role of 
consciousness in cognition, and the distinction between cognition and the 
object of cognition. The distinction between cognition and the object of 
cognition plays a central role in the so-called analytic philosophy. 
However, analytic philosophy may lead to an impasse, because it urges 
one to repeat the distinction between cognition and the object of cognition 
ad infinitum (forever). Inherent in analytic philosophy is the risk of using 
Kantian philosophy in an abortive way, in the sense that the attempt to 
define the presuppositions of the presuppositions of philosophy can 
continue ad infinitum, annihilating epistemology. To mitigate this risk, 
Kant resorted to a formalist view of idealism: Kant’s Critique is 
characterized by formal idealism, in the sense that it maintains that the 
form of objects is due to consciousness, but not their matter. Furthermore, 
to avoid the excesses of analytic philosophy, I would say that, at some 
point, a mature philosophical-scientific mind must make a final, 
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epistemologically responsible decision, instead of transforming philosophy 
into a meaningless game of words. After all, the very fact that the object of 
cognition, the world, exhibits a sort of resistance to cognition, and 
consciousness has to try hard in order to know the world and impose the 
intentionality of consciousness on the word, implies that—even though, 
under certain conditions, the world is submissive to the intentionality of 
consciousness—the world is not merely a projection and extension of 
consciousness. 
The way in which Frege attempted to do justice to the objectivity of 
mathematics and to the reality of the world was logicism, which, as I 
mentioned earlier, brings together logic and arithmetic. Logicism resorts to 
Plato’s philosophical realism regarding the objectivity of mathematics, but 
logicism differs from classical Platonism in two ways. Firstly, in contrast 
to classical Greeks, Frege and logicism in general regard arithmetic, rather 
than geometry, as the foundational branch of mathematics, because of the 
following two reasons: in the seventeenth century, Descartes’s analytic 
geometry, adapting Viète’s algebra to the study of geometric loci, showed 
that algebra can be used in order to model geometric objects in a 
systematic and rigorous way, thus establishing a correspondence between 
geometric curves and algebraic equations; and, in the nineteenth century, 
Nikolai Ivanovich Lobachevski, János Bolyai, and Bernhard Riemann 
invented rigorous and consistent alternatives to Euclidean geometry. 
Hence, for Frege and the logicists in general, the central problem in 
mathematical philosophy is to understand the meaning of a number. In 
particular, logicists endow arithmetic with the objectivity that 
characterizes Platonic forms, but they do so in an indirect way—through 
logic—trying, in a sense, to achieve a creative synthesis between Kant’s 
transcendental idealism and Plato’s philosophical realism. The role that 
logic plays in the “school” of logicism is the second issue with regard to 
which logicism differs from classical Platonism. In particular, Frege 
thought that we can do justice to mathematical Platonism, according to 
which arithmetic is about things that are forms, if we show that 
mathematics—particularly, arithmetic—is reducible to logic, and if we 
take a Platonic view of logic; hence, the name of this “school” of 
mathematical philosophy is logicism. 
Frege fused logic and arithmetic by formulating a theory of numbers that 
is based on the concept of a class of objects and on structural linguistics. 
Hence, Frege synthesized Aristotle’s work on logic and language with 
Plato’s theory of forms. In particular, Frege thought as follows: Let us 
consider a variable 𝑥, meaning that 𝑥 is either a symbol representing an 
unspecified term of a theory, or a basic object of a theory that is 
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manipulated without referring to its possible intuitive interpretation. Thus, 
given a class of sentences that have the same form, we can capture their 
common form by replacing their specific subjects with a variable 𝑥. For 
instance, given sentences such as “Plato is a philosopher,” “Aristotle is a 
philosopher,” “Kant is a philosopher,” “Frege is a philosopher,” etc., 
which have the same form, we can replace the name of the subject with a 
variable 𝑥 , thus formulating the sentence “𝑥  is a philosopher,” which 
captures the common form of the aforementioned sentences. In this way, 
we obtain a class: all the things that can satisfy the sentence “𝑥  is a 
philosopher,” whenever we replace 𝑥 with a name, belong to the class of 
philosophers. Hence, Plato, Aristotle, Kant, Frege, and any other person 
whom we could substitute for 𝑥 are members of the class of philosophers. 
According to Frege’s terminology, whereas propositions are declarative 
statements that are either true or false, such as the statement “Plato is a 
philosopher,” a statement that contains a variable 𝑥  and expresses a 
proposition as soon as a value is assigned to 𝑥 is a propositional function, 
such as the statement “𝑥 is a philosopher.” In other words, propositions 
and propositional functions differ from each other by the fact that 
propositional functions are ambiguous, in the sense that a propositional 
function contains a variable of which the value is unassigned. A class is 
the extension of a propositional function; for instance, the collection of all 
philosophers constitutes the extension of the propositional function “𝑥 is a 
philosopher,” and is a class. Frege used the so defined concept of a class in 
order to refer to numbers and study the foundations of arithmetic. 
According to Frege, numbers are classes. In his seminal book Basic Laws 
of Arithmetic (1893, 1903), Frege explained that any number 𝑛  can be 
used in order to count any 𝑛-membered class. For instance, the number 
two can be thought of as the class of all 2-membered things, namely, as the 
class of all pairs, independently of the nature of the objects that constitute 
each pair. Similarly, the number three can be thought of as the class of all 
triples, namely, as the class of all those things that have three members; 
the number four can be thought of as the class of all quadruples, namely, 
as the class of all those things that have four members, etc. Collect all 
those things that have 𝑛  members, and that, according to Frege, is the 
number 𝑛 . Notice that this way of defining numbers is substantively 
different from the thesis that a number is a property of a collection of 
objects, because, according to Frege’s conception of numbers, a number is 
a particular kind of object, it is a class. Frege built a whole system of logic 
on the aforementioned concept of a class. 
In order to define the concept of a natural number, in particular, Frege 
defined, for every 2-place relation 𝑅, the concept “𝑥 is an ancestor of 𝑦 in 
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the 𝑅-series,” and this new relation is known as the “ancestor relation on 
𝑅.” The underlying idea can be easily grasped if we interpret Frege’s 2-
place relation 𝑅 as “𝑥 is the father of 𝑦 in the 𝑅 series.” For instance, if 𝑎 
is the father of 𝑏, 𝑏 is the father of 𝑐, and 𝑐 is the father of 𝑑, then Frege’s 
definition of “𝑥 is an ancestor of 𝑦 in the fatherhood-series” ensures that 𝑎 
is an ancestor of 𝑏, 𝑐, and 𝑑, that 𝑏 is an ancestor of 𝑐 and 𝑑, and that 𝑐 is 
an ancestor of 𝑑. More generally, given a series of facts of the form 𝑎𝑅𝑏, 
𝑏𝑅𝑐 , and 𝑐𝑅𝑑 , Frege showed that we can define a relation 𝑅∗  as “ 𝑦 
follows 𝑥 in the 𝑅-series.” Thus, Frege formulated a rigorous definition of 
“precedes,” and he concluded that a “natural number” is any number of the 
predecessor-series beginning with 0. 
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Chapter 1 
Mathematical Logic 

 
By the term “deductive system,” we mean a calculus endowed with an 
interpretation of its terms. A “calculus” is a collection of symbols 
equipped with a set of rules for their manipulation. When a calculus is 
equipped with an “interpretation” of its terms, that is, with a set of rules 
that makes its terms meaningful, then it becomes a deductive system. A 
deductive system is called “pure” if the rules of the interpretation are 
sufficient to establish the truth or the falsity of its constituent statements. 
The statements of a pure deductive system are called “L-determinate,” 
where L stands for the relevant formal language (the truth value of an L-
determinate statement is determined in L by an interpretation of the 
symbols in L). For instance, logic (the science of correct reasoning) and 
mathematics are pure deductive systems. Therefore, truths derived from 
pure deductive systems are based on reason alone, and they are certain 
because they can never be empirically refuted. If a statement cannot be 
assigned a truth value only according to the rules of interpretation in the 
relevant deductive system, then it is called “non-L-determinate.” A non-L-
determinate statement is called true or false not only on the basis of the 
rules of interpretation in the relevant deductive system, but also on the 
basis of a rule of disposition by reference to empirical data. Non-L-
determinate statements for which a rule of disposition by reference to 
empirical data has been established are called “factual statements,” while 
the deductive systems in which they appear are called “applied.”  
A “scientific theory” is a deductive system (pure or applied) that explains 
generalizations (i.e., “scientific laws”) or aims to criticize and change the 
structure of the world and/or consciousness.  
In symbolic or mathematical logic, the following symbols are used: 

˄ or &: conjunction (“and”); 
˅: disjunction (“or”); 
¬: negation (“not”); 
→ or ⇒: material implication (“if . . . then . . .”); 
↔ or ⇔: biconditional (“if and only if”); 
∀: universal quantification (“for every”); 
∃: “there exists”; 
∃!: “there exists exactly one”; 
∄: “there does not exist”; 
𝑃(𝑥): predicate letter (meaning that 𝑥 (an object) has property 𝑃); 
|: “such that”; 
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⊢: turnstile (𝑥 ⊢ y means that 𝑥 “proves” (i.e., syntactically entails) 𝑦; 
a sentence 𝜑 is “deducible” from a set of sentences 𝛴, expressed 
𝛴 ⊢ 𝜑, if there exists a finite chain of sentences 𝜓଴, 𝜓ଵ, 𝜓ଶ, … , 𝜓௡ 
where 𝜓௡  is 𝜑  and each previous sentence in the chain either 
belongs to 𝛴, or follows from one of the logical axioms, or can be 
inferred from previous sentences; ⊬ denotes the negation of ⊢); 

⊨: double turnstile (𝑥 ⊨ y means that 𝑥  “models” (i.e., semantically 
entails) 𝑦; a sentence 𝜑 is a “consequence” (i.e., an ordered list) of 
a set of sentences 𝛴 , expressed 𝛴 ⊨ 𝜑, if every model of 𝛴  is a 
model of 𝜑); 

𝐵 ⊆ 𝐴: 𝐵 is a “subset” of 𝐴, meaning that every element of a set 𝐵 is 
an element of a set 𝐴; 

𝐵 ⊂ 𝐴: 𝐵 is a “proper subset” of 𝐴, meaning that 𝐵 ⊆ 𝐴 and there is at 
least one element of 𝐴 that is not an element of 𝐵; 

𝑥 ≤ 𝑦: 𝑥 is less than or equal to 𝑦; 
𝑥 < 𝑦: 𝑥 is strictly less than 𝑦; 
𝑥 ≥ 𝑦: 𝑥 is greater than or equal to 𝑦; 
𝑥 > 𝑦: 𝑥 is strictly greater than 𝑦; 
𝑥௡: this operation is called “exponentiation” (pronounced as “𝑥 raised 

to the power of 𝑛”), and it means that 𝑥 is multiplied by itself 𝑛 
times, where 𝑛 = 0,1,2,3, …; 𝑥଴ = 1 , 𝑥ଵ = 𝑥 , 𝑥ଶ = 𝑥 ∙ 𝑥 , 𝑥ଷ = 𝑥 ∙
𝑥 ∙ 𝑥, etc.; 

𝑥
ଵ

௡ൗ : this operation is called the “𝑛th root,” and it is the number whose 

𝑛 th power equals the given number ( 𝑛 ≠ 0 ); 𝑥
ଵ

ଶൗ = √𝑥  is the 

square root, 𝑥
ଵ

ଷൗ = √𝑥
య  is the third root, etc.; 

( ) : brackets; they are used for convenience in grouping terms 
together (there are specific rules for removing brackets). 

The English mathematician and philosopher George Boole (1815–64) 
realized that arguments expressed in an ordinary language (e.g., in 
ordinary English) can be expressed in the notation of mathematical logic 
and then studied in the context of “propositional calculus.” For instance, 
consider the following argument: 

 If you want to learn mathematics, then you must study 
methodically. 

 If you must study methodically, then you must be taught an 
effective method of studying.  

 Therefore, if you want to learn mathematics, then you must be 
taught an effective method of studying. 

The aforementioned argument involves various propositions, which we 
may present by letters as follows: 
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𝑃: You want to learn mathematics.  
𝑄: You must study methodically. 
𝑅: You must be taught an effective method of studying.  
These propositions can be “true” or “false.” The aforementioned argument 
can be formalized as follows: 

𝑃 ⇒ 𝑄 
𝑄 ⇒ 𝑅 
---------- 
𝑃 ⇒ 𝑅 

where the two propositions above the dashed line are the “premises,” and 
the one below the dashed line is the “conclusion.” The reasoning process 
that leads from premises to a conclusion is called a “deductive process” or 
just a “deduction.” A “theorem” is a formula inferred by means of a rule of 
inference in a finite number of steps from axioms and previously inferred 
formulas. Those propositions where truth value is dependent on the values 
of the variables in them are called “predicates” (hence, we talk about 
“predicate calculus”).  
It is important to distinguish between the terms “validity” and “truth” as 
they are used in logic. An argument, a reasoning process, or a deduction is 
said to be valid (i.e., logically correct) if the truth of the conclusion 
follows from the truth of the premises. Notice that, if the premises are both 
true, then the conclusion is logically necessarily true, too. Therefore, with 
one or more factually incorrect premises, an argument may still be valid, 
although its conclusion may be false. Furthermore, a valid argument based 
on false premises does not necessarily lead to a false conclusion. In other 
words, there is a significant difference between logical (i.e., procedural) 
correctness (“validity”) and factual correctness. If an argument is valid 
(i.e., logically correct), and if its premises are true (i.e., if the facts on 
which it is based are true), then it is said to be “sound.” In logic, we focus 
on the validity of arguments rather than on their soundness, and this fact 
explains the “instrumental” role of logic in philosophy and science.  
A “Boolean algebra” is the six-tuple 
〈𝐴, ˄, ˅, ¬, 0, 1〉,  
consisting of a set 𝐴  equipped with two binary operations: ˄  (called 
“meet” or “and”) and ˅ (called “join” or “or”), a unary operation ¬ (called 
“complement” or “not”), and two elements 0 and 1 in 𝐴 (called “bottom” 
and “top” respectively, and denoted by the symbols ⊥ 𝑎𝑛𝑑⊤ respectively), 
such that the truth value of a true sentence is 1, the truth value of a false 
sentence is 0, and, for all elements 𝑎, 𝑏, and 𝑐 of 𝐴, the following axioms 
hold: 

i. Associativity:  
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𝑎˅(𝑏˅𝑐) = (𝑎˅𝑏)˅𝑐;  𝑎˄(𝑏˄𝑐) = (𝑎˄𝑏)˄𝑐. 
ii. Commutativity: 

𝑎˅𝑏 = 𝑏˅𝑎;  𝑎˄𝑏 = 𝑏˄𝑎. 
iii. Absorption: 

𝑎˅(𝑎˄𝑏) = 𝑎;  𝑎˄(𝑎˅𝑏) = 𝑎. 
iv. Identity: 

𝑎˅0 = 𝑎; 𝑎˄1 = 𝑎. 
v. Distributivity: 

𝑎˅(𝑏˄𝑐) = (𝑎˅𝑏)˄(𝑎˅𝑐);  𝑎˄(𝑏˅𝑐) = (𝑎˄𝑏)˅(𝑎˄𝑐). 
vi. Complements: 

𝑎˅¬𝑎 = 1 and 𝑎˄¬𝑎 = 0.  
For instance, the 2 -element Boolean algebra has only two elements, 
namely, 0 and 1, and it is defined by the following rules:  
 
Table 1: Truth Tables of a 2-Element Boolean Algebra. 
 

𝑎 𝑏 𝑎˄𝑏 𝑎˅𝑏 𝑎 ¬𝑎 
0 0 0 0 0 1 
1 0 0 1 1 0 
0 1 0 1 
1 1 1 1 

 
Formalism, Structuralism, and Mathematical Modelling 

The formalist approach to mathematics maintains that, in order to analyze 
a mathematical text, it suffices to study its formal devices, mainly, its 
syntax. Hence, according to formalism, mathematical statements are 
statements about the consequences of the manipulation of strings (i.e., 
alphanumeric sequences of symbols, usually presented in the form of 
equations) using established rules of inference (by a “rule of inference,” 
we mean a logical form consisting of a function that takes premises, 
analyzes their syntax, and returns a conclusion). In other words, according 
to formalism, mathematics does not consist of propositions representing an 
abstract sector of reality, but it is actually a game of symbols, without 
having more ontological commitments than, for instance, chess.  
In the 1930s, the great Austrian mathematician and logician Kurt Gödel 
undertook to evaluate the logical rigor of formalism. Broadly speaking, 
Gödel considered a statement of the type 
𝑃 = “This statement is false,” 
which leads to the following complicated situation: if 𝑷 = “This statement 
is false” is true, then it is false, but the sentence asserts that it is false, and, 
if it is, indeed, false, then it must be true, and so on. The earliest study of 
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problems pertaining to self-reference in logic is due to the seventh-century 
B.C.E. Greek philosopher and logician Epimenides, who formulated the 
classical “liar paradox.” Gödel’s Incompleteness Theorem shows that such 
complicated situations can occur in any theory that is consistent and 
comprehensive enough to contain elementary arithmetic as the latter has 
been encoded by Peano’s axioms for natural numbers (see Chapter 2). 
Consequently, logic is necessary and capable of organizing every 
mathematical and, generally, scientific theory, but logic is not sufficient to 
completely organize itself. According to Gödel, human consciousness, in 
general, and thought processes, in particular, are not merely algorithmic. 
Gödel established the following argument mathematically: Either the 
human mind (even within the realm of pure mathematics) infinitely 
surpasses any finite machine (algorithmic process), or else there exist 
absolutely undecidable arithmetic propositions (see: S. G. Shanker, ed., 
Gödel’s Theorem in Focus, London: Routledge, 1991). 
Formalism rightly stresses the importance of syntax and, particularly, of 
logical consistency, but it cannot stand as a general theory of the 
epistemology of mathematics or any other scientific discipline. Therefore, 
we have to turn from formalism to structuralism. Structuralism is 
concerned with the analysis of the underlying structures in a text. The 
structure of a mathematical text can be explained and described as follows: 
Let 𝐶 denote the set of all basic conceptual objects (i.e., the “universe” of 
concepts), 𝑅 the set of all basic conceptual relations, and 𝐴 the set of the 
axioms of a structure. Then the corresponding structure is denoted by 
𝒮(𝐶, 𝑅, 𝐴). A segment of a structure is a set of concepts, definitions, and 
judgments of the given structure, it satisfies the axioms of the given 
structure as well as some additional conditions, and it is denoted by 
𝒮̅(𝐶,ഥ 𝑅,ഥ 𝐴̅). Suppose that a phenomenon of the sensory-sensuous world has 
been described by a structure 𝒮(𝐶, 𝑅, 𝐴), or by a segment of this structure. 
Both the phenomenon and its mathematical model can be regarded as two 
isomorphic models, since the original phenomenon is initially modelled by 
our perception of it. More precisely, it is modelled by the initial reference 
of our consciousness to it, and its mathematical model is 𝒮(𝐶, 𝑅, 𝐴) or a 
segment of 𝒮(𝐶, 𝑅, 𝐴).  
The creation of isomorphisms between mathematics and other scientific 
disciplines or human activities is called mathematical modelling. Thus, 
mathematical modelling consists of two stages: (i) the formulation of the 
mathematical model of the object that one studies―that is, the 
transformation of the given problem into a mathematical one―and (ii) the 
solution of the corresponding mathematical problem, namely, the 
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processing of the information that is contained in the given problem by 
means of mathematics and mathematical informatics. 
Regarding the logical-mathematical modelling of problems that belong to 
the realm of the social sciences, in particular, the value-system of the 
society in which behavior is studied must somehow find its place in the 
framework of action employed in the relevant analysis (see: Talcott 
Parsons, The Structure of Social Action, Glencoe, Ill.: The Free Press, 
1949). In the philosophy of the social sciences, by the term “values,” we 
mean needs that arise in consciousness and which consciousness must 
address. For instance, needs to know, to reap, to sustain, to socialize, to 
individuate, to control, to act, and so on.Then, consciousness selects some 
specific values-needs which it projects onto the world, thus transforming 
them into historical objects, and, finally, the values that have been 
historically objectified, specifically, have become social and institutional 
events, influence consciousness, shaping the subject’s existential horizon. 
The consciousness of existence that not only functions as a witness, that is, 
diagnostically and ascertainably, but also functions as a judge is what we 
call moral consciousness. The logic of moral consciousness, that is, the 
logic of ethics, is called “deontic logic.” Ethics is concerned with what 
good as a concept is and with what we should and should not do. Deontic 
logic is concerned with the manner in which we can represent those things 
that we should and should not do logically. Thus, deontic logic builds a 
bridge between logical rigor and ethics. For a systematic study of deontic 
logic, one should read the following books by Giuliano Di Bernardo: 
Introduzione alla logica dei sistemi normativi, Bologna: Il Mulino, 1972; 
Le regole dell’azione sociale, Milano: Il Saggiatore, 1983; and Normative 
Structures of the Social World, Amsterdam: Rodopi, 1988.  
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Chapter 2 
Arithmetic and Algebra  

 
The attempts of nineteenth-century mathematicians to found mathematical 
analysis in a rigorous way were based on real numbers, which also needed 
a rigorous foundation. Numbers are abstract objects, concepts. 
Simultaneously, they are intimately related to the world, since we organize 
the world with them (that is, we count, we measure, and we form scientific 
theories with numbers). In order to understand the concept of a number, 
we have to keep in mind that what we count are not “things,” but “sets of 
things.” 
The history of set theory and of non-numerical mathematics, in general, 
can be traced back to the era of classical Greece, but the first systematic 
inquiry into the foundations of set theory was due to the German 
mathematician Georg Ferdinand Ludwig Philip Cantor (1845–1918). 
However, before Cantor, George Peacock (1791–1858), Augustus De 
Morgan (1806–71), and George Boole (1815–64) had already made 
significant contributions to the formalization of non-numerical mathematics. 
According to Cantor, by the term “set,” we should understand a well-
defined gathering together into a whole of definite, distinguishable objects 
of perception or of our thought that are called elements of the set. By the 
term “well-defined,” Cantor means that, given any object and any set, the 
given object is either an element of the given set or not an element of the 
given set. By the terms “definite” and “distinguishable,” Cantor means that 
no two elements of a set are the same.  
The empty set is denoted by ∅. The empty set has no elements. If a set has 
only one element, then it is called a “singleton.” 
If every element of a set 𝐵 is an element of a set 𝐴, then 𝐵 is said to be a 
“subset” of 𝐴, and we write 𝐵 ⊆ 𝐴. Every set is a subset of itself. If 𝐴 is an 
arbitrary set, then ∅ ⊆ 𝐴; that is, the empty set is a subset of every set. 
Two sets 𝐴 and 𝐵 are “equal” if and only if 𝐴 ⊆ 𝐵 and 𝐵 ⊆ 𝐴, and then 
we write 𝐴 = 𝐵. If two sets 𝐴 and 𝐵 satisfy the condition 𝐵 ⊆ 𝐴 and there 
is at least one element of 𝐴 that is not an element of 𝐵, then 𝐵 is said to be 
a “proper subset” of 𝐴, and we write 𝐵 ⊂ 𝐴. If 𝐵 ⊆ 𝐴 or 𝐵 ⊂ 𝐴, then 𝐴 is 
said to be a “superset” of 𝐵. When in a particular situation all the sets 
under consideration are subsets of a fixed set, this fixed set, which is the 
superset of every set under consideration, is called the “universal set,” or 
the “universe of discourse.” 
If the elements of a set are sets themselves, then the set is called a “set of 
sets,” “family of sets,” “collection of sets,” or “class of sets.” For instance, 
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𝒞 = ൛{𝑥}, {𝑦, 𝑧}ൟ  is a class of sets (notice that 𝑥  is something different 
from {𝑥}).  
If 𝐴 and 𝐵 are two arbitrary sets, then we define their 

i. “union”:  
𝐴 ∪ 𝐵 =
{𝑒𝑣𝑒𝑟𝑦 𝑥 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑥 𝑏𝑒𝑙𝑜𝑛𝑔𝑠 𝑡𝑜 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝑜𝑛𝑒 𝑜𝑓 𝐴 𝑎𝑛𝑑 𝐵}; 
and 

ii. “intersection”:  
𝐴 ∩ 𝐵 = {𝑒𝑣𝑒𝑟𝑦 𝑥 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑥 𝑏𝑒𝑙𝑜𝑛𝑔𝑠 𝑡𝑜 𝑏𝑜𝑡ℎ 𝐴 𝑎𝑛𝑑 𝐵}.  

Two sets are called “(relatively) disjoint” if their intersection is the empty 
set. 
The German mathematician, logician, and philosopher Friedrich Ludwig 
Gottlob Frege (1848–1925) has explained that any number 𝑛 can be used 
in order to count any 𝑛-membered set. For instance, the number two can 
be thought of as the set of all 2-membered sets, or as the set of all pairs, 
independently of the nature of the objects that constitute each pair. 
Similarly, the number three can be thought of as the set of all triplets, the 
number four can be thought of as the set of all quadruples, and so on. 
In particular, in order to define the concept of a natural number 
(0,1,2,3, … , 𝑛, 𝑛 + 1, …), Frege defined, for every 2-place relation 𝑅, the 
concept “𝑥 is an ancestor of 𝑦 in the 𝑅-series,” and this new relation is 
known as the “ancestor relation on 𝑅.” The underlying idea can be easily 
grasped if we interpret Frege’s 2-place relation 𝑅 as “𝑥 is the father of 𝑦 in 
the 𝑅-series.” For instance, if 𝑎 is the father of 𝑏, 𝑏 is the father of 𝑐, and 𝑐 
is the father of 𝑑, then Frege’s definition of “𝑥 is an ancestor of 𝑦 in the 
fatherhood-series” ensures that 𝑎 is an ancestor of 𝑏, 𝑐, and 𝑑, that 𝑏 is an 
ancestor of 𝑐 and 𝑑, and that 𝑐 is an ancestor of 𝑑. More generally, given a 
series of facts of the form 𝑎𝑅𝑏, 𝑏𝑅𝑐, and 𝑐𝑅𝑑, Frege showed that we can 
define a relation 𝑅∗  as “ 𝑦  follows 𝑥  in the 𝑅 -series.” Thus, Frege 
formulated a rigorous definition of “precedes,” and he concluded that a 
“natural number” is any number of the predecessor-series beginning with 
0.  
Using the concept of a “predecessor,” the American mathematician John 
von Neumann (1903–57) has proposed an even more accurate definition of 
a “natural number.” According to von Neumann, instead of defining a 
natural number 𝑛 as the set of all 𝑛-membered sets, a natural number 𝑛 
should be defined as a particular 𝑛-membered set―more specifically, as 
the set of its predecessors. For instance, the number two having two 
predecessors, zero and one, we can think of the number two as the set 
{0,1}, where zero has no predecessor. Therefore, zero can be thought of as 
the empty set, denoted by ∅. The number one has only one predecessor, 
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zero. Therefore, we can think of the number one as {∅}, namely, as the 
singleton of the empty set. Thus, von Neumann formulated the modern 
definition of “ordinal numbers.” In particular, given the “successor 
operation,” which is defined as  
𝑠𝑢𝑐𝑐𝑒𝑠𝑜𝑟(𝑛) = 𝑛 ∪ {𝑛}, 
the set of von Neumann natural numbers, the ordinal numbers, denoted by 
𝜔, is defined as follows: 

i. ∅ ∈ 𝜔. 
ii. If 𝑛 ∈ 𝜔, then 𝑠𝑢𝑐𝑐𝑒𝑠𝑜𝑟(𝑛) ∈ 𝜔. 
iii. Nothing belongs to 𝜔  unless it can be constructed using the 

preceding rules. 
Thus, we obtain the following definitions: 
0 = ∅. 
1 = 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟(0) = ∅ ∪ {∅} = {∅} = {0}. 
2 = 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟(1) = {∅} ∪ ൛{∅}ൟ = ൛∅, {∅}ൟ = {0,1}. 

3 = 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟(2) = ൛∅, {∅}ൟ ∪ ቄ൛∅, {∅}ൟቅ = ቄ∅, {∅}, ൛∅, {∅}ൟቅ = {0,1,2}. 

⋮ 
Let 𝑋 be a set of elements 𝑎, 𝑏, … Suppose that there is a binary relation 
expressed by 𝑎 ≺ 𝑏, defined between certain pairs (𝑎, 𝑏) of elements of 𝑋, 
and satisfying the following properties: 
𝑎 ≺ 𝑎; 
if  𝑎 ≺ 𝑏 and 𝑏 ≺ 𝑎, then 𝑎 = 𝑏; 
if 𝑎 ≺ 𝑏 and 𝑏 ≺ 𝑐, then 𝑎 ≺ 𝑐 (transitivity). 
Then 𝑋 is said to be “partially ordered” (or “semi-ordered”) by the relation 
≺.  
Let 𝑋 be a partially ordered set with elements 𝑎, 𝑏, … If 𝑎 ≺ 𝑐 and 𝑏 ≺ 𝑐, 
then 𝑐 is said to be an “upper bound” for 𝑎 and 𝑏. If, furthermore, 𝑐 ≺ 𝑑 
whenever 𝑑  is an upper bound for 𝑎  and 𝑏 , we call 𝑐  the “least upper 
bound,” or the “supremum,” of 𝑎  and 𝑏 , and we write 𝑠𝑢𝑝(𝑎, 𝑏) . This 
element of 𝑋 is unique if it exists. In a similar way, we define the “greatest 
lower bound,” or the “infimum,” of 𝑎  and 𝑏 , and we denote it by 
𝑖𝑛𝑓(𝑎, 𝑏).  
A partially ordered set 𝑋  is said to be “linearly ordered” (or “totally 
ordered”) if, for every pair (𝑎, 𝑏) in 𝑋 , either 𝑎 ≺ 𝑏  or 𝑏 ≺ 𝑎  holds. A 
subset of a partially ordered set 𝑋 is itself partially ordered by the relation 
that partially orders 𝑋; and the subset may even be linearly ordered by this 
relation. If 𝑋  is a partially ordered set and 𝐴  is a subset of 𝑋 , then an 
element 𝑚 ∈ 𝑋 is said to be an upper bound of 𝐴 if 𝑎 ≺ 𝑚 for every 𝑎 ∈
𝐴. An element 𝑚 ∈ 𝑋 is said to be “maximal” if the relations 𝑚 ∈ 𝑋 and 
𝑚 ≺ 𝑥 imply that 𝑚 = 𝑥 (the maximum is the largest number of the set, 
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while the supremum is the smallest upper bound of the set). In a similar 
way, we define a “minimal element.” 
 
The major sets of numbers are the following: 
 

The Natural Numbers 
ℕ: the “natural numbers,” namely, the positive integers 1,2,3, …, which are 
used to count objects, and 0. For any natural numbers 𝑚, 𝑛, and 𝑘, the 
following equalities hold true: 

i. 𝑚 + 𝑛 = 𝑛 + 𝑚, 
ii. 𝑚 + (𝑛 + 𝑘) = (𝑚 + 𝑛) + 𝑘, 
iii. 𝑚𝑛 = 𝑛𝑚, 
iv. 𝑚(𝑛𝑘) = (𝑚𝑛)𝑘, 
v. 𝑚(𝑛 + 𝑘) = 𝑚𝑛 + 𝑚𝑘, 
vi. 𝑚 ∙ 1 = 𝑚. 

Equalities (i) and (iii) express the “commutative law” of addition and 
multiplication respectively; equalities (ii) and (iv) express the “associative 
law” of addition and multiplication respectively; and equality (v) is known 
as the “distributive law” of multiplication over addition. The 
aforementioned laws underlie all computations. If a natural number 𝑚 is 
divisible by a natural number 𝑛, then 𝑚 is said to be a “multiple” of the 
number 𝑛, and 𝑛, in turn, is said to be the “divisor” of the number 𝑚. If 𝑚 
is a multiple of the number 𝑛, then there is a natural number 𝑘 such that 
𝑚 = 𝑘𝑛. For instance, 18 is divisible by 3, and we write 18 = 6 ∙ 3. In 
this case, 𝑚 = 18 (the “dividend”), 𝑛 = 3 (the “divisor”), and 𝑘 = 6 (the 
“quotient”). If a natural number 𝑚 is not exactly divisible by a natural 
number 𝑛, that is, if there is no natural number 𝑘 such that 𝑘𝑛 = 𝑚, then 
we consider “division with a remainder.” For instance, 33 divided by 2 
equals 16 (“partial quotient”) with a remainder of 1, and therefore 33 =
16 ∙ 2 + 1.  
For any two natural numbers 𝑎 and 𝑏, there exists a unique natural number 
𝑛 such that 𝑎 ∙ 𝑛 = 𝑏 if and only if 𝑎 is a divisor of 𝑏, and then we write 
𝑛 = 𝑏 ÷ 𝑎. Even numbers are divisible by 2 without remainders, whereas 
odd numbers are not evenly divisible by 2. Notice that odd numbers end in 
the digit 1, 3, 5, 7, or 9.  
The greatest common divisor (denoted by 𝑔𝑐𝑑) of two natural numbers 𝑎 
and 𝑏  is the largest natural number that divides both 𝑎  and 𝑏 , and the 
Euclidean Algorithm for computing 𝑔𝑐𝑑(𝑎, 𝑏) is as follows: 

i. If 𝑎 = 0, then 𝑔𝑐𝑑(𝑎, 𝑏) = 𝑏. 
ii. If 𝑏 = 0, then 𝑔𝑐𝑑(𝑎, 𝑏) = 𝑎. 
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iii. If 𝑎 and 𝑏 are both non-zero natural numbers, then we write 𝑎 in 
quotient remainder form, namely, 𝑎 = 𝑏 ∙ 𝑞 + 𝑟 , and, 
subsequently, we compute 𝑔𝑐𝑑(𝑏, 𝑟)  using the Euclidean 
Algorithm since 𝑔𝑐𝑑(𝑎, 𝑏) = 𝑔𝑐𝑑(𝑏, 𝑟). For instance, if 𝑎 = 280 
and 𝑏 = 120, then we can compute 𝑔𝑐𝑑(𝑎, 𝑏) as follows: firstly, 

we use long division to find that 
ଶ଼଴

ଵଶ଴
=

2 𝑤𝑖𝑡ℎ 𝑎 𝑟𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟𝑜𝑓 40 , which can be written as 280 =
120 × 2 + 40 ; secondly, we compute 𝑔𝑐𝑑(120,40) =
3 𝑤𝑖𝑡ℎ 𝑎 𝑟𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟𝑜𝑓 0; and, therefore, 𝑔𝑐𝑑(280,120) = 40.  

Let 𝑎 and 𝑏  be both non-zero natural numbers. Moreover, let 𝑙𝑐𝑚(𝑎, 𝑏) 
denote the least common multiple of 𝑎  and 𝑏  (i.e., 𝑙𝑐𝑚(𝑎, 𝑏)  is the 
smallest natural number that is evenly divisible by both 𝑎 and 𝑏). Then  

𝑔𝑐𝑑(𝑎, 𝑏) =
௔∙௕

௟௖௠(௔,௕)
⇔ 𝑙𝑐𝑚(𝑎, 𝑏) =

௔∙௕

௚௖ௗ(௔,௕)
. 

If a natural number has only two divisors, a unity (one) and the number 
itself, then it is called a “prime number”; if it has more than two divisors, 
then it is called a “composite number.” For instance, 2, 3, 5, and 7 are 
prime numbers, but 9 is not a prime number (9 is a composite number, 
because the divisors of 9 are 1, 3, and 9). Notice that 2 is the only even 
prime number, and that, except for 2 and 5, all prime numbers end in the 
digit 1, 3, 7, or 9. All numbers have prime factors. For instance, the prime 
factors of 10 are 2 and 5, since 10 = 2ଵ × 5ଵ; the prime factors of 11 are 
1  and 11 , since 11 = 1ଵ × 11ଵ ; the prime factors of 100  are 2  and 5 , 
since 100 = 2ଶ × 5ଶ, etc. 
The Italian mathematician and glottologist Giuseppe Peano (1858–1932) 
has organized the natural numbers as an axiomatic system on the basis of 
the following axioms, known as the “Peano axioms”: 

i. 0 is a natural number, symbolically: 0 ∈ ℕ. 
ii. If 𝑛  is a natural number, then the successor of 𝑛  (i.e., 

𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟(𝑛) = 𝑛 + 1) is also a natural number. 
iii. If two natural numbers have the same successor, then the two 

natural numbers are identical. 
iv. 0 is not the successor of any natural number.  
v. “Induction Axiom”: If 𝑋  is a set containing both 0  and the 

successor of every natural number belonging to 𝑋 , then every 
natural number belongs to 𝑋.  

The “Induction Axiom” gives rise to and underpins the principle of 
“Mathematical Induction,” which is a mathematical proof technique for 
propositions: Suppose that 𝑃  is a proposition defined on the natural 
numbers ℕ, such that: 

i. 𝑃(1) is true, that is, 𝑃 holds true for 1;  
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ii. 𝑃(𝑛 + 1) is true whenever 𝑃(𝑛) is true. 
Then 𝑃 is true for every natural number. In this case, 𝑃 is the “inductive 
hypothesis.” By completing the aforementioned two steps of mathematical 
induction, we prove that 𝑃 is true for every natural number. 
Example: Let 𝑃  be the proposition that the sum of the first 𝑛  natural 
numbers is 
ଵ

ଶ
𝑛(𝑛 + 1) , namely: 𝑃(𝑛) = 1 + 2 + 3 + ⋯ + 𝑛 =

ଵ

ଶ
𝑛(𝑛 + 1) . We can 

prove that 𝑃 is true for every natural number 𝑛 ∈ ℕ using mathematical 
induction as follows: 

Basis step: The proposition holds for 𝑛 = 1, because 1 =
ଵ

ଶ
(1)(1 + 1). 

Hence, 𝑃(1) is true. 
Induction step: We assume that 𝑃(𝑛) is true, and we add 𝑛 + 1 to both 
sides of 𝑃(𝑛), obtaining  

1 + 2 + 3 + ⋯ + 𝑛 + (𝑛 + 1) =
ଵ

ଶ
𝑛(𝑛 + 1) + (𝑛 + 1) =

ଵ

ଶ
[𝑛(𝑛 + 1) + 2(𝑛 + 1)] =

ଵ

ଶ
[(𝑛 + 1)(𝑛 + 2)], 

which is 𝑃(𝑛 + 1). Hence, 𝑃(𝑛 + 1) is true whenever 𝑃(𝑛) is true. By the 
principle of mathematical induction, 𝑃  is true for every natural number 
𝑛 ∈ ℕ.  
 

The Integral Numbers 
ℤ: the “integral numbers,” or the negative integers, zero, and the positive 
integers:  

… − 3, −2, −1,0,1,2,3, … 
The notation ℤ  for the set of integers derives from the German word 
“Zahlen,” which means “numbers.” 
From the perspective of ancient mathematicians, numbers are things by 
means of which we count, but modern mathematical analysis, founded on 
Cartesianism, understands numbers mainly as positions on the number 
line. Let us draw a straight line 𝑙 and mark on it a point 0 that will be taken 
as the origin. Then we choose a unit segment 0𝑃, where 𝑃 is a natural 
number that lies to the right of 0, and, in this way, we specify the positive 
direction. In other words, the unit segment 0𝑃 determines the direction of 
the number line and corresponds to the positive unity +1 (or simply 1). 
Let us, for instance, take the number 4. Laying off the unit segment from 
the point 0 in the given direction four times, we obtain the point 𝑄 that 
corresponds to the number 4. Let us now lay off four unit segments from 
the zero point in the direction opposite to the specified. We then get the 
point 𝑄ᇱ, which is symmetric to the point 𝑄 about the origin 0. The point 
𝑄ᇱ corresponds to the number −4. Thus, the numbers 4 and −4 are said to 
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be “opposite.” By analogy, we can define any other integer (positive or 
negative). In general, the numbers situated on the number line 𝑙  in the 
specified direction are said to be “positive,” whereas the numbers located 
on the number line in the direction opposite to the given one are said to be 
“negative.” Hence, the natural numbers and their opposites (the opposite 
of the number zero being the same number) form together the set of 
integral numbers (integers), which is denoted by ℤ.  
If a point 𝑋 of the line 𝑙 corresponds to some number 𝑟, then this number 
is said to be the “coordinate of the point 𝑋,” and, in this case, we write 
𝑋(𝑟).  
The “absolute value” of the number 𝑟  is denoted by |𝑟| . The absolute 
value of any positive number is the number itself. The absolute value of 
any negative number is equal to its opposite number. The absolute value of 
the number zero is zero. 
The sum of two negative numbers is a negative number. In order to find 
the absolute value of a sum, it is necessary to add together the absolute 
values of the addends. The sum of two numbers having unlike signs is a 
number that has the same sign as the addend with greatest absolute value. 
In order to find the absolute value of their sum, it is necessary to subtract 
the smaller value from the larger one.  
In order to subtract one number from another, it is necessary to add to the 
minuend a number that is the opposite of the subtrahend.  
The product (resp. quotient) of two negative numbers is a positive number. 
The product (resp. quotient) of two numbers having unlike signs is a 
negative number. In order to find the absolute value of a product (resp. 
quotient), it is necessary to multiply (resp. divide) the absolute values of 
these numbers. 
If the difference of two integers 𝑎 and 𝑏 is divisible by 𝑛, then 𝑎 and 𝑏 are 
said to be congruent with respect to the modulus 𝑛 , and this is 
symbolically expressed as follows: 

𝑎 ≡ 𝑏(𝑚𝑜𝑑𝑛) 
and each of the numbers 𝑎 and 𝑏 is said to be a residue (𝑚𝑜𝑑𝑛) of the 
other. With respect to a given modulus, every number 𝑎 has an infinite 
number of residues which are included in the expression 𝑎 + 𝜆𝑛 where 𝜆 
is any integer. Every linear congruence with one unknown quantity can be 
reduced to the form  
𝑎𝑥 ≡ 𝑏(𝑚𝑜𝑑𝑛). 
For instance, to solve 17 ≡ 𝑥(𝑚𝑜𝑑5), we think as follows: we have three 
bundles of 5 with a remainder of 17 − 5 = 2, namely, 5 × 5 × 5 + 2, so 

that 
ଵ଻

ହ
= 3 𝑤𝑖𝑡ℎ 𝑎 𝑟𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟 𝑜𝑓 2, and, therefore, 𝑥 = 2. 
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The Rational Numbers 
ℚ: the “rational numbers,” namely, the set of all numbers of the form 

௣

௤
 

such that the numbers 𝑝  and 𝑞  are integers, 𝑞 ≠ 0 , and the greatest 
common divisor of the integers 𝑝  and 𝑞  is ±1  (that is, 𝑝  and 𝑞  are 
relatively prime integers). In other words, the integral and the fractional 
numbers (both positive and negative) form together the set of rational 
numbers, which is denoted by ℚ. The notation ℚ for the set of rational 
numbers derives from the Italian word “quoziente,” which means 
“quotient.” 
By the term “common fraction,” we refer to a number of the form 

௠

௡
, 

where 𝑚 and 𝑛 are integral numbers, and 𝑛 ≠ 0. The number 𝑚 is called 
the “numerator” of the fraction, and the number 𝑛  is called the 
“denominator” of the fraction. In particular, 𝑛 may be equal to 1. In this 
case, we usually write 𝑚  rather than 

௠

ଵ
. In other words, any integral 

number can be represented in the form of a common fraction whose 
denominator is 1. 
Two fractions 

௔

௕
 and 

௖

ௗ
 are regarded to be equal if 𝑎𝑑 = 𝑏𝑐 . The “basic 

property of fractions” states the following: the fractions 
௔

௕
 and 

௔௠

௕௠
 are 

equal. Therefore, if the numerator and the denominator of a given fraction 
are multiplied or divided by the same natural number, then an equivalent 
fraction is obtained (namely: 

௔

௕
=

௔௠

௕௠
). Taking advantage of the basic 

property of fractions, we may sometimes replace a given fraction with 
another equivalent fraction but with a smaller numerator and a smaller 
denominator by dividing all common factors out of the numerator and the 
denominator. This operation is called “reduction of a fraction to its lowest 
terms,” or simply “reduction of a fraction.” In general, reduction of a 
fraction is always possible if its numerator and denominator are not 
relatively prime numbers. If the numerator and the denominator are 
relatively prime numbers, then the fraction is called “irreducible.”  
The addition of common fractions is defined in the following way: 
௔

௕
+

௖

ௗ
=

௔ௗା௕

௕ௗ
. 

The subtraction of common fractions is defined in the following way: 
௔

௕
−

௖

ௗ
=

௔ௗି௕௖

௕ௗ
. 

The multiplication of common fractions is defined in the following way: 
௔

௕
∙

௖

ௗ
=

௔௖

௕ௗ
. 

The division of common fractions is defined in the following way: 
௔

௕
÷

௖

ௗ
=

௔ ௕⁄

௖ ௗ⁄
=

௔ௗ

௕௖
.  
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A fraction 
௠

௡
 is called a “proper fraction” if its numerator is less than the 

denominator; and it is called an “improper fraction” if its numerator is 
greater than the denominator.  
Let us consider an improper fraction 

௠

௡
. Since 𝑚 is greater than 𝑛, there are 

two numbers 𝑝 and 𝑟 (with 𝑟 less than 𝑛) such that 𝑚 = 𝑝𝑛 + 𝑟, so that: 
௠

௡
=

௣௡ା

௡
=

௣௡

௡
+

௥

௡
= 𝑝 +

௥

௡
. Since the remainder is always less than the 

divisor, 
௥

௡
 is a proper fraction. Hence, we have succeeded in representing 

the improper fraction 
௠

௡
 in the form of a sum of a natural number 𝑝 and a 

proper fraction 
௥

௡
. This operation is called the “reduction of an improper 

fraction to a mixed number.” A number consisting of an integer and a 
fraction is called a “mixed number.” For instance, in order to locate the 

mixed number 3
ଵ

଼
 on the number line, we think as follows: laying off the 

unit segment ( 0𝑃 = +1 ) from the point zero in the given (positive) 

direction three times and then 
ଵ

଼
th part of this unit segment, we obtain the 

point 𝑄 that exactly corresponds to the mixed number 3
ଵ

଼
 (the coordinate 

of the point 𝑄 is 3
ଵ

଼
).  

 
The Irrational Numbers 

ℚ∼ : the “irrational numbers,” or the set of all numbers that cannot be 
written as the quotient of two relatively prime integers. For instance, we 
can prove that √2 ∈ ℚ∼ by reductio ad absurdum as follows: For the sake 
of contradiction, suppose that √2 =

௣

௤
 where 𝑝, 𝑞 ∈ ℤ , the greatest 

common divisor of the integers 𝑝 and 𝑞 is ±1, and 𝑞 ≠ 0. Then 

√2 =
௣

௤
⇒ 2 =

௣మ

௤మ ⇒ 𝑝ଶ = 2𝑞ଶ ⇒ 𝑝 = 2𝑘, 

where 𝑘 is an appropriate integer; therefore 4𝑘ଶ = 2𝑞ଶ ⇒ 𝑞ଶ = 2𝑘ଶ; but 
then the greatest common divisor of the integers 𝑝  and 𝑞  is 2 , which 
contradicts the hypothesis. 
The German mathematician Richard Dedekind (1831–1916) observed that 
there exist infinitely many points on the straight number line 𝐿  that 
correspond to no rational number. Thus, the domain of rational numbers is 
insufficient if we want to arithmetically follow up all phenomena on the 
straight line. Therefore, new numbers must be created in such a way that 
the domain of all numbers will gain the same “completeness” or 
“continuity” as the straight line. In fact, Dedekind observed that there exist 
infinitely many cuts that are not produced by rational numbers. For 
instance, as shown in Figure 1, construct a square 𝑂𝐴𝐵𝐶  on the unit 
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segment 𝑂𝐶  (i.e., the length of 𝑂𝐶  is equal to one) and lay off in the 
positive direction a line segment 𝑂𝐷 equal in length to the diagonal 𝑂𝐵; 
then (according to the Pythagorean Theorem, which we shall study 
shortly) it is clear that 𝐷 is a point that does not correspond to any rational 
number―it, in fact, corresponds to √2.  
 
Figure 1: Irrational numbers. 
 

 
 
The history of irrational numbers goes back to the Pythagorean 
mathematicians, who had demonstrated that there exist lengths 
incommensurable with a given unit of length. In the seventh century 
B.C.E., Thales of Miletus (a Greek mathematician, astronomer, and 
philosopher from Miletus, in Ionia, Asia Minor) officially initiated a new 
approach to mathematics. In contrast to the mathematics of other 
civilizations, such as the Babylonians and the Egyptians, Thales’s 
approach to mathematics is based on the thesis that scientific propositions 
are not recipes for practical tasks―that is, techniques whose validity is 
determined by the method of trial and error―but they should be explained 
and proved. In other words, Thales attempted to endow mathematics with 
rigor―which, in this case, means logical validity.   
In the context of Thales’s rigorous mathematics, by the term “line 
segment,” we mean a part of a line that is bounded by two distinct 
endpoints, and contains every point on the line between the endpoints. Let 
us consider the line segments 𝑎ଵ, 𝑎ଶ, 𝑎ଷ, … , 𝑎௡  and the non-zero line 
segments 𝑏ଵ, 𝑏ଶ, 𝑏ଷ, … , 𝑏௡ . The line segments 𝑎ଵ, 𝑎ଶ, 𝑎ଷ, … , 𝑎௡  are said to 
be “proportional” to 𝑏ଵ, 𝑏ଶ, 𝑏ଷ, … , 𝑏௡, respectively, if 
௔భ

௕భ
=

௔మ

௕మ
=

௔య

௕య
= ⋯ =

௔೙

௕೙
. 

Thus, two arbitrary line segments 𝑎 and 𝑐 are proportional to two other 
arbitrary line segments 𝑏  and 𝑑  respectively, if and only if 𝑏  and 𝑑  are 
non-zero, and it holds that  
௔

௕
=

௖

ௗ
.                                                                                                         (1) 

Any equality between two ratios, such as (1), is said to be a “proportion” 
with terms 𝑎, 𝑏, 𝑐, and 𝑑, as shown above. 
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Assume that 𝐴𝐵 is a non-zero straight line segment, and that 𝑃 is a point 
on 𝐴𝐵. Then we say that the point 𝑃 “divides internally” the straight line 
segment 𝐴𝐵 in a ratio 𝜆, where 𝜆 ≥ 0, if it holds that  
௉஺

௉஻
= 𝜆. 

If this is the case, then  
௉஺

௉஺ା௉஻
=

ఒ

ఒାଵ
⇔ 𝑃𝐴 =

ఒ

ఒାଵ
𝐴𝐵, which implies the uniqueness of 𝑃. 

Similarly, we say that a point 𝑄  “divides externally” the straight line 
segment 𝐴𝐵  in a ratio 𝜆 , where 𝜆 ≥ 0 , if the points 𝐴 , 𝐵 , and 𝑄  are 
collinear, 𝑄 is external to 𝐴𝐵, and it holds that  
ொ஺

ொ஻
= 𝜆. 

If this is the case, then 
ொ஺

|ொ஺ିொ |
=

ఒ

|ఒିଵ|
 (given that 𝑄𝐴 ≠ 𝑄𝐵, it holds that 

𝜆 ≠ 1), so that  

𝑄𝐴 =
ఒ

|ఒିଵ|
 AB, which implies the uniqueness of 𝑄. 

Thales’s Theorem: If parallel straight lines intersect two straight lines, 
then they define proportional straight line segments on them. For instance, 
if parallel straight lines 𝑙ଵ , 𝑙ଶ , and 𝑙ଷ  intersect straight lines 𝑎  and 𝑎ᇱ  at 
points 𝐴, 𝐵, 𝐶 and 𝐴ᇱ, 𝐵ᇱ, 𝐶ᇱ respectively, as shown in Figure 2, then 
஺஻

஺ᇲ஻ᇲ =
஺஼

஺ᇲ஼ᇲ =
஻஼

஻ᇲ஼ᇲ. 

 
Figure 2: Thales’s Theorem. 
 

 
 
Corollary 1: Every straight line that is parallel to the bases of a trapezoid 
divides, internally or externally, the non-parallel sides of the given 
trapezoid in equal ratios. 
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Corollary 2: Every straight line that is parallel to one side of a triangle 
divides, internally or externally, the other two sides of the given triangle in 
equal ratios.  
Corollary 3: If two triangles have a common angle, and if they have 
parallel opposite sides, then they are said to be in Thales position, and then 
they are similar and have proportional sides. 
In the sixth century B.C.E., Pythagoras and his school (the so-called 
“Pythagoreans”) endorsed Thales’s approach to mathematics. From the 
Pythagorean perspective of mathematics, the relations between the objects 
of the world (e.g., magnitudes) correspond to the relations between natural 
(and, generally, integral) numbers. However, it was soon realized that 
things are not so simple, since it was realized that there exist magnitudes 
that do not have a common measure. According to the Pythagoreans, two 
objects (magnitudes) are “commensurable” (that is, they have a common 
measure) if and only if there is a magnitude of the same kind that is 
contained an integral number of times in both of them. In other words, two 
magnitudes are “commensurable” if and only if their ratio is a rational 
number. However, the Pythagoreans encountered “incommensurable” 
magnitudes: magnitudes whose ratio is an irrational number. For instance, 
as shown in Figure 1, the length of a diagonal of a unit square, specifically 
of a square whose sides have length 1, is, according to the Pythagorean 
Theorem, equal to √2, which is an irrational number. Similarly, a circle’s 
circumference and its diameter are incommensurable (that is, 𝜋, the ratio 
of a circle’s circumference to its diameter, is an irrational number). The 
awareness that there exist incommensurable magnitudes compelled ancient 
Greek mathematicians to inquire into the relations between 
incommensurable magnitudes. This event marked a major crisis in ancient 
mathematics. 
According to ancient Greek mathematicians, quantities (magnitudes) are 
continuous and uniform objects, which are best represented by straight line 
segments. Their division into parts, or their measurement in terms of a 
“unit of measurement” (i.e., a definite magnitude of a quantity), 
meanwhile, represents the notion of discreteness. Ancient Greek 
mathematicians used the term “ratio of magnitudes” in order to refer to the 
relation between two magnitudes that can be measured in terms of a 
common unit of measurement. Thus, the ancient Greek concept of a ratio 
is most similar to the more abstract modern concept of a number. In the 
context of ancient Greek mathematics, the objects of mathematics were 
quantities (represented by straight line segments), and the ratio between 
two quantities was a meta-object, or something that was used in order to 
study mathematical objects without being treated as a mathematical object 
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itself. In other words, in the context of ancient Greek mathematics, a ratio 
(a number) was construed as a measuring relationship between two 
quantities, and such a measuring relationship could be built up (and hence 
proved) in finitely many steps, using a common unit of measurement. 
Nevertheless, the discovery of incommensurable ratios demonstrated that a 
ratio could not be interpreted as a measuring relationship in the 
aforementioned way. In fact, as a result of the discovery of 
incommensurable ratios, the concept of a ratio (or a number) acquired its 
conceptual autonomy, and, instead of being treated as a meta-object, it 
started being treated as an object of mathematics. Therefore, ancient Greek 
mathematicians had to transcend the system of mathematics that was based 
on commensurable ratios. Notice that a commensurable ratio could easily 
become an object of mathematical theory, since it is a rational number, and 
therefore can be constructed in finitely many steps, whereas the decimal 
representation of an irrational number neither terminates nor infinitely 
repeats but extends forever without regular repetition. 
In the fourth century C.E., Theon, one of the most important Greek 
mathematicians and commentators of Euclid’s and Ptolemy’s works, 
attempted to solve the problems that were generated as a result of the 
aforementioned crisis in the foundations of ancient Greek mathematics. In 
particular, Theon started from an extremely small (infinitesimal) unit 
square such that the ratio between any of its sides and any of its diagonals 
is equal to 1 (given that it is infinitely small); symbolically, if 𝑎ଵ is the 
length of each of the sides of the given infinitesimal unit square, and if 𝛿ଵ 
is the length of each of the diagonals of the given infinitesimal unit square, 

then 
ఋభ

௔భ
= 1. Subsequently, Theon formulated a recursive sequence of unit 

squares defined by  
𝑎௡ = 𝛿௡ିଵ + 𝑎௡ିଵ and 𝛿௡ = 2𝑎௡ିଵ + 𝛿௡ିଵ, 
so that the ratio between a diameter and a side approaches its actual value 
(meaning the real relationship between a diameter and a side of these unit 
squares according to the Pythagorean Theorem),  
ఋ೙

௔೙
→ √2. 

He explained that he started from the case in which 
ఋభ

௔భ
= 1 because, just as 

the sperm of a living organism encompasses all the subsequent properties 
of the given organism, any ratio (including the ratio between a diagonal 
and a side of a unit square) spermatically (at the infinitesimal level) 
encompasses the unit. 
Theon’s aforementioned reasoning is underpinned by Aristotle’s concept 
of a “potential infinity.” The concept of modern mathematics that is 
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semantically most similar to Aristotle’s concept of a “potential infinity” is 
the convergence of a sequence of natural numbers. Thus, from the 
perspective of ancient Greek mathematics, infinity is not a being (i.e., it is 
not an actual state); it cannot be simultaneously considered in its whole 
extension, but it can only be considered as a becoming (i.e., a process). In 
this way, the concept of an infinite approach helps us to overcome the 
contradiction between incommensurable ratios and commensurable ratios, 
since we can think of an incommensurable ratio infinitely approaching a 
commensurable ratio (and vice versa). Similarly, the concept of an infinite 
approach helps us to overcome the contradiction between broken lines and 
curves, as well as the contradiction between continuity and discreteness. 
This reasoning is endorsed by Euclid; in his Elements, he does not 
consider infinitely extended straight lines, but he always works with 
straight line segments which, as he says, can be extended as much as one 
needs.  
However, several intellectuals have used infinite processes in a way that is 
not rigorous. For instance, they have attempted to compute the length of 
the circumference of a circle by considering an inscribed polygon whose 
number of sides increases indefinitely. Therefore, the length of each side 
of such a polygon decreases indefinitely, so that a triangle whose base is a 
side of the given polygon and whose vertex (i.e., the “top” corner opposite 
its base) is the center of the given circle could become such that its base 
coincides with the given circle’s circumference. To what extent is such a 
shape a triangle, then, and beyond which point does a straight line segment 
(in this case, the base of a triangle) become a chord? One may argue that 
these changes happen when a straight line segment becomes infinitely 
small, but then one may counter-argue that, by becoming infinitely small, 
a straight line segment is not “something” any more, and it becomes 
“nothing.” Hence, how is it possible that an infinite series of “nothing” 
(“no-things”) gives “something,” such as a circle? The aforementioned 
example indicates the problems that are generated as a result of the use of 
infinite processes in computations. 
The aforementioned crisis in the foundations of mathematics was 
overcome by Eudoxus’s theory of proportions and by the method of 
exhaustion, which derives from Eudoxus’s theory of proportions, and it 
was used by Archimedes. The method of exhaustion was originally 
developed in the fifth century B.C.E. by the Athenian scholar Antiphon, 
and it was put in a rigorous scientific setting shortly afterwards by the 
Greek mathematician and astronomer Eudoxus of Cnidus, who used it in 
order to calculate areas and volumes. The Greek mathematician and 
acknowledged father of “Euclidean geometry” Euclid, and the Greek 
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mathematician, physicist, and engineer Archimedes, made extensive use of 
the method of exhaustion in order to prove several mathematical 
propositions. For instance, Archimedes used the method of exhaustion in 
order to compute the area of a circle by approximating the area of a circle 
from above and below by circumscribing and inscribing regular polygons 
of an increasingly larger number of sides (so that sides become 
“infinitesimals,” or infinitely small): each of the polygons is a union of 
triangles, so it is easily verified that the area of a circle of radius 𝑟 and 
circumference 𝐶 is equal to the area of a triangle whose altitude is equal to 
𝑟 and whose base is equal to 𝐶 = 2𝜋𝑟 . Then, given that the area of a 
triangle is equal to half of the product of its base and altitude, we obtain 

the formula for the computation of the area of a circle: 
ଵ

ଶ
(𝑟𝐶) =

ଵ

ଶ
(𝑟2𝜋𝑟) = 𝜋𝑟ଶ. Moreover, Archimedes was able to calculate the length of 

various tangents to the spiral (i.e., to a curve emanating from a point 
moving farther away as it revolves around the point).  
Archimedes was very careful in the use of infinite processes; he 
approximated 𝜋  by using the fact that the circumference of a circle is 
bounded by the perimeter of an inscribed polygon and the perimeter of a 
circumscribed polygon. According to Eudoxus and Archimedes, there is 
always a ratio between any two magnitudes, and we can always make any 
magnitude smaller or greater than a given magnitude, so that the ratio 
between two magnitudes 𝑎  and 𝑏  is the same as the ratio between two 
other magnitudes 𝑐 and 𝑑 if and only if, for any natural numbers 𝑚 and 𝑛, 
it holds that 
𝑚𝑎 ⪌ 𝑛𝑏 ⇒ 𝑚𝑐 ⪌ 𝑛𝑑,                                                                              (2) 
meaning that both of these ratios are characterized by the same placement 
property (i.e., ordering) with regard to other numbers. In (2), the equality 
sign (=) refers to commensurable ratios, whereas the inequality signs (≷) 
refer to incommensurable ratios. These ideas of Eudoxus and Archimedes 
indicate that ancient Greek mathematicians discovered not only 
incommensurable magnitudes but also incommensurable numbers. 
Eudoxus’s aforementioned theory of proportions underpins Archimedes’s 
method of exhaustion for the solution of geometric problems, and 
Archimedes’s method of exhaustion underpins modern infinitesimal 
calculus.  
It is important to notice that the way in which Eudoxus solved the problem 
of the existence of incommensurable ratios (specifically, his attempt to 
study the conundrum of irrationality that appears to exist in elementary 
geometry in a scientifically rigorous way) marks a shift away from the 
traditional constructivist approach to mathematics towards formalism. In 
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other words, Eudoxus does not explain what a ratio is (as a mathematical 
object), but he states only when two ratios are similar to each other. The 
constructivist approach to mathematics allows us to determine what an 
object is by being able to construct it, whereas the formalist approach to 
mathematics is not concerned with the substance of the mathematical 
object under consideration, and is concerned only with the relations of the 
mathematical object under consideration to other mathematical objects. 
Moreover, the ideas of Eudoxus and Archimedes are conceptually very 
similar to Dedekind’s cuts. 
Fusing geometry and arithmetic is an arduous task. In order to understand 
the difficulties that originate from fusing geometry and arithmetic, let us 
consider, for instance, the famous irrational number √2 , which was 
discovered by Pythagoreans when they attempted to compute the length of 
a diagonal of a unit square.  
The Pythagoreans realized that the diagonal of a unit square is not 
commensurable with the side of the given square, but, by keeping 
geometry and arithmetic separate from each other (that is, by refusing to 
identify numbers with lengths of straight line segments), ancient Greek 
mathematicians could argue as follows: given a straight line segment 
whose length is one, we can construct a straight line segment whose length 
is √2  (as shown in Figure 1). In general, irrational numbers are 
geometrically constructible (and, hence, geometrically explicable and 
manageable), even though, from the perspective of arithmetic, irrational 
numbers are ideal quantities, in the sense that the calculation of irrational 
numbers (such as √2) is an infinite process (namely, irrational numbers 
have infinitely many decimal digits).  
On the other hand, having endorsed the Cartesian approach to 
mathematics, mathematicians in the nineteenth century realized that they 
had to clarify some still ambiguous fundamental concepts (such as that of 
a real number), to formulate new methods of doing mathematics in a 
logically rigorous way, and to create a rigorous theory of the arithmetic 
continuum―specifically, a rigorous theory of real numbers and their 
arithmetic.  
 

The Real Numbers 
ℝ: the “real numbers,” or the set that is formed by the union of the set ℚ 
of all rational numbers and the set ℚ∼  of all irrational numbers; 
symbolically: ℝ = ℚ ∪ ℚ~. 
Richard Dedekind made an in-depth study of real numbers and continuity. 
He began with the following three properties of rational numbers:  

i. If 𝑎 > 𝑏 and 𝑏 > 𝑐, then 𝑎 > 𝑐. 
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ii. If 𝑎  and 𝑐  are two distinct (rational) numbers, then there exist 
infinitely many distinct numbers lying between 𝑎 and 𝑐. 

iii. If 𝑎  is any definite (rational) number, then all numbers of the 
system ℚ fall into two classes, 𝐴ଵ and 𝐴ଶ, each of which contains 
infinitely many individuals; 𝐴ଵ contains all numbers 𝑎ଵ that are <
𝑎, while 𝐴ଶ contains all numbers 𝑎ଶ  that are > 𝑎; the number 𝑎 
itself may be assigned at will to 𝐴ଵ or 𝐴ଶ, being, respectively, the 
greatest number of 𝐴ଵ or the least number of 𝐴ଶ.  

Then Dedekind stated three properties of the points on a straight number 
line 𝐿: 

i. If 𝑝 lies to the right of 𝑞 and 𝑞 to the right of 𝑟, then 𝑝 lies to the 
right of 𝑟; and 𝑞 is said to lie between 𝑝 and 𝑟. 

ii. If 𝑝 and 𝑟 are two distinct points, then there always exist infinitely 
many points lying between 𝑝 and 𝑟.  

iii. If 𝑝 is a definite point on 𝐿 , then all points on 𝐿  fall into two 
classes, 𝑃ଵ  and 𝑃ଶ , each of which contains infinitely many 
individuals; 𝑃ଵ contains all the points 𝑝ଵ that lie to the left of 𝑝, 
while 𝑃ଶ  contains all the points 𝑝ଶ  that lie to the right of 𝑝; the 
point 𝑝 itself may be assigned at will to 𝑃ଵ  or 𝑃ଶ . In any case, 
every point of 𝑃ଵ lies to the left of every point of 𝑃ଶ. 

Each such division (or partition) of the set ℚ  of all rational numbers 
defines a “cut,” called the “Dedekind’s cut.” However, after having 
observed that every rational number effects a “cut” in the set of rationals, 
Dedekind considered the inverse question: if, by a given criterion, the set 
of rationals is divided into two subsets 𝐴 and 𝐵 so that every number in 𝐴 
is less than every number in 𝐵, is there always a greatest rational in 𝐴 or a 
smallest rational in 𝐵? Dedekind immediately realized that the number 
line should be “continuous,” or unbroken, in the intuitive sense. Like 
Eudoxus and Cantor before him, he developed theoretical concepts for the 
purpose of filling the gaps in the ordered set of rationals so that the final 
geometric picture is a continuous, straight number line. However, the 
answer to the last question is in the negative: when 𝐴 has no maximum 
rational and 𝐵  has no minimum rational, there is, indeed, a gap in the 
rational series (or a puncture in the number line) which must be filled. In 
that case, the cut (𝐴, 𝐵) is said to define (or to be) an irrational number (as 
shown, for instance, in Figure 1). Hence, the set ℝ of all real numbers is 
called the “(arithmetic or geometric) continuum” or the “straight line of 
real numbers.” 
In modern mathematical notation, the set of all real numbers 𝑥 such that 
𝑎 ≤ 𝑥 ≤ 𝑏 is said to be a “closed interval,” denoted by [𝑎, 𝑏], of the real 
line ℝ, while the set of all real numbers 𝑥  such that 𝑎 < 𝑥 < 𝑏  (which 
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does not include its endpoints) is said to be an “open interval,” denoted by 
(𝑎, 𝑏), of the real line ℝ. The intervals [𝑎, 𝑏) = {𝑥 ∈ ℝ|𝑎 ≤ 𝑥 < 𝑏} and 
(𝑎, 𝑏] = {𝑥 ∈ ℝ|𝑎 < 𝑥 ≤ 𝑏}  are neither open nor closed, but they are 
sometimes called “half-open” or “half-closed.” Notice that (𝑎, 𝑎) = ∅, and 
[𝑎, 𝑎] = {𝑎}. Moreover, we define the intervals: 
(𝑎, ∞) = {𝑥 ∈ ℝ|𝑎 < 𝑥}, 
[𝑎, ∞) = {𝑥 ∈ ℝ|𝑎 ≤ 𝑥}, 
(−∞, 𝑎) = {𝑥 ∈ ℝ|𝑥 < 𝑎}, 
(−∞, 𝑎] = {𝑥 ∈ ℝ|𝑥 ≤ 𝑎}.  
By the term “interval,” we generally mean a set of points with the property 
that, if 𝑥 and 𝑦 are distinct points of the set, every point between 𝑥 and 𝑦 
is also a point of the set (if the points 𝑥  and 𝑦  are included, then the 
interval is closed; otherwise, it is open).  
Assume that 𝜀  is a positive real number―that is, 𝜀 > 0 . Moreover, 
consider the open interval 𝑁 = (𝑝 − 𝜀, 𝑝 + 𝜀) . Hence, 𝑝 ∈ (𝑎, 𝑏) ⊆
(𝑝 − 𝜀, 𝑝 + 𝜀) . If this is the case, then (𝑝 − 𝜀, 𝑝 + 𝜀)  is called the 𝜀 -
neighborhood of the point 𝑝, and it is denoted by 𝛮ఌ(𝑝). In other words, 
the 𝜀-neighborhood of a point 𝑝 on the real line is the set of all those real 
numbers which are within an 𝜀 distance of 𝑝 on either side of it; 𝑝 is the 
midpoint or the center of 𝛮ఌ(𝑝); 𝜀 is the radius of 𝛮ఌ(𝑝). We shall use the 
notation 𝑁ఌ

ᇱ(𝑝) in order to denote the “deleted neighborhood,” consisting 
of 𝛮ఌ(𝑝) with the point 𝑝 deleted. In terms of the real line ℝ, a deleted 
neighborhood is an interval on ℝ with the center point removed.  
Given a set 𝑆, a real number 𝑝 is said to be an “interior point” of 𝑆 if 𝑆 is a 
neighborhood of 𝑝; symbolically: if 𝑝 ∈ (𝑎, 𝑏) ⊆ 𝑆. Obviously, an interior 
point of a set 𝑆 belongs to 𝑆. The set of all interior points of a given set 𝑆 
is called the “interior” of 𝑆, and it is denoted by 𝐼𝑛𝑡(𝑆). In general, a point 
𝑝 ∈ ℝ௡ is said to be an “interior point” of 𝑈 if some neighborhood (open 
ball) 𝛮ఌ(𝑝) with center 𝑝 is contained in 𝑈.  For instance, if 𝑆 = [2,5], 

then 
଻

ଶ
 is an interior point of 𝑆, whereas neither 2 nor 5 is an interior point 

of 𝑆, because [2,5] is not a neighborhood of 2 and 5. The interior of the 
closed interval [2,5] is the open interval (2,5). 
A real number 𝑝  is called a “closure point” of a set 𝑆 ⊆ ℝ  if every 
neighborhood of 𝑝 contains a point of 𝑆. The set of all closure points of 𝑆 
is called the “closure” of 𝑆, and it is denoted by 𝐶𝑙𝑠(𝑆). Therefore, every 
point of 𝑆 ⊆ ℝ is a closure point of 𝑆.  
A real number 𝑝 is called an “accumulation point,” a “limit point,” or a 
“cluster point” of 𝑆 if every deleted neighborhood of 𝑝 contains at least 
one point of 𝑆 ; symbolically: if 𝑆 ∩ 𝑁ఌ

ᇱ(𝑝) ≠ ∅ ∀𝜀 > 0 (in other words, 
every neighborhood of 𝑝 contains at least one point of 𝑆 other than 𝑝). For 
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instance, if 𝐴 = [𝑎, 𝑏]  and 𝐵 = (𝑎, 𝑏) , then every member of 𝐴  is an 
accumulation point of 𝐴  and of 𝐵 , since, for instance, ∀𝜀 > 0 , the 
neighborhood (𝑎 − 𝜀, 𝑎 + 𝜀) of 𝑎 contains infinitely many elements of 𝐴 
and of 𝐵. Moreover, every real number is an accumulation point of the set 
ℚ of all rational numbers as well as of the set ℝ of all real numbers, since, 
for instance, given an arbitrary real number 𝑝, ∀𝜀 > 0, the neighborhood 
(𝑝 − 𝜀, 𝑝 + 𝜀) contains infinitely many real numbers as well as infinitely 
many rational numbers. On the other hand, the set ℕ  of all natural 
numbers, the set ℤ of all integral numbers, and the empty set have no 
accumulation point. Furthermore, no finite set has any accumulation point, 
because, if, for instance, 𝐴 = {𝑎ଵ, 𝑎ଶ, 𝑎ଷ, … , 𝑎௡}, and if 𝑝 is an arbitrary 
real number, we can construct a sufficiently small neighborhood 𝑁 with 
center 𝑝  such that 𝑁  contains no point of 𝐴 ; therefore,  𝑝 , which is an 
arbitrary real number, is not an accumulation point of 𝐴.   
A “real number” is a quantity 𝑥 that has a “decimal expansion”: 
𝑥 = 𝑛 + 0. 𝑑ଵ𝑑ଶ𝑑ଷ …, 
where 𝑛 is an integer, each 𝑑௜  is a digit between 0 and 9 (𝑖 = 1,2,3, …), 
and no infinite sequence of 9 ’s appears. The aforementioned 
representation implies that 

𝑛 +
ௗభ

ଵ଴
+

ௗమ

ଵ଴଴
+ ⋯ +

ௗೖ

ଵ଴ೖ ≤ 𝑥 < 𝑛 +
ௗభ

ଵ଴
+

ௗమ

ଵ଴଴
+ ⋯ +

ௗೖ

ଵ଴ೖ +
ଵ

ଵ଴ೖ, 

for all positive integers 𝑘.  
Let 𝑎 be a real number. Then the product 𝑎 ∙ 𝑎 ∙ 𝑎 … (𝑛 times) is denoted 
by 𝑎௡ , where 𝑛  is called the “exponent,” and 𝑎  is called the “base.” 
Therefore, the following results hold ∀𝑎, 𝑏 ∈ ℝ: 

i. 𝑎௡𝑎௠ = 𝑎௡ା௠, 
ii. (𝑎௡)௠ = 𝑎௡௠, 

iii. 
௔೙

௔೘ = 𝑎௡ି௠, 

iv. 𝑎଴ = 1, and 

v. ቀ
௔

௕
ቁ

௡

=
௔೙

௕೙. 

A “factorial” is a function in mathematics denoted with the symbol ! that 
multiplies a positive integer 𝑛 by every number that precedes it:  
𝑛! = 𝑛 ∙ (𝑛 − 1) ∙ (𝑛 − 2) ∙ … ∙ 2 ∙ 1.  
For instance, 4! = 4 ∙ 3 ∙ 2 ∙ 1 = 24 . Notice that 0! = 1 , and 1! = 1 . In 
fact, 𝑛! is the number of “permutations” of 𝑛  elements. The number of 

“arrangements” of 𝑛 elements taken 𝑚 at a time is 𝐴௠
௡ =

௡!

(௡ି௠)!
, and the 

number of “combinations” of 𝑛  elements taken 𝑚  at a time is 𝐶௠
௡ =

௡!

(௡ି௠)!௠!
=

஺೘
೙

௠!
. 
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Intimately related to the concepts of an exponent and an index is the 
concept of a logarithm, which is the inverse function to exponentiation. 
The “logarithm” of an arbitrary real number 𝑎 is the exponent to which 
another fixed real number, the base 𝑏, must be raised to produce the real 
number 𝑎; symbolically: 
𝑙𝑜𝑔௕𝑎 = 𝑥 ⇔ 𝑏௫ = 𝑎. 
For instance, 𝑙𝑜𝑔ଵ଴1,000 = 3, since 10ଷ = 1,000, and 𝑙𝑜𝑔ଷ81 = 4, since 
3ସ = 81 . The method of logarithms was originally developed by the 
Scottish mathematician, physicist, and astronomer John Napier (1550–
1617), who published his book Mirifici Logarithmorum Canonis 
Descriptio (Description of the Wonderful Rule of Logarithms) in 1614. 

In case the base 𝑏 = 𝑒 = ∑
ଵ

௡!

ஶ
௡ୀ଴ ≈ 2.718 , which is known as Euler’s 

number (in honor of the Swiss mathematician Leonhard Euler), then 𝑙𝑜𝑔௘𝑎 
is written as 𝑙𝑛𝑎, and it is said to be the “natural logarithm” of 𝑎. Euler’s 
number 𝑒  is irrational, and it was originally derived from the study of 
compound interest: if one places 1𝑈𝑆𝐷 into a deposit account at a banking 
institution with 100%  interest, and the compounding period is 𝑛 , as a 
fraction of a year, then the formula of the compound interest (1 +

௥

௡
)௡ , 

where, in our case, 𝑟 = 1  (annual interest rate as a decimal: 100% =
ଵ଴଴

ଵ଴଴
= 1 ), tends to 𝑒  as 𝑛  tends to infinity. However, the problem of 

compound interest was systematically investigated by the Swiss 
mathematician Jacob Bernoulli (1655–1705), who studied the following 
question: if an account starts with 1𝑈𝑆𝐷 and pays 100% interest per year, 
and if the interest is credited once at the end of the year, then the value of 
the account at the year-end will be 2𝑈𝑆𝐷 , but what will happen if the 
interest is computed and credited more frequently during the year? In fact, 
Bernoulli noticed that, if there are 𝑛 compounding intervals, the interest 

for each interval will be 
ଵ଴଴%

௡
, and the value of the aforementioned account 

(which started with 1𝑈𝑆𝐷 ) at the end of the year will be 1 𝑈𝑆𝐷 ×

ቀ1 +
ଵ

௡
ቁ

௡

. Furthermore, Bernoulli noticed that this sequence approaches a 

limit (the “force of interest”). More specifically, it approaches the number 
𝑒, as 𝑛 increases―that is, as compounding intervals become smaller. For 
instance, compounding monthly (i.e., 𝑛 = 12 ) yields approximately 
2.613 USD, while compounding daily (i.e., 𝑛 = 365 ) yields 
approximately 2.7146 USD. The limit as 𝑛 tends to infinity is the number 

𝑒 = ∑
ଵ

௡!

ஶ
௡ୀ଴ =

ଵ

଴!
+

ଵ

ଵ!
+

ଵ

ଶ!
+

ଵ

ଷ!
+ ⋯ ≈ 2.718 , meaning that, with 

continuous compounding, the value of the aforementioned account will 
reach approximately 2.718 USD. Leonhard Euler proved that the number 𝑒 
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is irrational by showing that its simple continued fraction expansion is 
infinite (by a “continued fraction,” we mean an expression obtained 
through an iterative process of representing a number as the sum of its 
integral part and the reciprocal of another number, then writing this other 
number as the sum of its integral part and another reciprocal, etc.). 
The following properties of the logarithm can be easily verified: 

i. 𝑙𝑜𝑔௕(𝑥𝑦) = 𝑙𝑜𝑔௕𝑥 + 𝑙𝑜𝑔௕𝑦, 

ii. 𝑙𝑜𝑔௕ ቀ
௫

௬
ቁ = 𝑙𝑜𝑔௕𝑥 − 𝑙𝑜𝑔௕𝑦, 

iii. 𝑙𝑜𝑔௕𝑥௞ = 𝑘𝑙𝑜𝑔௕𝑥, 
iv. 𝑙𝑜𝑔௕1 = 0, 
v. 𝑙𝑜𝑔௕𝑏௫ = 𝑥 = 𝑏௟௢௚್௫, 

vi. 𝑙𝑜𝑔௕𝑥 =
௟௢௚ೌ௫

௟௢௚ೌ௕
 (change of base rule). 

vii. If 𝑥, 𝑦, and 𝑏 are positive real numbers with 𝑏 ≠ 1, then  
 𝑥 = y ⇒ 𝑙𝑜𝑔௕𝑥 = 𝑙𝑜𝑔௕𝑦, and, conversely,  
 𝑙𝑜𝑔௕𝑥 = 𝑙𝑜𝑔௕𝑦 ⇒ 𝑥 = 𝑦 . Hence, we can solve exponential 

equations (i.e., equations in which the unknown is in the 
exponent) by taking the logarithm of both sides of the equation. 
For instance, let us solve the exponential equation 5ଶ௫ = 21 using 
𝑙𝑜𝑔 base of 𝑒:  

5ଶ௫ = 21 ⇒ 𝑙𝑛(5ଶ௫) = 𝑙𝑛21 ⇒ 2𝑥 ∙ 𝑙𝑛5 = 𝑙𝑛21 ⇒ 2𝑥 =
௟௡ଶଵ

௟௡ହ
⇒

𝑥 =
೗೙మభ

೗೙

ଶ
≈ 0.9458. 

 
Ordered Pairs and the Cartesian Product 

The Fundamental Property of Ordered Pairs: For any ordered pairs 
(𝑤, 𝑥)𝑎𝑛𝑑 (𝑦, 𝑧), it holds that:  
(𝑤, 𝑥) = (𝑦, 𝑧) ⇔ 𝑤 = 𝑦 & 𝑥 = 𝑧, 
and, in this case, the two ordered pairs are called “equal.” 
The “Cartesian product” (also known as the “direct product”) 𝐴 × 𝐵  of 
two sets 𝐴  and 𝐵  is the set of all ordered pairs (𝑎, 𝑏)  such that 𝑎 ∈
𝐴 𝑎𝑛𝑑 𝑏 ∈ 𝐵; symbolically: 
𝐴 × 𝐵 = {(𝑎, 𝑏)|𝑎 ∈ 𝐴 & 𝑏 ∈ 𝐵}.  
For instance, if 𝐴 = {1,2} and 𝐵 = {1,3}, then the Cartesian product 𝐴 ×
𝐵 is the set {(1,1), (1,3), (2,1), (2,3)}. In general, the Cartesian product of 
the sets 𝐴ଵ, 𝐴ଶ, … , 𝐴௡ , denoted by 𝐴ଵ × 𝐴ଶ × … × 𝐴௡  is the set of all 
ordered 𝑛-tuples of the form (𝑎ଵ, 𝑎ଶ, … , 𝑎௡), where 𝑎௜  is an element of 
𝐴௜(𝑖 = 1,2, … , 𝑛). 
Remark: It is easily checked that, for any sets 𝐴, 𝐵, and 𝐶, we have: 
𝐴 × (𝐵 ∪ 𝐶) = (𝐴 × 𝐵) ∪ (𝐴 × 𝐶), 
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𝐴 × (𝐵 ∩ 𝐶) = (𝐴 × 𝐵) ∩ (𝐴 × 𝐶). 
If 𝐴 = ∅ or 𝐵 = ∅, then 𝐴 × 𝐵 = ∅.  
𝐴 × 𝐵 = 𝐵 × 𝐴 ⇔ 𝐴 = 𝐵. 
Let 𝐴 × 𝐵 = {(𝑎, 𝑏)|𝑎 & 𝑏 𝑎𝑟𝑒 𝑟𝑒𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟𝑠}. Then 𝐴 × 𝐵 is the set of 
all points in a plane whose coordinates are (𝑎, 𝑏) . Thus, 𝐴 × 𝐵  is the 
Cartesian plane 
ℝଶ = ℝ × ℝ, 
as shown, for instance, in Figure 3. In this case, each point 𝑃 in the plane 
represents an ordered pair (𝑎, 𝑏) of real numbers, and vice versa. In other 
words, the vertical line through 𝑃 meets the 𝑥-axis at 𝑎, and the horizontal 
line through 𝑃  meets the 𝑦 -axis at 𝑏 . Thus, we can understand the 
relationship between set theory, mathematical analysis, and geometry. In 
other words, a two-dimensional coordinate system consists of the 
horizontal axis (namely, the 𝑥-axis) and the vertical axis (namely, the 𝑦-
axis), and the intersection of the two axes is the origin 𝑂(0,0)  of the 
coordinate system (by the term “axis,” we mean a straight line with respect 
to which a body or structure is symmetrical). By analogy, we can define an 
𝑛-dimensional coordinate system for 𝑛 ≥ 3 (𝑛 = 3,4,5, …), using 𝑛 axes of 
reference at right angles to each other. 
 
Figure 3: The Cartesian Plane. 
 

 
 
As noted above, the set ℝ of all real numbers is called the real line, or the 
continuum. A set of pairs of real numbers is called a “number plane,” and 
it is denoted by ℝଶ. As already mentioned, the set ℝ can be represented 
geometrically as a horizontal number line. A geometric representation of 
the set ℝଶ  is the coordinate plane 𝑥𝑂𝑦 , defined as two perpendicular 
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number lines with a common origin 𝑂 and the same scale (the number of 
units represented by a unit length along an axis is called the “scale”). The 
point 𝑂(0,0) is called the “origin of coordinates.” If 𝑃଴ is a point in the 
coordinate plane, then, by projecting it on the coordinate lines 𝑂𝑥 and 𝑂𝑦, 
we find the coordinates of the projections 𝑥଴ and 𝑦଴ (notice: if you drop a 
perpendicular from a point to a line or plane, then the point you reach on 
that line or plane is called the projection of the point onto the line or 
plane). The coordinates are called respectively the “abscissa” (i.e., the 𝑥-
coordinate) and the “ordinate” (i.e., the 𝑦-coordinate) of the point 𝑃଴, and 
the straight lines 𝑂𝑥 and 𝑂𝑦 are respectively called the “axis of abscissas” 
and the “axis of ordinates”. Hence, to the point 𝑃଴ there corresponds one 
pair of numbers (𝑥଴, 𝑦଴); conversely, given a pair of numbers (𝑥଴, 𝑦଴), we 
mark the points 𝑥଴  and 𝑦଴  on the coordinate lines (axes) 𝑂𝑥  and 𝑂𝑦 
respectively, and, drawing through these points straight lines parallel to the 
coordinate lines (axes) 𝑂𝑥 and 𝑂𝑦, we find the point of their intersection 
𝑃଴. By analogy we work in ℝ௡.  
In general, the use of coordinate systems implies that space itself is 
encoded by 𝑛-tuples (i.e., by sequences, ordered lists, of 𝑛 numbers), and, 
specifically, that the two-dimensional space, the “plane,” is encoded by 
pairs of numbers, so that the conception of space becomes subordinate to 
the conception of arithmetic. 
 

Relations and Functions between Sets 
Let 𝐴  and 𝐵  be two arbitrary sets. Then a “relation” between 𝐴  and 𝐵 , 
denoted by 𝑅, is defined to be a subset of the Cartesian product 𝐴 × 𝐵; 
symbolically: 𝑅 ⊆ 𝐴 × 𝐵. The “domain” of relation 𝑅 is defined by 𝐷ோ =
{𝑎|(𝑎, 𝑏) ∈ 𝑅} , and the “range” of relation 𝑅  is defined by 𝑅ோ =
{𝑏|(𝑎, 𝑏) ∈ 𝑅}. If 𝑅 is a relation from 𝐴 to 𝐵, then the relation from 𝐵 to 𝐴 
is called the “inverse” of 𝑅, and it is defined by 𝑅ିଵ = {(𝑏, 𝑎)|(𝑎, 𝑏) ∈ 𝑅}. 
A relational proposition is often denoted by 𝑎𝑅𝑏, where 𝑅 relates a term 𝑎 
to a term 𝑏. Hence, a relation of two terms proceeds, somehow, from one 
to the other. 
If 𝑅ଵ is a relation from a set 𝐴 to a set 𝐵, and if 𝑅ଶ is a relation from 𝐵 to a 
set 𝐶, then their “composition,” denoted by 𝑅ଶ  ⃘ 𝑅ଵ, is a relation from 𝐴 to 
𝐶, symbolically: 
𝑅ଶ   ⃘𝑅ଵ = {(𝑎, 𝑐)|𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑏 ∈ 𝐵, (𝑎, 𝑏) ∈ 𝑅ଵ &  (𝑏, 𝑐) ∈ 𝑅ଶ 𝑤𝑖𝑡ℎ 𝑎 ∈
𝐴, 𝑐 ∈ 𝐶}. 
If 𝑅ଵ  and 𝑅ଶ  are relations such that 𝑅ଵ ⊆ 𝑅ଶ , then 𝑅ଶ  is said to be an 
“extension” of 𝑅ଵ, and 𝑅ଵ is said to be a “restriction” of 𝑅ଶ. 
A relation 𝑅 on a set 𝐴 is “reflexive” if (𝑎, 𝑎) is an element of 𝑅 for every 
𝑎 ∈ 𝐴; it is “symmetric” if (𝑎, 𝑏) is an element of 𝑅 whenever (𝑏, 𝑎) is an 
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element of 𝑅; and it is “transitive” if (𝑎, 𝑐) is an element of 𝑅 whenever 
(𝑎, 𝑏)  and (𝑏, 𝑐)  are elements of 𝑅 . A relation 𝑅  on a set 𝐴  is 
“antisymmetric” if, whenever 𝑎  and 𝑏  are distinct, then (𝑎, 𝑏)  is an 
element of 𝑅 only if (𝑏, 𝑎) is not an element of 𝑅. For instance, if 𝐴 =
{𝑢, 𝑣, 𝑤} and 𝑅 is a relation on 𝐴, then: 
𝑅 = {(𝑢, 𝑣), (𝑣, 𝑢), (𝑢, 𝑢), (𝑣, 𝑣), (𝑣, 𝑤), (𝑤, 𝑤)} is a reflexive relation on 
𝐴; 
𝑅 = {(𝑢, 𝑣), (𝑣, 𝑢), (𝑤, 𝑤)} is a symmetric relation on 𝐴;  
𝑅 = {(𝑢, 𝑣), (𝑣, 𝑤)(𝑢, 𝑤), (𝑣, 𝑣)} is a transitive relation on 𝐴; 
𝑅 = {(𝑢, 𝑤), (𝑣, 𝑣), (𝑢, 𝑣), (𝑢, 𝑢)} is an antisymmetric relation on 𝐴. 
Let 𝐴  and 𝐵  be two arbitrary sets. A relation 𝑓 ⊆ 𝐴 × 𝐵  is called a 
“function,” “mapping,” or “transformation,” denoted by 𝑓: 𝐴 → 𝐵 , if it 
assigns to each element 𝑎 ∈ 𝐴 exactly one element 𝑏 ∈ 𝐵 . The set 𝐴  is 
called the “domain” of the function 𝑓 and is denoted by 𝐷௙, while the set 𝐵 
is called the “codomain” of the function 𝑓. The set of all elements of 𝐵 
that are related to the elements of 𝐴  via 𝑓  is called the “range” of the 
function 𝑓, and it is denoted by 𝑅௙ , meaning that the range of 𝑓  is the 
image of 𝐴 by 𝑓: 
𝑓(𝐴) = {𝑓(𝑎)|𝑎 ∈ 𝐴}. 
By the term “graph” of a function 𝑓: 𝐴 → 𝐵, we mean the set {𝑥, 𝑓(𝑥)}, 
where 𝑥 ∈ 𝐴. If 𝑐 is a positive constant, then: 

i. The graph of 𝑦 = 𝑓(𝑥) + 𝑐 is the graph of 𝑓 raised by 𝑐 units. 
ii. The graph of 𝑦 = 𝑓(𝑥) − 𝑐 is the graph of 𝑓 lowered by 𝑐 units. 
iii. The graph of 𝑦 = 𝑓(𝑥 + 𝑐) is the graph of 𝑓 shifted 𝑐 units to the 

left. In fact, if we analyze the 𝑥-values, we can see a pattern, and 
we realize that the new 𝑥 that we need in order to obtain 𝑓(0) is 
the one that makes 𝑓(𝑥 + 𝑐) = 𝑓(0) , namely, −𝑐 . We can 
generalize this result as follows: 

 𝑓(𝑥௡௘௪ + 𝑐) = 𝑓(𝑥) ⇒ 𝑥௡௘௪ + 𝑐 = 𝑥 ⇒ 𝑥௡௘௪ = 𝑥 − 𝑐, 
 meaning that the new 𝑥-values are the old 𝑥-values translated – 𝑐 

units (that is, 𝑐 units to the left, since that direction is the negative 
direction).  

iv. The graph of 𝑦 = 𝑓(𝑥 − 𝑐) is the graph of 𝑓 shifted 𝑐 units to the 
right. 

The graph of 𝑦 = −𝑓(𝑥) is the graph of 𝑓 reflected about the 𝑥-axis. 
If 𝑐 > 1, then the graph of 𝑦 = 𝑐𝑓(𝑥) is the graph of 𝑓  stretched by a 
factor of 𝑐. If 0 < 𝑐 < 1, then the graph of 𝑦 = 𝑐𝑓(𝑥) is the graph of 𝑓 
flattened out by a factor of 𝑐. 
Vertical line test: Imagine a vertical line sweeping across a graph. Assume 
that the vertical line at any position intersects the graph in more than one 
point. Then the graph is not the graph of a function. 
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Two functions 𝑓: 𝐴 → 𝐵  and 𝑔: 𝐴 → 𝐵  are called “equal” if 𝑓(𝑥) =
𝑔(𝑥), ∀𝑥 ∈ 𝐴, and they are called “different” if there is at least one 𝑥଴ ∈ 𝐴 
such that 𝑓(𝑥଴) ≠ 𝑔(𝑥଴). 
A function 𝑓  is said to be “odd” if 𝑓(−𝑥) = −𝑓(𝑥)  for every 𝑥  in the 
domain of 𝑓. The graph of an odd function has symmetry about the origin. 
A function 𝑓  is said to be “even” if 𝑓(−𝑥) = 𝑓(𝑥)  for every 𝑥  in the 
domain of 𝑓. The graph of an even function has symmetry about the 𝑦-
axis. 
A function 𝑓: 𝑋 → 𝑌  is called “one-to-one” (or “injective,” or an 
“injection,” or a “monomorphism”) if  
𝑓(𝑥ଵ) = 𝑓(𝑥ଶ) ⇒ 𝑥ଵ = 𝑥ଶ, ∀𝑥ଵ, 𝑥ଶ ∈ 𝑋; 
that is, a function is “one-to-one” if each 𝑥 value in the domain is assigned 
a different 𝑦 value, so that no two ordered pairs have the same second 
component. If more than one element of 𝑋 has the same 𝑓-image in 𝑌, 
then the function 𝑓: 𝑋 → 𝑌 is said to be “many-to-one.” 
Horizontal line test: Imagine a horizontal line sweeping down the graph of 
a function. Assume that the horizontal line at any position intersects the 
graph in more than one point. Then, the function is not one-to-one, and its 
inverse is not a function.  
A function 𝑓: 𝑋 → 𝑌 is called “into” if there exists at least one element of 
𝑌 that is not the 𝑓-image of an element of 𝑋. In other words, for any into 
function 𝑓: 𝑋 → 𝑌 , the range set 𝑓(𝑋)  is a proper subset of 𝑌 ; 
symbolically, 𝑓(𝑋) ⊂ 𝑌.  
If the range of a function 𝑓 is the whole codomain of 𝑓, then 𝑓 is said to be 
“onto” (or “surjective,” or a “surjection,” or an “epimorphism”). In other 
words, for any onto function 𝑓: 𝑋 → 𝑌, 𝑓(𝑋) = 𝑌.  
If a function is both one-to-one and onto, then it is called “bijective,” or a 
“bijection,” or an “one-to-one correspondence.”  
For instance: 

i. If 𝐴  is a subset of 𝑋 , then the restriction to 𝐴  of the identity 
mapping 𝑖𝑑௫, defined by 𝐴 ∋ 𝑥 → 𝑥 ∈ 𝐴, is an injection 𝑗஺, called 
the “natural injection.” 

ii. The identity mapping of any set is bijective. 
iii. The function 𝑓: 𝑋 × 𝑌 → 𝑌 × 𝑋 defined by (𝑥, 𝑦) → (𝑦, 𝑥), where 

𝑥 ∈ 𝑋 𝑎𝑛𝑑 𝑦 ∈ 𝑌, is bijective.  
iv. The function 𝑓(𝑥) = 𝑥ଶ , where 𝑥 ∈ ℝ , is not injective, since 

𝑓(−𝑥) = 𝑓(𝑥) = 𝑥ଶ , but the restriction to ℝା  (the set of all 
positive real numbers) of 𝑓 is injective.  

v. 𝑓: ℝ → ℝ  defined by 𝑓(𝑥) = 𝑥ଷ  is an one-to-one and onto 
mapping, that is, a bijection from ℝ to ℝ.  
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Sequences and Series 
A “sequence” is a function whose domain is the set of positive integers 
(i.e., 1,2,3, …). The functional values (i.e., the range elements) are called 
the terms of the sequence. In other words, a sequence is a set of numbers 
arranged in a definite order. 
An “arithmetic progression” is a sequence of numbers in which each term 
after the first is found by adding a constant to the preceding term. This 
constant is called the “common difference” and is symbolized by 𝑑. Thus, 
the formula for the 𝑛th term in an arithmetic progression with first term 𝑎ଵ 
and common difference 𝑑 is: 
𝑎௡ = 𝑎ଵ + (𝑛 − 1)𝑑. 
A “geometric progression” is a sequence of numbers in which each term 
after the first is found by multiplying the preceding term by a constant. 
This constant is called the “common ratio” and is symbolized by 𝑟. Thus, 
the formula for the 𝑛th term in a geometric progression with first term 𝑎ଵ 
and common ratio 𝑟 is: 
𝑎௡ = 𝑎ଵ𝑟௡ିଵ. 
Associated with any sequence  𝑎ଵ, 𝑎ଶ, 𝑎ଷ, … is a “series”  

𝑎ଵ + 𝑎ଶ + 𝑎ଷ + ⋯ 
which is the sum of all the terms in the sequence. A series that is 
associated with an arithmetic progression is called an “arithmetic series.” 
A series that is associated with a geometric progression is called a 
“geometric series.” 
The sum of the first 𝑛  terms of an arithmetic series is given as the 
following formula: 
𝑆௡ =

௡

ଶ
(𝑎ଵ + 𝑎௡) =

௡

ଶ
[2𝑎ଵ + (𝑛 − 1)𝑑]. 

The sum of the first 𝑛 terms of a geometric series is given as the following 
formula: 

𝑆௡ =
௔భି௔భ௥೙

ଵି௥
=

௔భି௔೙௥

ଵି௥
. 

 
Real Equations and Algebra  

By the term “equation,” we mean a statement that two quantities are equal. 
For instance, 1,000𝑚 = 1𝑘𝑚 . More often, an equation contains an 
unknown quantity that is represented by a symbol, and we try to find the 
value of this unknown quantity. By the term “algebra,” we refer to 
methods and techniques for solving equations. In fact, the core of the study 
of structures in mathematics consists of taking numbers and putting them 
into equations in the form of “variables”; and the rules for manipulating 
these equations are contained in algebra. Moreover, in the context of 
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algebra, we study multidimensional numbers, such as matrices and vectors 
(see chapters 3 and 7). 
The word “algebra” derives from the Arabic word “al-Jabr,” meaning 
“transformation.” It refers to a methodology developed by the Persian 
mathematician Al-Khwarizmi, who lived in Baghdad early in the Islamic 
era. Al-Khwarizmi was interested in solving algebraic equations, and his 
method consists in applying a transformation to the given equation in 
order to put it into a standard form for which the solution method is 
known.  
Equations requiring multiplication and division: 

i. We can solve the equation 
௫

ଵଶ
= 4 as follows: multiplying each 

side by 12 , we get 
௫

ଵଶ
× 12 = 4 × 12 ⇒ 𝑥 = 48 . Check: when 

𝑥 = 48, the left-hand side of the given equation becomes 
ସ଼

ଵଶ
= 4. 

The right-hand side of the given equation is equal to 4. Therefore, 
the solution is correct. 

ii. We can solve the equation 6𝑥 = 3 as follows: dividing each side 

by 6, we get 
଺௫

଺
=

ଷ

଺
⇒ 𝑥 =

ଵ

ଶ
. Check: when 𝑥 =

ଵ

ଶ
, the left-hand 

side of the given equation becomes 6 ×
ଵ

ଶ
= 3. The right-hand side 

of the given equation is equal to 3 . Therefore, the solution is 
correct. 

Equations requiring addition and subtraction: 
i. We can solve the equation 𝑥 − 2 = 4 as follows: adding 2 to each 

side, we get 𝑥 − 2 + 2 = 4 + 2 ⇒ 𝑥 = 6. The operation of adding 
2 to each side is the same as transferring −2 to the right-hand 
side, but, in so doing, the sign is changed from a minus to a plus. 
Hence, 𝑥 − 2 = 4 ⇔ 𝑥 = 4 + 2 ⇔ 𝑥 = 6 . Check: when 𝑥 = 6 , 
the left-hand side of the given equation becomes 6 − 2 = 4. The 
right-hand side of the given equation is equal to 4. Therefore, the 
solution is correct. 

ii. We can solve the equation 𝑥 + 18 = 30 as follows: subtracting 
18  from each side, we get 𝑥 + 18 − 18 = 30 − 18 ⇒ 𝑥 = 12 . 
Alternatively, moving +18 to the right-hand side (changing the 
sign from a plus to a minus), we get 𝑥 = 30 − 18 ⇔ 𝑥 = 12 . 
Check: when 𝑥 = 12 , the left-hand side of the given equation 
becomes 12 + 18 = 30. The right-hand side of the given equation 
is 30. Therefore, the solution is correct. 

Equations containing the unknown quantity on both sides: In equations of 
this kind, we group all the terms containing the unknown quantity on one 
side of the equation and the remaining terms on the other side.  
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i. We can solve the equation 4𝑥 + 3 = 6𝑥 + 11  as follows: 
transferring 6𝑥 to the left-hand side and +3 to the right-hand side, 

we get 4𝑥 − 6𝑥 = 11 − 3 ⇒ −2𝑥 = 8 ⇒ 𝑥 = −
଼

ଶ
= −4. Check: 

when 𝑥 = −4, the left-hand side becomes 4(−4) + 3 = −13, and 
the right-hand side becomes 6(−4) + 11 = −13. Therefore, the 
solution is correct. 

ii. We can solve the equation 7𝑥 − 2 = 5𝑥 + 8  as follows: 7𝑥 −
5𝑥 = 8 + 2 ⇒ 2𝑥 = 10 ⇒ 𝑥 = 5. Check: when 𝑥 = 5, the left-
hand side becomes 7 × 5 − 2 = 33 , and the right-hand side 
becomes 5 × 5 + 8 = 33. Therefore, the solution is correct. 

Equations containing brackets: When an equation contains brackets, we 
remove these first, and then we solve according to the aforementioned 
methods. For instance, 3(2𝑥 − 1) = 9 ⇒ 6𝑥 − 3 = 9 ⇒ 6𝑥 = 12 ⇒ 𝑥 =
2. Check: when 𝑥 = 2, the left-hand side is 3(2 × 2 − 1) = 9, and the 
right-hand side is 9. Therefore, the solution is correct. 
Equations containing fractions: When an equation contains fractions, we 
multiply each term of the equation by the least common multiple of the 

denominators. For instance, we can solve the equation  
௫

ଷ
+

ଶ

ହ
=

ହ௫

ଶ
− 1 as 

follows: The least common multiple of the denominators 3, 5, and 2 is 30. 

Multiplying each term by 30  gives 
௫

ଷ
× 30 +

ଶ

ହ
× 30 =

ହ௫

ଶ
× 30 − 1 ×

30 ⇒ 10𝑥 + 12 = 75𝑥 − 30 ⇒ −65𝑥 = −42 ⇒ 𝑥 =
ସଶ

଺ହ
. The solution 

may be verified by the check method shown in the previous examples. 
Simultaneous equations:  Consider the two following equations: 

൜
𝑎𝑥 + 𝑏𝑦 = 𝑐
𝑝𝑥 + 𝑞𝑦 = 𝑟

ൠ. 

Each equation contains the unknown quantities 𝑥 and 𝑦. The solutions of 
the equations are the values of 𝑥  and 𝑦  that satisfy both equations. 
Equations such as these are called “simultaneous equations” (or a “system 
of equations”).  

i. We can solve the simultaneous equations 
4𝑥 + 5𝑦 = 14                                                                                (∗) 
𝑥 + 2𝑦 = 11                                                                                (∗∗) 
as follows: If we multiply equation (∗∗) by 4, we shall have 
the same coefficient of 𝑥 in both equations: 
4𝑥 + 8𝑦 = 44                                                                           (∗∗∗) 
We can now eliminate 𝑥  by subtracting equation (∗) from 
equation (∗∗∗): 

4𝑥 + 8𝑦 = 44 
4𝑥 + 5𝑦 = 14 
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                                   ---------------------- 
         3𝑦 = 30 

Hence, 𝑦 = 10. In order to find 𝑥, we substitute 𝑦 = 10 in 
either of the original equations. Therefore, substituting for 
𝑦 = 10  in equation ( ∗ ), we get 4𝑥 + 5 × 10 = 14 ⇒ 𝑥 =
−9. In order to check these values, it suffices to substitute 
them in equation (∗∗). 

ii. We can solve the simultaneous equations 
5𝑥 + 7𝑦 = 15                                                                                (∗) 

4𝑥 +
଼

ହ
𝑦 = 24                                                                    (∗∗) 

as follows: the same coefficient of 𝑥 can be obtained in both 
equations if equation (∗) is multiplied by 4 (the coefficient of 
𝑥 in equation (∗∗)) and equation (∗∗) is multiplied by 5 (the 
coefficient of 𝑥 in equation (∗)). Multiplying equation (∗) by 
4, we get 
20𝑥 + 28𝑦 = 60                                                                      (∗∗∗) 
Multiplying equation (∗∗) by 5, we get 
20𝑥 + 8𝑦 = 120                                                            (∗∗∗∗) 
Subtracting equation (∗∗∗) from equation (∗∗∗∗), we get 
−20𝑦 = 60 ⇒ 𝑦 = −3. 

Substituting for 𝑦 = −3 in equation (∗), we get 𝑥 =
ଷ଺

ହ
. In 

order to check these values, it suffices to substitute them in 
equation (∗∗). 

iii. We can solve the simultaneous equations 
7𝑥 + 4𝑦 = 20                                                                                (∗) 
3𝑥 − 2𝑦 = 3                                                                                (∗∗) 
as follows: in this system of equations, it is easier to 
eliminate 𝑦, since the same coefficient of 𝑦 can be obtained 
in both equations by multiplying equation (∗∗) by 2. In fact, 
multiplying equation (∗∗) by 2, we get 
6𝑥 − 4𝑦 = 6                                                                    (∗∗∗) 
Adding equations (∗) and (∗∗∗), we get 13𝑥 = 26 ⇒ 𝑥 = 2. 

Substituting for 𝑥 = 2 in equation (∗), we get 𝑦 =
ଷ

ଶ
. In order 

to check these values, it suffices to substitute them in 
equation (∗∗). 

iv. We can solve the simultaneous equations 
௫

ହ
−

௬

ଷ
=

ଵ

ଵ଴
                                                                             (∗) 

ଷ௫

ସ
−

ଶ௬

ଷ
=

ଶ

ଷ
                                                                         (∗∗) 
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as follows: first, we shall clear each equation of fractions. In 
equation (∗), the least common multiple of the denominators 
is 30. Hence, by multiplying equation (∗) by 30, we get  
6𝑥 − 10𝑦 = 3                                                                           (∗∗∗) 
In equation ( ∗∗ ), the least common multiple of the 
denominators is12. Hence, by multiplying equation (∗∗) by 
12, we get  
9𝑥 − 8𝑦 = 8                                                                            (∗∗∗∗) 
We now proceed in the usual way. Multiplying equation  (∗∗
∗) by 6, we get 
36𝑥 − 60𝑦 = 18                                                                 (A) 
Multiplying equation (∗∗∗∗) by 4, we get 
36𝑥 − 32𝑦 = 32                                                                 (B) 
Subtracting equation (B) from equation (A), we get −28𝑦 =

−14 ⇒ 𝑦 =
ଵ

ଶ
. Substituting for 𝑦 =

ଵ

ଶ
  in equation (∗∗∗), we 

get 𝑥 =
଼

଺
=

ସ

ଷ
. Therefore, the solutions are 𝑦 =

ଵ

ଶ
 and 𝑥 =

ସ

ଷ
. 

Since equation (∗∗∗) came from equation (∗), we must do the 

check in equation (∗∗). Indeed, 
ଷ(ସ ଷ⁄ )

ସ
−

ଶ(ଵ ଶ⁄ )

ଷ
=

ଶ

ଷ
. 

 
Factoring Models 

Common factor: 𝑎𝑥 + 𝑎𝑦 = 𝑎(𝑥 + 𝑦). 
Difference of squares: 𝑥ଶ − 𝑦ଶ = (𝑥 + 𝑦)(𝑥 − 𝑦). 
Trinomial (leading coefficient 1): 𝑥ଶ + (𝑎 + 𝑏)𝑥 + 𝑎𝑏 = (𝑥 + 𝑎)(𝑥 + 𝑏). 
Perfect square trinomial: 𝑥ଶ + 2𝑥𝑦 + 𝑦ଶ = (𝑥 + 𝑦)ଶ. 
General trinomial: (𝑎𝑐)𝑥ଶ + (𝑎𝑑 + 𝑏𝑐)𝑥 + 𝑏𝑑 = (𝑎𝑥 + 𝑏)(𝑐𝑥 + 𝑑). 
Sum of cubes: 𝑎ଷ + 𝑏ଷ = (𝑎 + 𝑏)(𝑎ଶ − 𝑎𝑏 + 𝑏ଶ). 
Difference of cubes: 𝑎ଷ − 𝑏ଷ = (𝑎 − 𝑏)(𝑎ଶ + 𝑎𝑏 + 𝑏ଶ). 
 

Real Polynomials 
A function of a single variable 𝑥  is said to be a “polynomial” on its 
domain if it can be put in the following form: 
𝑎௡𝑥௡ + 𝑎௡ିଵ𝑥௡ିଵ + ⋯ + 𝑎ଵ𝑥 + 𝑎଴, 
where 𝑎௡ , 𝑎௡ିଵ, … , 𝑎ଵ, 𝑎଴  are constants. Hence, every polynomial can be 
expressed as a finite sum of monomial terms of the form 𝑎௞𝑥௞, in which 
the variable is raised to a non-negative integral power. Notice that 𝑥଴ = 1, 
and so 𝑎଴𝑥଴ = 𝑎଴. For the aforementioned polynomial with 𝑎௡ ≠ 0:  
the numbers 𝑎௜ (where 0 ≤ 𝑖 ≤ 𝑛) are called “coefficients”;  
𝑎௡ is the “leading coefficient”; 
𝑎௡𝑥௡ is the “leading term”; 



A Mathematical Compendium with Applications  
 

65

𝑎଴ is the “constant term” or the “constant coefficient”; 
𝑎ଵ is the “linear coefficient”; 
𝑎ଵ𝑥 is the “linear term”;  
when the leading coefficient, 𝑎௡, is equal to 1, the polynomial is said to be 
“monic”;  
the non-negative integer 𝑛 is the “degree” of the polynomial, and we write 
deg (𝑝) = 𝑛.  
A “constant polynomial” has only one term, specifically, 𝑎଴. A non-zero 
constant polynomial has degree 0 , and, by convention, the “zero 
polynomial” (with all coefficients vanishing) has degree −∞.  
A “zero” of a polynomial 𝑝(𝑥) is any number 𝑟 for which 𝑝(𝑟) takes the 
value 0. Hence, when 𝑝(𝑟) = 0, we say that 𝑟 is a “root,” or a “solution” 
of the equation 𝑝(𝑥) = 0. 
Let  
𝑝(𝑥) = 𝑎଴ + 𝑎ଵ𝑥 + 𝑎ଶ𝑥ଶ + ⋯ + 𝑎௡𝑥௡ and  
𝑞(𝑥) = 𝑏଴ + 𝑏ଵ𝑥 + 𝑏ଶ𝑥ଶ + ⋯ + 𝑏௠𝑥௠ 
be two arbitrary polynomials. Then we can operate with them as follows: 
Sum:(𝑝 + 𝑞)(𝑥) = (𝑎଴ + 𝑏଴) + (𝑎ଵ + 𝑏ଵ)𝑥 + (𝑎ଶ + 𝑏ଶ)𝑥ଶ + ⋯ 
Difference:(𝑝 − 𝑞)(𝑥) = (𝑎଴ − 𝑏଴) + (𝑎ଵ − 𝑏ଵ)𝑥 + (𝑎ଶ − 𝑏ଶ)𝑥ଶ + ⋯ 
Product of a constant and a polynomial: (𝑐𝑝)(𝑥) = 𝑐𝑎଴ + 𝑐𝑎ଵ𝑥 +
𝑐𝑎ଶ𝑥ଶ + ⋯ 
Product of two polynomials: (𝑝 ∙ 𝑞)(𝑥) = 𝑎଴𝑏଴ + (𝑎଴𝑏ଵ + 𝑎ଵ𝑏଴)𝑥 +
(𝑎଴𝑏ଶ + 𝑎ଵ𝑏ଵ + 𝑎ଶ𝑏଴)𝑥ଶ + ⋯ + (𝑎଴𝑏௞ + 𝑎ଵ𝑏௞ିଵ + ⋯ + 𝑎௜𝑏௞ି௜ + ⋯ +
𝑎௞𝑏଴)𝑥௞ + ⋯ + (𝑎௡𝑏௠)𝑥௠ା௡. 
Composition of two polynomials: (𝑝  ⃘𝑞)(𝑥) = 𝑝൫𝑞(𝑥)൯, so that we replace 
each occurrence of 𝑥 in the expression for 𝑝(𝑥) with 𝑞(𝑥).  
Notice that we divide one polynomial by another in a manner similar to 
the division of two integers. Firstly, we arrange the terms of the dividend 
and the divisor in descending powers of 𝑥. If a term is missing, then we 
write 0 as its coefficient. Then, we divide the first term of the dividend by 
the first term of the divisor to obtain the first term of the quotient. Next, 
we multiply the entire divisor by the first term of the quotient, and we 
subtract this product from the dividend. We use the remainder as the new 
dividend, and we repeat the same process until the remainder is of lower 
degree than the divisor. As with the division of numbers,  
𝑑𝑖𝑣𝑖𝑑𝑒𝑛𝑑 = (𝑑𝑖𝑣𝑖𝑠𝑜𝑟)(𝑞𝑢𝑜𝑡𝑖𝑒𝑛𝑡) + 𝑟𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟. 
Remainder Theorem: If a polynomial 𝑝(𝑥) is divided by 𝑥 − 𝑏, then the 
remainder is 𝑝(𝑏). 
Proof: Let 𝑞(𝑥)  and 𝑟  be, respectively, the quotient and the remainder 
when 𝑝(𝑥) is divided by 𝑥 − 𝑏. Then, given that 
𝑑𝑖𝑣𝑖𝑑𝑒𝑛𝑑 = (𝑑𝑖𝑣𝑖𝑠𝑜𝑟)(𝑞𝑢𝑜𝑡𝑖𝑒𝑛𝑡) + 𝑟𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟,  
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it holds that, for any 𝑥, 
𝑝(𝑥) = (𝑥 − 𝑏)𝑞(𝑥) + 𝑟. 
If 𝑥 = 𝑏, then 𝑝(𝑏) = 𝑟.■ 
Factor Theorem: Given an arbitrary polynomial function 𝑦 = 𝑝(𝑥), 𝑏 is a 
zero of 𝑦 = 𝑝(𝑥) if and only if 𝑥 − 𝑏 is a factor of 𝑝(𝑥).  
Proof. It can be easily verified using the Remainder Theorem. ■ 
Remark: The real number zeros of 𝑦 = 𝑝(𝑥) are also the 𝑥-intercepts in 
the graph of 𝑦 = 𝑝(𝑥). If 𝑏 is a real number zero with multiplicity 𝑛 of 
𝑦 = 𝑝(𝑥), then the graph of 𝑦 = 𝑝(𝑥) crosses the 𝑥-axis at 𝑥 = 𝑏 if 𝑛 is 
odd, whereas the graph turns around and stays on the same side of the 𝑥-
axis at 𝑥 = 𝑏 if 𝑛 is even. Hence, the 𝑥-intercepts can be obtained from the 
Factor Theorem, and the behavior of the graph at an 𝑥 -intercept, say 
(𝑏, 0), is determined by the multiplicity of zero𝑏 or, equivalently, by the 
highest power of (𝑥 − 𝑏) that is a factor of 𝑝(𝑥). For instance, if 𝑝(𝑥) =
(𝑥 + 1)(𝑥 − 2)ଶ, then, by setting 𝑥 = 0, we realize that the 𝑦-intercept is 
(0,4). Because (𝑥 + 1)  is a factor with an odd exponent, it holds that 
(−1,0) is an 𝑥-intercept at which the graph crosses the 𝑥-axis. Because 
(𝑥 − 2)ଶ  is a factor with an even exponent, it holds that (2,0) is an 𝑥-
intercept at which the graph touches the 𝑥-axis and then turns around. 
In fact, the fundamental problem in algebra consists in finding ways of 
solving polynomial equations; specifically, we seek formulas for 
zeros/roots in terms of the coefficients of the corresponding polynomial. A 
well-known example is the “quadratic formula.” If we have the quadratic 
equation 𝑎𝑥ଶ + 𝑏𝑥 + 𝑐 = 0, where 𝑎 ≠ 0, then we have the formula 

𝑥 =
−𝑏 ± √𝑏ଶ − 4𝑎𝑐

2𝑎
 

where the expression 𝑏ଶ − 4𝑎𝑐 is known as the “discriminant,” meaning 
that, if we have a number 𝑟 such that 𝑟ଶ = 𝑏ଶ − 4𝑎𝑐 ⇔ 𝑟 = √𝑏ଶ − 4𝑎𝑐, 
then 

𝑥ଵ =
ି௕ା௥

ଶ௔
 and 𝑥ଶ =

ି௕ି௥

ଶ௔
 

are the solutions of 𝑎𝑥ଶ + 𝑏𝑥 + 𝑐 = 0. 
If a function 𝑦 = 𝑓(𝑥) satisfies an equation of the form  
𝑝଴(𝑥)𝑦௡ + 𝑝ଵ(𝑥)𝑦௡ିଵ + ⋯ + 𝑝௡ିଵ(𝑥)𝑦 + 𝑝௡(𝑥) = 0, 
where 𝑝଴(𝑥), … , 𝑝௡(𝑥)  are polynomials in 𝑥 , then it is said to be an 
“algebraic function.” In other words, an algebraic function is a function 
that can be defined as the root of a polynomial equation. If a function can 
be expressed as the quotient of two polynomials, 

𝑓(𝑥) =
௣(௫)

௤(௫)
, 

then it is called a “rational algebraic function.” 
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A Few Applications: 

I. Applications of Arithmetic in Biology: Let 𝐴 be a prey and 𝐵 
be a predator. Suppose that the hibernation period of 𝐵 is 𝑋. 
Then what hibernation period should 𝐴 choose for itself in 
order to minimize the chance of getting hunted? This 
question can be answered as follows: Suppose that the 
maximum hibernation period for 𝐴  is 𝑀 . Then 𝐴  must 
choose some value 𝑌  between 0  and 𝑀 . Let 𝑋  and 𝑌  have 
some greatest common divisor (𝑔𝑐𝑑). Hence, the maximum 

time 𝐴 can stay alive is equal to 
௑∙௒

௚௖ௗ
, and 𝐴 has to maximize 

this over 0 to 𝑀. 
II. Applications of Arithmetic in Cryptography: In the context 

of cryptography, there is a plaintext (i.e., an intelligible 
message) that is converted into a ciphertext (i.e., an 
unintelligible message) according to an encryption algorithm, 
and this ciphertext is transmitted on the internet and is 
received by a receiver who will use the decryption algorithm 
(which is the opposite to the encryption algorithm) in order 
to convert the ciphertext into the original plaintext. Thus, in 
cryptography, the computer converts information into a 
signle number (representing one’s message), say 𝑚. In order 
to be computationally secure, many encryption algorithms 
are based on prime numbers because of the following reason: 
generally, multiplying two large prime numbers can be very 
fast, but it is very difficult to do the reverse (it is extremely 
computer-intensive to find the prime factors of large 
numbers). 
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Chapter 3 
Matrices and Applications in 

Input-Output Analysis and Linear Programming 
 
Matrices are often used in physics, statistics, and economics, and they are 
particularly useful when they are used in connection with systems of linear 
equations. For instance, let us considers the following linear simultaneous 
equations: 

4𝑥 + 5𝑦 = 14 
𝑥 + 2𝑦 = 11 

By arranging the coefficients of 𝑥 and 𝑦 in the way in which they occur in 
the equations, we obtain the array 

ቀ
4 5
1 2

ቁ, 

which is an example of a matrix.  
In general, consider the following rectangular array 

൭

𝑎ଵଵ ⋯ 𝑎ଵ௡

⋮ ⋱ ⋮
𝑎௠ଵ ⋯ 𝑎௠௡

൱, 

consisting of 𝑚  rows (i.e., horizontal 𝑛 -tuples) and 𝑛  columns (i.e., 
vertical 𝑛-tuples). This is called an “𝑚 × 𝑛 matrix,” usually denoted by 
𝐴 = (𝑎௜௝). If the number of rows in the matrix is 𝑚 and the number of 
columns is 𝑛 , then the matrix is said to be of order 𝑚 × 𝑛 . The term 
“matrix” was introduced by the nineteenth-century English mathematician 
James Sylvester, but it was his friend the mathematician Arthur Cayley 
who developed the algebra of matrices in the 1850s. 
Types of matrices: 

i. Row matrix. This is a matrix having only one row; for instance, 
the following is a row matrix: 

 (4 5). 
ii. Column matrix. This is a matrix having only one column; for 

instance, the following is a column matrix: 

 ቀ
5
2

ቁ. 

iii. Null matrix. this is a matrix with all its elements zero. 
iv. Square matrix. This is a matrix having the same number of rows 

and columns. 
v. Diagonal matrix. This is a square matrix in which all the elements 

are zero except the main diagonal elements (the main diagonal in 
a matrix always runs from upper left to lower right, so that the 
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main diagonal of a matrix 𝐴 = (𝑎௜௝) is the list of entries 𝑎௜௝  where 
𝑖 = 𝑗); for instance, the following is a diagonal matrix: 

 ቀ
4 0
0 2

ቁ. 

vi. Identity matrix. This is a diagonal matrix in which the main 
diagonal elements are equal to 1 (an identity matrix is usually 
denoted by 𝐼); for instance, the following is an identity matrix: 

 ቀ
1 0
0 1

ቁ. 

Addition and Subtraction of Matrixes: Two matrices may be added or 
subtracted provided that they are of the same order. Addition of matrices is 
done by adding together the corresponding elements of each of the two 
matrices. For instance: 

ቀ
4 5
1 2

ቁ + ቀ
3 6
2 4

ቁ = ቀ
4 + 3 5 + 6
1 + 2 2 + 4

ቁ = ቀ
7 11
3 6

ቁ. 

Subtraction of matrices is done in a similar way except the corresponding 
elements are subtracted. For instance: 

ቀ
4 5
1 2

ቁ − ቀ
3 6
2 4

ቁ = ቀ
4 − 3 5 − 6
1 − 2 2 − 4

ቁ = ቀ
1 −1

−1 −2
ቁ. 

Multiplication of Matrices: 
i. Scalar multiplication: A matrix may be multiplied by a number as 

follows: 

4 ቀ
5 −2
1 8

ቁ = ቀ
4 × 5 4 × (−2)
4 × 1 4 × 8

ቁ = ቀ
20 −8
4 32

ቁ. 

ii. General Matrix Multiplication: Two matrices can only be 
multiplied by each other if the number of columns in the one is 
equal to the number of rows in the other. Multiplication of 
matrices is done by multiplying a row by a column as follows: 

ቀ
4 5
1 2

ቁ × ቀ
3 6
2 4

ቁ = ቀ
4 × 3 + 5 × 2 4 × 6 + 5 × 4
1 × 3 + 2 × 2 1 × 6 + 2 × 4

ቁ =

ቀ
22 44
7 14

ቁ. 

The product of an 𝑚 × 𝑛  matrix 𝐴 = (𝑎௜௝) and an 𝑛 × 𝑝  matrix 𝐵 =

(𝑏௜௝) is a matrix 𝐶 = 𝐴𝐵 = (𝑐௜௝) whose (𝑖, 𝑗) entry is 
𝑐௜௝ = ∑ 𝑎௜௞

௡
௞ୀଵ 𝑏௞௝ , where 1 ≤ 𝑖 ≤ 𝑚 and 1 ≤ 𝑗 ≤ 𝑝. 

Inverting a Matrix: An 𝑛-square matrix 𝐴  is said to be “invertible” or 
“non-singular” if there exists an 𝑛 -square matrix 𝐵  with the following 
property: 
𝐴𝐵 = 𝐵𝐴 = 𝐼௡, 
where 𝐼௡  is the 𝑛-square identity matrix, namely, the 𝑛 × 𝑛  matrix with 
ones along the main diagonal and zeros elsewhere. If this is the case, then 
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the matrix 𝐵 is called the inverse of 𝐴, and the notation 𝐴ିଵ  is used to 
designate 𝐵. If no such 𝐵 exists, then 𝐴 is said to be “singular.” If 

𝐴 = ቀ
𝑎 𝑏
𝑐 𝑑

ቁ, 

then 

𝐴ିଵ =
ଵ

௔ௗି௕௖
ቀ

𝑑 −𝑏
−𝑐 𝑎

ቁ. 

Transposition of Matrices: The “transpose” of a matrix 𝐴 is denoted by 
𝐴், and it is the matrix obtained by writing the rows of 𝐴, in order, as 
columns; if 𝐴 = (𝑎௜௝) is an 𝑚 × 𝑛  matrix, then 𝐴் = (𝑎௜௝

் ) is the 𝑛 × 𝑚 
matrix where 𝑎௜௝

் = 𝑎௝௜ , for all 𝑖 and 𝑗. For instance, if  

𝐴 = ቀ
1 7
4 3

ቁ, then 𝐴் = ቀ
1 4
7 3

ቁ. 

Determinants: The determinant of a matrix 𝐴 is a scalar assigned to 𝐴, and 
it is denoted by 𝑑𝑒𝑡(𝐴). Given a matrix 

𝐴 = ቀ
𝑎ଵଵ 𝑎ଵଶ

𝑎ଶଵ 𝑎ଶଶ
ቁ, 

its determinant is 

𝑑𝑒𝑡(𝐴) = ቚ
𝑎ଵଵ 𝑎ଵଶ

𝑎ଶଵ 𝑎ଶଶ
ቚ = 𝑎ଵଵ𝑎ଶଶ − 𝑎ଵଶ𝑎ଶଵ. 

Solution of simultaneous equations using matrices: Let us consider a 
system of two linear equations with two unknowns:  

ቄ
𝑎ଵଵ𝑥ଵ + 𝑎ଵଶ𝑥ଶ = 𝑐ଵ

𝑎ଶଵ𝑥ଵ + 𝑎ଶଶ𝑥ଶ = 𝑐ଶ
ቅ, 

which gives rise to the following three matrices: 

𝐴 = ቀ
𝑎ଵଵ 𝑎ଵଶ

𝑎ଶଵ 𝑎ଶଶ
ቁ, 𝐵 = ቀ

𝑐ଵ

𝑐ଶ
ቁ, and 𝑋 = ቀ

𝑥ଵ

𝑥ଶ
ቁ. 

Thus, the original system of linear equations can be reformulated as 
follows: 
𝐴𝑋 = 𝐵 ⇔ 𝑋 = 𝐴ିଵ𝐵, 
where 𝐴 is the matrix of the system’s coefficients, 𝑋 is the matrix of the 
system’s unknowns, and 𝐵 is the matrix of the system’s constant terms. 
The system has a unique solution if and only if the determinant det (𝐴) =
𝑎ଵଵ𝑎ଶଶ − 𝑎ଵଶ𝑎ଶଵ ≠ 0, and that solution is: 

𝑥ଵ =
஻ೣభ

ୢୣ୲ (஺)
=

ቚ
௖భ ௔భమ
௖మ ௔మమ

ቚ

ቚ
௔భభ ௔భమ
௔మభ ௔మమ

ቚ
=

௖భ௔మమି௔భమ௖మ

௔భభ௔మమି௔భమ௔మభ
,  

and 

𝑥ଶ =
஻ೣమ

ୢୣ୲ (஺)
=

ቚ
௔భభ ௖భ
௔మభ ௖మ

ቚ

ቚ
௔భభ ௔భమ
௔మభ ௔మమ

ቚ
=

௔భభ௖మି௖భ௔మభ

௔భభ௔మమି௔భమ௔మభ
, 

where the numerators 𝐵௫భ
 and 𝐵௫మ

 are obtained by substituting the column 
of constant terms in place of the column of coefficients of the 
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corresponding unknown in the matrix of coefficients. If det (𝐴) = 0, then 
the system has either no solution or an infinite number of solutions.  
Consider the 3-square matrix 

𝐴 = ൭

𝑎ଵ 𝑏ଵ 𝑐ଵ

𝑎ଶ 𝑏ଶ 𝑐ଶ

𝑎ଷ 𝑏ଷ 𝑐ଷ

൱. 

The determinant of 𝐴 is 

det (𝐴) = อ

𝑎ଵ 𝑏ଵ 𝑐ଵ

𝑎ଶ 𝑏ଶ 𝑐ଶ

𝑎ଷ 𝑏ଷ 𝑐ଷ

อ = 𝑎ଵ𝑏ଶ𝑐ଷ + 𝑏ଵ𝑐ଶ𝑎ଷ + 𝑐ଵ𝑎ଶ𝑏ଷ − 𝑎ଵ𝑐ଶ𝑏ଷ −

𝑏ଵ𝑎ଶ𝑐ଷ − 𝑐ଵ𝑏ଶ𝑎ଷ. 
Moreover, it can be easily shown that 

อ

𝑎ଵ 𝑏ଵ 𝑐ଵ

𝑎ଶ 𝑏ଶ 𝑐ଶ

𝑎ଷ 𝑏ଷ 𝑐ଷ

อ = 𝑎ଵ ฬ
𝑏ଶ 𝑐ଶ

𝑏ଷ 𝑐ଷ
ฬ − 𝑏ଵ ቚ

𝑎ଶ 𝑐ଶ

𝑎ଷ 𝑐ଷ
ቚ + 𝑐ଵ ฬ

𝑎ଶ 𝑏ଶ

𝑎ଷ 𝑏ଷ
ฬ. 

Let us consider a system of 3 linear equations with 3 unknowns: 

൝

𝑎ଵ𝑥 + 𝑏ଵ𝑦 + 𝑐ଵ𝑧 = 𝑑ଵ

𝑎ଶ𝑥 + 𝑏ଶ𝑦 + 𝑐ଶ𝑧 = 𝑑ଶ

𝑎ଷ𝑥 + 𝑏ଷ𝑦 + 𝑐ଷ𝑧 = 𝑑ଷ

. 

The aforementioned system has a unique solution if and only if the 
determinant of the matrix of coefficients is not zero: 

det (𝐴) = อ

𝑎ଵ 𝑏ଵ 𝑐ଵ

𝑎ଶ 𝑏ଶ 𝑐ଶ

𝑎ଷ 𝑏ଷ 𝑐ଷ

อ ≠ 0. 

In this case, the unique solution of the given system can be expressed as 
quotients of determinants as follows: 

𝑥 =
஻ೣ

ୢୣ୲ (஺)
 , 

𝑦 =
஻೤

ୢୣ୲ (஺)
 , 

𝑧 =
஻೥

ୢୣ୲ (஺)
 , 

where the numerators 𝐵௫ , 𝐵௬ , and 𝐵௭  are obtained by substituting the 
column of constant terms for the column of coefficients of the 
corresponding unknown in the matrix of coefficients, so that: 

𝐵௫ = อ

𝑑ଵ 𝑏ଵ 𝑐ଵ

𝑑ଶ 𝑏ଶ 𝑐ଶ

𝑑ଷ 𝑏ଷ 𝑐ଷ

อ, 𝐵௬ = อ

𝑎ଵ 𝑑ଵ 𝑐ଵ

𝑎ଶ 𝑑ଶ 𝑐ଶ

𝑎ଷ 𝑑ଷ 𝑐ଷ

อ, and 𝐵௭ = อ

𝑎ଵ 𝑏ଵ 𝑑ଵ

𝑎ଶ 𝑏ଶ 𝑑ଶ

𝑎ଷ 𝑏ଷ 𝑑ଷ

อ. 

If det (𝐴) = 0, then the system has either no solution or an infinite number 
of solutions. 
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Advances in computing power have contributed significantly to the 
application of matrix algebra in several scientific disciplines, such as 
physics and mathematical economics. 
 

The application of matrices in input-output analysis 
The major economic tasks that every society must accomplish pertain to 
decision-making about an economy’s inputs and outputs. In economics, 
the term “input” refers to commodities or services used by firms in their 
production processes. Thus, by means of its technology, an economy 
combines inputs to produce outputs. In economics, the term “output” 
refers to the various useful goods or services that are either employed in 
further production or consumed.  
The acknowledged founder of “input-output analysis” is the Russian-
American economist Wassily Leontief, who won the Nobel Prize in 
Economics in 1973. An input-output matrix is a square matrix, say 𝐴 =
(𝑎௜௝), whose entries 𝑎௜௝  represent the amount of input 𝑖 required per unit 
of output 𝑗. A column of such a matrix depicts the inputs needed for the 
achievement of a specific output. Therefore, from the perspective of 
economics, it can be considered as a “production technique.” Hence, an 
input-output matrix is a “constellation” of production techniques. If the list 
of inputs is complete, including factor inputs, then the input-output matrix 
contains techniques for the production of the factor services as well. Input-
output is an integral part of general equilibrium analysis. As the American 
economist Campbell R. McConnell has pointed out, the economy is “an 
interlocking network of prices wherein changes in one market are likely to 
elicit numerous and significant changes in other markets,” so economists 
need to study “the price system as a whole” and focus on “general 
equilibrium analysis” (Campbell R. McConnell, Economics, fifth edition, 
New York: McGraw-Hill, 1972, p. 579). 
For instance, let us consider a small economic network that consists of two 
interdependent industries A and B (e.g., A may represent the final goods 
industry, and B may represent the energy industry). This method can 
obviously be generalized to any number of industries. We assume that, for 
each dollar’s worth of goods/services produced by A, A needs to consume 
a quantity of A’s output and a quantity of B’s output, and, for each dollar’s 
worth of goods/services produced by B, B needs to consume a quantity of 
B’s output and a quantity of A’s output. In particular, the production of 
each dollar’s worth of A requires $𝑞ଵଵ worth of A and $𝑞ଶଵ worth of B; 
and the production of each dollar’s worth of B requires $𝑞ଵଶ worth of A 
and $𝑞ଶଶ worth of B. Therefore, both industries sell to each other and buy 
from each other. In addition, assume that there is an external demand for A 
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and B; specifically, let the final demand from the outside sector of the 
economy be $𝑑ଵ  million for A and $𝑑ଶ  million for B. Let 𝑥ଵ  and 𝑥ଶ 
represent the total output from A and B respectively. 
Then we formulate the following equation: 
𝑋 = 𝑄𝑋 + 𝐷 ⇒ 𝑋 − 𝑄𝑋 = 𝐷 ⇒ 𝐼𝑋 − 𝑄𝑋 = 𝐷 ⇒ (𝐼 − 𝑄)𝑋 = 𝐷, 

where: 𝑋 = ቀ
𝑥ଵ

𝑥ଶ
ቁ, 𝑄 = ቀ

𝑞ଵଵ 𝑞ଵଶ

𝑞ଶଵ 𝑞ଶଶ
ቁ, and 𝐷 = ൬

𝑑ଵ

𝑑ଶ
൰, 

and 𝑋 is the “output matrix” (i.e., 𝑋 is a column matrix representing the 
equilibrium output levels in industry A and industry B), 𝑄  is the 
“technology matrix,” 𝐷 is the “final demand matrix,” and 𝐼 is the identity 
matrix.  
If 𝐼 − 𝑄 is invertible, then the solution for 𝑋 is given by 
𝑋 = (𝐼 − 𝑄)ିଵ𝐷, 
which is the optimum level of production for the given economic network, 
meaning that the given economic network must produce 𝑥ଵ million dollars 
of A (e.g., final goods) and 𝑥ଶ million dollars of B (e.g., energy) in order 
to meet both the internal demand and the external demand for A and B 
(and thus avoid both oversupplying and undersupplying the market with 
the corresponding commodities). 
 

The application of matrices in linear programming 
By the term “linear programming,” we mean a method to achieve the best 
outcome (e.g., to maximize profit, minimize cost, etc.) in a mathematical 
model whose requirements are represented by linear functions. The first 
contributions to linear programming are due to the Soviet mathematician 
and economist Leonid Vitaliyevich Kantorovich (1912–86), who won the 
Nobel Prize in Economics in 1975. Moreover, one of the acknowledged 
founders of linear programming is the American mathematician George 
Bernard Dantzig (1914–2005), who managed to make significant 
contributions to industrial engineering, operations research, economics, 
statistics, and computer science. In fact, input-output analysis is a special 
and very important case of linear programming. 
The “canonical form” of linear programming is the following: given a 
system of 𝑚 linear constraints (or linear inequalities) with 𝑛 variables, we 
wish to find non-negative values (i.e., ≥ 0) of these variables that will 
satisfy the constraints and will maximize a function of these variables; 
symbolically: given 𝑚 linear inequalities and/or equalities  
∑ 𝑎௜௝௝ 𝑥௝ ≤ 𝑏௜ , 𝑖 = 1,2, … , 𝑚, 𝑎𝑛𝑑 𝑗 = 1,2, … , 𝑛,                                      (∗) 
we wish to find those values of 𝑥௝ which satisfy the constraints (∗) and the 
condition that 𝑥௝ ≥ 0 (for 𝑗 = 1,2, … , 𝑛) and simultaneously maximize the 
linear function 
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𝑧 = ∑ 𝑐௝𝑥௝ , 𝑗 = 1,2, … , 𝑛.                                                                        (∗∗) 
For instance, consider a problem where we wish to maximize the gross 
profit of an industry (or of a firm offering several product lines) that 
produces 𝑛  commodities, and thus has 𝑛  sectors of production. In this 
case, (∗) and (∗∗) can be interpreted as follows: 𝑧  denotes an overall 
performance measure (specifically, total gross profit); 𝑥௝ denotes the level 
of activity 𝑗 (𝑗 = 1,2, … , 𝑛), specifically, the output of the 𝑗th sector of 
production (i.e., the produced quantity of the 𝑗th commodity); 𝑐௝ denotes 
the performance measure coefficient for activity 𝑗, specifically, the gross 
profit per unit of output in the 𝑗th sector of production (so that the total 
gross profit in the 𝑗th sector of production is 𝑐௝𝑥௝); 𝑏௜ denotes the available 
quantity of resource 𝑖  ( 𝑖 = 1,2, … , 𝑚 ); and 𝑎௜௝  denotes the quantity of 
resource 𝑖 consumed by each unit of activity 𝑗. 
In matrix form, the constrained maximization problem (∗∗) can be 
rewritten as follows: 

𝑧௠௔௫ = (𝑐ଵ 𝑐ଶ
… 𝑐௡) ∙ ቌ

𝑥ଵ
𝑥ଶ

⋮
𝑥௡

ቍ, 

under the constraints 

൮

𝑎ଵଵ
𝑎ଵଶ … 𝑎ଵ௡

𝑎ଶଵ
𝑎ଶଶ … 𝑎ଶ௡

⋮
𝑎௠ଵ

⋮ ⋱
𝑎௠ଶ …

⋮
𝑎௠௡

൲ ∙ ቌ

𝑥ଵ
𝑥ଶ

⋮
𝑥௡

ቍ ≤ ൮

𝑏ଵ

𝑏ଶ

⋮
𝑏௠

൲, 

and 
𝑥௝ ≥ 0 for 𝑗 = 1,2, … , 𝑛. More simply, given the above concepts, we can 
write: 

𝑚𝑎𝑥𝑧 = 𝑐𝑥
𝑢𝑛𝑑𝑒𝑟 𝑡ℎ𝑒 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠

𝐴𝑥 ≤ 𝑏
𝑥௝ ≥ 0

ቑ.                                                                    (∗∗∗) 

Regarding the geometric significance of (∗∗∗), notice that the constraints 
𝐴𝑥 ≤ 𝑏 and 𝑥௝ ≥ 0 define a convex polyhedron 𝑃௡  in ℝ௡ , and such 𝑃௡  is 
called the “feasible region” of the corresponding model, meaning the 
region of all the feasible solutions of the corresponding problem. In 
general, a polyhedron 𝑃௡ in ℝ௡ is the set of all points 𝑥 ∈ ℝ௡ that satisfy a 
finite set of linear inequalities. Moreover, a set 𝑄 in ℝ௡ is called “convex” 
if, for any two points 𝑥 and 𝑦 in 𝑄, the line segment joining them is also in 
𝑄; symbolically: ∀𝑥, 𝑦 ∈ 𝑄, the “convex combination” 𝑘𝑥 + (1 − 𝑘)𝑦 ∈
𝑄 for any 𝑘 such that 0 ≤ 𝑘 ≤ 1. The goal of constrained maximization in 
the context of linear programming is to choose that feasible combination 



A Mathematical Compendium with Applications  
 

75

(𝑥ଵ, 𝑥ଶ, … , 𝑥௡)  of actions that maximize a given function 𝑧 = 𝑐𝑥 . This 
occurs at the maximum (most extreme) point (𝑥ଵ

∗, 𝑥ଶ
∗, … , 𝑥௡

∗ ) of the feasible 
region. 
The constrained maximization problem (∗∗∗) is known as the “primal 
problem,” while the so-called “dual problem” is the corresponding 
constrained minimization problem where, given a system of 𝑚  linear 
constraints (linear inequalities) with 𝑛  variables, we wish to find non-
negative values (i.e., ≥ 0 ) of these variables that will satisfy the 
constraints and will minimize a function (e.g., a cost function) of these 
variables; symbolically: 

𝑚𝑖𝑛𝑧 = 𝑐𝑥
𝑢𝑛𝑑𝑒𝑟 𝑡ℎ𝑒 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠

𝐴𝑥 ≥ 𝑏
𝑥௝ ≥ 0

ൢ.                                                                  (∗∗∗∗) 

For instance, using the “dual problem,” we can create models of 
constrained cost minimization in economics and business management. 
Firms seek to minimize cost subject to the constraint that they produce at 
least 𝑏  units of output, so that the firm’s cost minimization problem is 
given by (∗∗∗∗). In general, linear programming is useful for guiding 
quantitative decisions in business planning, industrial engineering, and the 
social and physical sciences.  
  



Nicolas Laos 76

Chapter 4 
The Basic Equations of Money 

 
By the term “economy,” we refer to a system for making decisions about 
the use of limited resources so that goods and services can be produced 
and cosumed. By the term “market,” we refer to a system in which two or 
more parties participate in order to engage in economic transactions.  
According to the standard functional definition of “money,” four functions 
have been ascribed to money―namely: medium of exchange, unit of 
account, store of value, and standard of deferred payment. The stock of 
money held in an economy is held for various reasons: firstly, money is 
held in order to facilitate exchange (i.e., it is to be spent rather than saved), 
and, secondly, it may be held as an asset (i.e., to be saved rather than 
spent). 
If the supply of money falls below the level that is necessary to support the 
growth of the economy, then the growth of the economy will be held 
below its potential. On the other hand, if the supply of money is above the 
level that is necessary to support the potential growth of the economy in 
real terms, then the growth of the economy in money terms will be greater 
than the growth in real terms, and this, other things equal, will manifest 
itself in inflation. The “central bank” is a public institution that is 
responsible for implementing and managing the monetary policy of a 
country, or of a group of countries, and it controls the money supply.  
In an economy, there will always exist two groups of economic agents: (i) 
surplus units, namely, those whose revenue exceeds their current 
expenditure during a given period of time, and (ii) deficit units, namely, 
those whose expenditure exceeds their current revenue in a given period of 
time. Therefore, some mechanism is required to ensure that the surplus 
funds are channeled to the deficit units.  
The surplus units can lend their excess funds directly to the deficit units. 
For instance, a person can buy company or government securities through 
a public issue. However, it is very often the case that a surplus unit will 
lend its excess funds to a financial institution (“financial intermediary”), 
which will then on-lend these funds by itself, buying company stocks, 
government bonds, or other assets in which it invests. Thus, instead of a 
direct contractual relationship between the provider and the user of the 
funds, there are two contractual relationships: (i) the surplus unit lends to 
or acquires a financial claim on the financial intermediary, and (ii) the 
financial intermediary lends to or acquires a financial claim on the 
ultimate borrower, the user of the funds. Financial intermediation 
facilitates the reconciliation of the differing needs of lender and borrower 
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by means of: (i) maturity transformation (since a financial intermediary 
can borrow short and lend long), (ii) aggregation (i.e., by collecting 
together a large number of relatively small amounts), and (iii) risk 
transformation. The most important financial intermediaries are 
commercial banks, investment banks, insurance companies, mutual funds, 
hedge funds, pension funds, venture capitals, savings and loans 
associations, credit unions, mutual savings banks, and consumer finance 
companies.  
In economics, by the term “interest,” we refer to the profit return on 
investment. The money that is invested is called the “principal.” The 
percentage return per annum is called the “rate per cent.” Thus, if 𝑃 stands 
for the principal, 𝑇 stands for the time in years, 𝑅 stands for the rate per 
cent per annum, and 𝐼 stands for the interest, then 

𝐼 =
𝑃𝑅𝑇

100
 

where 𝑃 and 𝐼 must be in the same monetary units. This formula can be 
transposed to give 𝑃, 𝑅, and 𝑇 in terms of the other letters: 

𝑇 =
ଵ଴଴ூ

௉ோ
, 

𝑅 =
ଵ଴଴ூ

௉்
, and 

𝑃 =
ଵ଴଴ூ

ோ்
. 

Compound interest is different from simple interest in that the interest 
which is added also attracts interest. If a sum of 𝑃  monetary units is 
invested at 𝑟% per annum for 𝑛 years, then the value or amount after 𝑛 
years is 

𝑃 ቀ1 +
௥

ଵ଴଴
ቁ

௡

. 

For instance, the value of $2,500 invested at 5% compound interest after 
eight years (i.e., 𝑃 = $2,500, 𝑟 = 5, and 𝑛 = 8) will be 

𝑃 ቀ1 +
௥

ଵ଴଴
ቁ

௡

= $2,500 ቀ1 +
ହ

ଵ଴଴
ቁ

଼

= $3,693. 

The mathematical formula of compound interest is the following: assume 
that you borrow an amount 𝑃 of money (the “principal”) at an (annual) 
interest rate of  𝑟 > 0, and that, at the end of each year, you have to pay 
back a fixed amount (a “deposit”) 𝑑. Let 𝐴௡ be the total amount of money 
owed after 𝑛  years. The formula for computing 𝐴௡  in terms of 𝑃  (the 
principal of the loan), 𝑟  (the interest rate of the loan), and 𝑑  (the loan 
deposits) is the following (where 0 < 𝑟 ≤ 1): 

𝐴௡ = 𝐴௡ିଵ(1 + 𝑟) − 𝑑
= 𝑃(1 + 𝑟)௡ − 𝑑(1 + 𝑟)௡ିଵ − 𝑑(1 + 𝑟)௡ିଶ − ⋯
− 𝑑 
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= 𝑃(1 + 𝑟)௡ − 𝑑
(ଵା௥)೙ିଵ

(ଵା௥)ିଵ
⇔ 𝐴௡ = 𝑃(1 + 𝑟)௡ −

ௗ

௥
[(1 + 𝑟)௡ − 1], 𝑟 ≠ 0; 

so that the initial condition is 𝐴଴ = 𝑃; at the end of the first year, you owe 
𝑃 (the principal) plus an interest equal to 𝑟𝑃 minus the deposit you have 
agreed to pay each year. Therefore, 𝐴ଵ = 𝑃 + 𝑟𝑃 − 𝑑 = 𝑃(1 + 𝑟) − 𝑑; by 
analogy, at the end of the second year, you owe 𝐴ଶ = 𝐴ଵ(1 + 𝑟) − 𝑑 =
𝑃(1 + 𝑟)ଶ − 𝑑(1 + 𝑟) − 𝑑, etc. By allowing the owners of large sums of 
money to lend (that is, trade) money on interest, we give them power to 
immunize themselves against loss (in fact, this is the ultimate purpose of 
charging interest on loans: to immunize the lender of money against loss), 
while socializing loss and risks. Thus, we create an exceptionally 
privileged financial oligarchy.  
The net present value (NPV) of an investment project consists in 
calculating the amount by which the value of that investment project 
exceeds its cost. If 𝑖  is the interest rate (which, for convenience, is 
assumed to be fixed for the project under consideration), then the NPV is 
defined as follows:  

𝑁𝑃𝑉 =
𝑋ଵ

1 + 𝑖
+

𝑋ଶ

(1 + 𝑖)ଶ
+ ⋯ +

𝑋௡

(1 + 𝑖)௡
− 𝐶଴ 

where 𝑋௧ (𝑡 = 1,2, … , 𝑛) denotes the cash flow that corresponds to year 𝑡, 
𝐶଴  is the capital cost of the investment project in year 0, and 𝑛  is the 
lifetime (in years) of the investment project. Hence, according to the 
Nobel Prize-winning Italian-American economist Franco Modigliani and 
the American economist Merton Miller, under certain conditions (in 
particular, if we assume that there is total information transparency and 
total rationality), the intrinsic or real value of a company can be 
considered to be the net present value of all the investment projects of that 
company. Furthermore, if we divide the intrinsic or real value of a 
company by the total number of outstanding shares issued by that 
company, we can find the real or intrinsic value per share (for the given 
company).  
    Whereas the term “stock” means a share in the ownership of a company, 
the term “bond” means debt. In fact, a bond is a debt instrument issued for 
a period of more than one year with the purpose of raising capital by 
borrowing. By the term “maturity,” we mean the date on which a debt 
becomes due for payment. The “face value” (also known as the “par 
value” or “principal”) is the amount of money a holder of a fixed income 
security will receive back once the given security matures. The “coupon” 
is the amount that a holder of a fixed income security will receive as 
interest payments. The coupon is expressed as a percentage of the par 
value. “Yield” is a figure that shows the return one gets on a bond.  
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𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑌𝑖𝑒𝑙𝑑 =
𝑐𝑜𝑢𝑝𝑜𝑛 𝑎𝑚𝑜𝑢𝑛𝑡

𝑚𝑎𝑟𝑘𝑒𝑡 𝑝𝑟𝑖𝑐𝑒
 

(when we buy a bond at par, yield is equal to the coupon, and, when price 
changes, so does the yield). For instance, suppose that a bond has a par 
value of $1,000 and that its coupon rate is equal to 6%. Since the market 
price of a bond changes, an investor may purchase a bond at a discount 
(i.e., less than par value) or a premium (i.e., more than par value). In 
particular, if an investor buys this 6% coupon rate bond for a discount of 
$900 , then the investor earns an annual interest income of ($1,000 ×
6%) = $60, and the current yield is $60 $900 = 6.67%⁄ . Notice that the 
annual cash flow of $60 is fixed, regardless of the price paid for the bond. 
On the other hand, if an investor buys this 6% coupon rate bond at a 
premium of $1,100 , then the investor earns again an annual interest 
income of ($1,000 × 6%) = $60, but, in this case, the current yield is 
$60 $1,100 = 5.45%⁄ . 
A “zero-coupon bond” is a type of bond that makes no coupon payments 
but, instead, is issued at a considerable discount to par value. For instance, 
a zero-coupon bond with a $1,000 par value and ten years to maturity 
might be trading at $600. In case of a zero-coupon bond, 

𝑌 = ൬
𝑀

𝑃
൰

ଵ ே⁄

− 1 

where 𝑌 denotes the yield to maturity, 𝑀 denotes the value of the given 
zero-coupon bond at the time of maturity (i.e., the par value), 𝑃 denotes 
the price of this bond, and 𝑁 denotes the years to maturity.  
In general, as we have seen, when price goes up, yield goes down, and 
vice versa. The factor that influences a bond more than any other is the 
level of prevailing interest rates in the economy. When interest rates rise, 
the prices of bonds in the market fall, and, thus, we see an increase in the 
yield of the older bonds, which are brought into line with the newer bonds 
being issued with a higher coupon. On the other hand, when interest rates 
fall, the prices of bonds in the market rise, thereby lowering the yield of 
the older bonds and bringing them into line with the newer bonds being 
issued with a lower coupon. Moreover, another important factor that 
influences a bond is the issuer’s default risk. In fact, investors try to 
determine if the bond rating agencies are going to change the issuer’s 
rating. Rating changes may be prompted by changes in such factors as: 
financial ratios, Gross National Product, inflation, etc.  
In 1911, the American economist Irving Fisher expressed the “quantity 
theory of money” in what is known as the equation (actually, identity) of 
exchange: 

𝑀𝑉 = 𝑃𝑄 
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where 𝑀 is the quantity of money in the economy, 𝑉 is the velocity of the 
circulation of money (i.e., the amount of nominal Gross National Product 
each year divided by the money stock), 𝑃 is the general price level (i.e., 
the average value of each transaction), and 𝑄 is aggregate output (i.e., the 
physical volume of transactions during the given time period, so that 
𝐺𝑟𝑜𝑠𝑠 𝑁𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑃𝑟𝑜𝑑𝑢𝑐𝑡 = 𝑃𝑄 ). Thus, according to Fisher, if we 
assume that, at least in the short-run, both 𝑉 and 𝑄 are constant (given that 
the velocity of circulation is determined by institutional factors, such as 
the payments interval for wages, and 𝑄 is determined by the productive 
capacity of the economy), then a change in the money supply, 𝑀, results in 
an equal percentage change in the price level 𝑃. 
The previous equation implies that  

𝑀 =
𝑃𝑄

𝑉
 

and, since 𝑉  is (assumed to be) constant, 1 𝑉⁄  can be replaced by a 
constant 𝑘. Additionally, when the money market is in equilibrium, the 
demand for money, 𝑀ௗ, is equal to 𝑀. Hence,  

𝑀ௗ = 𝑘𝑃𝑄 
which means that, according to Fisher’s model, the demand for money is a 
function of income and does not depend on interest rates. 
However, in practice, the velocity of the circulation of money, 𝑉, is not 
constant, even in the short-run, and especially during periods of recession. 
Therefore, the English economist John Maynard Keynes extended Fisher’s 
equation of exchange by pointing out that there are three motives for 
holding money: (i) Transactions motive: money is a medium of exchange, 
and, as income rises, people conduct more transactions and hold more 
money. (ii) Precautionary motive: people hold money for emergencies, 
and money demand is again expected to rise with income. (iii) Speculative 
motive: money is also a way for people to store wealth, and, under the 
speculative motive, the demand for money is negatively related to the 
interest rate. Moreover, Keynes modeled the demand for money as the 
demand for the real (as opposed to the nominal) quantity of money (real 
balances), 𝑀 𝑃⁄ . According to Keynes, the demand for real money 
balances is a function of both income and interest rates: 

𝑀

𝑃
= 𝑓(𝑄, 𝑖) 

where 𝑄  denotes output or income and 𝑖  denotes the interest rate (and, 
hence, the velocity of the circulation of money fluctuates with the interest 
rate). 
The level of interest rates can indeed be treated as a monetary target, but it 
is important to determine the extent to which interest rates are a major 
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factor in decisions of either businesses, consumers, or governments. For 
instance, if an economy is characterized by important structural 
inefficiencies, then an increase in the supply of money (other things 
equal), instead of boosting economic growth, may lead to an increase in 
inflation and money incomes.  
Moreover, it is worth mentioning that central banks have at their disposal a 
number of policy instruments that can affect certain intermediate targets, 
such as the money supply, interest rates, etc. The three major instruments 
of monetary policy are: 

(i) Open market operations: this is the activity of a central bank 
in buying or selling government bonds to influence the 
money supply, interest rates, and bank reserves. In fact, if 
securities are bought (by the central bank), the money paid 
out by the central bank increases commercial-bank reserves, 
and the money supply increases. On the other hand, if 
securities are sold (by the central bank), then money supply 
decreases. 

(ii) Discount-rate policy: given that the discount rate is the 
interest rate charged by the central bank on a loan that it 
makes to a commercial bank, it follows that the central bank 
can increase the discount rate to reduce the money supply, 
whereas the central bank can reduce the discount rate to 
increase the money supply.  

(iii) Reserve-requirements policy: by the term “required 
reserves,” we mean that portion of deposits that a bank sets 
aside in the form of vault cash or non-interest-earning 
deposits with the central bank. In fact, if the central bank 
wants to tighten money overnight, then it can raise reserve 
requirements, whereas, if the central bank wants to ease 
credit conditions (and, thus, increase the money supply), then 
it can cut reserve requirements.  
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Chapter 5 
Probability and Statistics 

 
First of all, it should be clarified that, by the term “quantitative analysis,” 
we mean the study of phenomena by means and on the basis of any type of 
quantitative information. Such an inquiry takes place by applying suitable 
methods that determine the nature of the available information and the 
phenomena under consideration. Quantitative methods mainly include 
methods that derive from mathematical analysis, mathematical 
programming, probability theory, and statistics.  
In fact, statistics emerged from the constant efforts of humankind to deal 
with situations of uncertainty in which they lived. In these situations, the 
element of luck always appeared as a key determining factor which 
prevented the identification of the existence of systematicness in the 
manifestations of various phenomena and in the formulation of relations 
between them. Aristotle was the first philosopher to offer a systematic 
account of “luck” and to include it as a significant topic in both physics 
and ethics (Aristotle, Physics, 2:4–6, and Metaphysics, 7:7–9). A method 
is called statistical if it relates facts and hypotheses of some kind. Hence, 
statistics investigates and develops methods for evaluating hypotheses in 
reference to empirical facts.  
In general, luck is involved in all things where actors do not hold full 
control over the outcome of action. One of the basic attributes of the 
statistical method is the fact that it refers to properties of populations 
instead of individual cases. Statistics examines a unit only in its capacity 
as a member of a population. The statistical method can be applied to any 
problem related to the definition of overall behavior, based on individual 
observations expressed numerically. The concept of luck is commonly 
used in statistics in order to display all the possible outcomes given a very 
large sample and the probability of each outcome. In science, 
“probabilities,” often called chances or stochastic processes, are relative 
frequencies in series of events, or tendencies or propensities in the systems 
that give rise to those events. The “frequency” is the number of times each 
measurement occurs.  
Probability theory is primarily concerned with the issue of uncertainty. In 
fact, “probability,” usually denoted by 𝑝 , is a quantitative measure of 
uncertainty. It is a number between 0 and 1, where 0 indicates 
impossibility and 1 indicates certainty. Assume that we take any very large 
number, 𝑁, out of a series of cases in which an event, 𝐴, is in question, and 
that 𝐴 happens on 𝑝𝑁 occasions (where 0 ≤ 𝑝 ≤ 1). The probability of the 
event 𝐴  is said to be 𝑝  (the certainty of the corresponding proposition 
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increases as the number 𝑁  of specimen cases selected increases). 
Furthermore, the following corollaries and extensions may be added to the 
aforementioned definition of a probability: (i) If the probability of an event 
is 𝑝, then, out of 𝑁 cases in which it is in question, it will happen 𝑝𝑁 
times, where 𝑁 is any very large number (where 0 ≤ 𝑝 ≤ 1). (ii) If the 
probability of an event is 𝑝, then the probability of its failing is 1 − 𝑝. 
Probability theory is based on set theory. By the term “experiment,” we 
mean a process that leads to one of several possible outcomes. By the term 
“outcome,” we mean an observation or measurement. The “sample space” 
is the set of all possible outcomes of an experiment. An “event” is a subset 
of a sample space―or, in other words, a set of basic outcomes. Thus, we 
say that the event “occurs” if the corresponding experiment gives rise to a 
basic outcome belonging to the event. Therefore, we obtain the following 
formula:  

𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑒𝑣𝑒𝑛𝑡 𝐴 =
௡(஺)

௡(ௌ)
, 

where 𝑛(𝐴) is the number of elements in the set of the event 𝐴, and 𝑛(𝑆) 
is the number of elements in the sample space 𝑆. For instance, roulette as it 
is played in Las Vegas or Atlantic City consists of a wheel that has 36 
numbers, numbered 1 through 36, and the numbers 0 and 00 (double zero). 
Therefore, in this case, the sample space, 𝑆, consists of 38 numbers, and 
the probability of winning a single number that you bet is 𝑃 = 1/38.  
When the sets corresponding to two events are disjoint (their intersection 
is the empty set), then these events are called “mutually exclusive.” 
The axiomatic definition of probability is the following: Let 𝐸 be a space 
of elementary events (i.e., the space of outcomes of experiments, or the 
space of states of a system, since the state of a system can be construed as 
the outcome of an experiment). The “probability of an event” 𝐴 ⊆ 𝐸 is 
denoted by 𝑝(𝐴), and it is defined as a single number that corresponds to 
𝐴 and has the following properties: 

(P1) 𝑝(𝐴) ≥ 0; 
(P2)  for each pair of mutually exclusive events, 𝐴, 𝐵 ⊆ 𝐸, it holds 

that 
𝑝(𝐴 ∪ 𝐵) = 𝑝(𝐴) + 𝑝(𝐵); 

(P3) 𝑝(𝐸) = 1  (i.e., the total probability, after adding all 
possibilities, is equal to one). 

Remark: For each 𝐴, 𝐵 ⊆ 𝐸 , 𝑝(𝐴 ∪ 𝐵) = 𝑝(𝐴) + 𝑝(𝐵) − 𝑝(𝐴 ∩ 𝐵); but, 
in case 𝐴 and 𝐵 are mutually exclusive, it holds that 𝑝(𝐴 ∩ 𝐵) = 0, so we 
obtain (P2).  
By the term “conditional probability,” we mean the probability of event 𝐴 
conditional upon the occurrence of event 𝐵. Assume that we investigate 
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the probability of an event 𝐴  given that we know that an event 𝐵  has 
occurred, and that event 𝐵  influences the probability of event 𝐴 . The 
“conditional probability” of event 𝐴  given the occurrence of event 𝐵  is 
defined as the quotient of the probability of the intersection of 𝐴 and 𝐵 
over the probability of event 𝐵; symbolically: 

𝑃(𝐴|𝐵) =
௉(஺∩஻)

௉(஻)
, 

assuming that 𝑃(𝐵) ≠ 0. The aforementioned formula for the computation 
of conditional probability is known as Bayes’s Law, since it was originally 
formulated by the eighteenth-century English statistician and philosopher 
Thomas Bayes. Notice that 𝐴 is independent of 𝐵 if 𝑃(𝐴|𝐵) = 𝑃(𝐴); that 
is, knowing that 𝐵  occurred does not change the probability that 𝐴 
occurred. Thus, according to Bayes’s Law, two events 𝐴  and 𝐵  are 
independent of each other if and only if 
𝑃(𝐴 ∩ 𝐵) = 𝑃(𝐴)𝑃(𝐵). 
Bayes’s Law provides a method of revising existing predictions or theories 
(specifically, updating probabilities) given new additional evidence. In 
fact, Bayes’s Law implies that the interpretation of any risk assessment 
depends on an estimate of the base rate, and the corresponding base rate, 
which is never known with complete certainty at the time of the 
assessment, is a Bayesian “prior probability.” 
Probability theory has several significant applications in the natural 
sciences and in the social sciences. For instance, in genetics, probability is 
a measurement tool that helps us to predict the chances of an offspring 
being inherited with a particular trait of interest (assuming Mendel’s laws 
of inheritance). The sum law helps us to find the probability of two or 
more events occurring as long as they are mutually exclusive. The product 
law helps us to find the probability of two or more events occurring as 
long as they are independent of each other. Moreover, probability theory 
helps us to estimate the chances of success or failure of a business project, 
an investment, or product launch.  
One of the most important methods that is used to discover, describe, and 
explain “typical” behavior of mass data is the “arithmetic mean.” The 
formula is 

𝑋ത =
∑ 𝑋௜

ே
௜ୀଵ

𝑁
 

where 𝑋ത denotes the arithmetic mean, ∑ 𝑋௜
ே
௜ୀଵ  denotes the summation of 

the values of the individual observations 𝑋௜  under consideration ( 𝑖 =
1,2, … , 𝑁), and 𝑁 is the total number of items in the series that have been 
summated. It is worth noticing that arithmetic means are often “weighted” 
averages, in the sense that, when averaging values, it is sometimes 
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logically necessary to assign more importance to some than to others (by 
multiplying each value with a suitable statistical weight), so that particular 
values may be more influential in determining the “typical” value than 
others. Formally, the weighted arithmetic mean of a non-empty finite set 
of data {𝑋ଵ, 𝑋ଶ, … , 𝑋ே}  with corresponding non-negative weights 
{𝑤ଵ, 𝑤ଶ, … , 𝑤ே} is 

𝑋ത =
∑ 𝑤௜𝑋௜

ே
௜ୀଵ

∑ 𝑤௜
ே
௜ୀଵ

=
𝑤ଵ𝑋ଵ + 𝑤ଶ𝑋ଶ + ⋯ + 𝑤ே𝑋ே

𝑤ଵ + 𝑤ଶ + ⋯ +𝑤ே

 

(the weights can be in the form of decimals, whole numbers, percentages, 
etc.). For instance, if 𝑥ଵ, 𝑥ଶ, 𝑥ଷ, …  are the measured observations and 
𝑓ଵ, 𝑓ଶ, 𝑓ଷ, … are the corresponding frequencies, then the arithmetic mean is 

𝑥̅ =
𝑓ଵ𝑥ଵ + 𝑓ଶ𝑥ଶ + 𝑓ଷ𝑥ଷ + ⋯

𝑓ଵ + 𝑓ଶ + 𝑓ଷ + ⋯
 

(this is the arithmetic mean of a frequency distribution). Moreover, notice 
that a consumer price index (CPI) is typically calculated as a weighted 
average of the price change of the goods and services covered by the index 
(in this case, the weights are meant to reflect the relative importance of the 
goods and services as measured by their shares in the total consumption of 
households).  
Whereas the mean is the average value of a set of data, the median is the 
middle value in a set of data (so that we find the median by dividing the 
observations by two, and, if the number of observations is odd, we round 
that number up). The mode is the value that appears most frequently in a 
set of data.  
By the term “probability distribution,” we mean a statistical function that 
describes all the possible values and likelihoods that a random variable can 
take within a given range. A probability distribution is called a “normal 
distribution,” or a “Gaussian distribution,” if it is symmetric about the 
mean, showing that data near the mean are more frequent in occurrence 
than data far from the mean. In the normal distribution, its mean (average), 
median (midpoint), and mode (most frequent observation) are all equal to 
each other; and these values all represent the peak, or highest point, of the 
distribution. In graphical form, the normal distribution appears as a “bell 

curve”:  
In other words, the “normal curve” is bell-shaped and perfectly symmetric 
(centered on the mean). 
One of the most important methods that are used to discover, describe, and 
explain “risk” or “uncertainty” is the “standard deviation,” which is a 
quantity expressing by how much the members of a database (i.e., the data 
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under consideration) differ from the arithmetic mean of the given 
database. The formula is: 

𝜎 = ඨ
∑ 𝑥௜

ଶே
௜ୀଵ

𝑁
 

where: firstly, we calculate the arithmetic mean 𝑋ത of the values 𝑋௜  (𝑖 =
1,2, … , 𝑁) under consideration; secondly, we record the deviation of each 
value 𝑋௜  from the arithmetic mean, namely, 𝑥௜ = 𝑋௜ − 𝑋ത ; thirdly, we 
square these deviations (we compute 𝑥௜

ଶ ); fourthly, we summate the 
squared deviations and divide by 𝑁  (thus finding the “variance” of our 
data); fifthly, we extract the square root to obtain 𝜎 . However, the 
aforementioned formula for the standard deviation is used when 𝑁 is the 
entire population of the species or kind under consideration; if we do not 
have the entire population, we use the following formula for the standard 
deviation: 

𝑠 = ඨ
∑ (𝑋௜ − 𝑋ത)ଶ௡

௜ୀଵ

𝑛 − 1
 

where 𝑛 is the size of the sample (i.e., the number of the point data that are 
contained in the database that we use), 𝑋௜ is the 𝑖th point of the sample 
(𝑖 = 1,2, … , 𝑛), and 𝑋ത is the arithmetic mean of the sample (namely, of the 
database that we use). 
The normal curve’s standard deviation tells us what percentage of 
observations falls within a specific distance from the mean: When we have 
a normal curve, the area below the curve contains 100%  of all 
observations; 68% of all observations fall within one standard deviation 
from the mean; 95% of all observations fall within about two standard 
deviations from the mean; and 99% of all observations fall within about 
three standard deviations from the mean.  
When we have two sets of data and we want to find how strong a 
relationship is between them, we use Pearson’s correlation coefficient 
(PCC), also known as Pearson’s 𝑟. In other words, PCC calculates the 
level of change in one variable due to the change in the other. When 
applied to a sample of the variables 𝑥  and 𝑦 , PCC is commonly 
represented by 𝑟௫௬.  
Given paired data  
{(𝑥ଵ, 𝑦ଵ), … , (𝑥௡ , 𝑦௡)}, consisting of 𝑛 pairs, 𝑟௫௬ is defined as follows: 

𝑟௫௬ =
∑ (𝑥௜ − 𝑥̅)(𝑦௜ − 𝑦ത)௡

௜ୀଵ

ඥ∑ (𝑥௜ − 𝑥̅)ଶ௡
௜ୀଵ ඥ∑ (𝑦௜ − 𝑦ത)ଶ௡

௜ୀଵ

 

where: 
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𝑛 is the sample size, 
𝑥௜ are the values of the 𝑥-variable in the sample, 
𝑥̅ is the mean of the values of the 𝑥-variable, 
𝑦௜  are the values of the 𝑦-variable in the sample, and 
𝑦ത is the mean of the values of the 𝑦-variable. 
PCC returns values between −1 and 1, symbolically, 
−1 ≤ 𝑟௫௬ ≤ 1, 
where: 
1 indicates a strong (actually, perfect) positive relationship, 
−1 indicates a strong (actually, perfect) negative relationship, and 
a result of zero indicates no relationship at all. In general, a positive 
correlation between two variables means that both the variables move in 
the same direction, whereas a negative correlation between two variables 
means that both the variables move in opposite directions. 
For instance, in biology, the relation between independent or the predictor 
variables and outcome or the dependent variable is explored using 
correlation analysis. In this way, one can explain how the risk factors or 
the predictor variables account for the possibility of the occurrence of a 
disease or presence of a phenotype. The disease outcome or the dependent 
variable is associated with biological factors (e.g., age and gender), 
lifestyle variables, psychological variables, and genetic factors (genetic 
mutations), and correlation tests help us to understand such “risk factors–
disease” relationships. Moreover, correlation is an important part of 
statistical analysis in economics and social policy, and it helps us to 
understand economic and social phenomena and trends.  
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Chapter 6 
Classical Euclidean Geometry, Analytic Geometry,  

and Trigonometry  
 
Geometry is the scientific study of the quantitative and the qualitative 
properties of spatial forms and relations (the criteria for equality of 
triangles provide instances of qualitative geometric knowledge, and the 
computation of lengths, areas, and volumes exemplifies quantitative 
geometric knowledge). 
Around 300 B.C.E., Euclid published the definitive treatment of Greek 
geometry and number theory in his thirteen-volume Elements, building on 
the experience and the achievements of previous Greek mathematicians: 
on the Pythagoreans for Books I–IV, VII, and IX, on Archytas for Book 
VIII, on Eudoxus for Books V, VI, and XII, and on Theaetetus for Books 
X and XIII. The axiomatic method used by Euclid is the prototype for the 
entire field of “pure mathematics,” which is “pure” in the sense that we 
need only pure thought, no physical experiments, in order to verify that the 
statements are correct―that is, we need only to check the reasoning in the 
demonstrations. All mathematical theorems are conditional 
statements―namely, statements of the form  
If  (hypothesis) then (conclusion). 
Put simply, one condition (hypothesis) implies another (conclusion). In 
particular, in a given mathematical system, the only statements that are 
called “theorems” are those statements for which a proof has been 
supplied. By a “proof,” we mean a list of statements that is endowed with 
a justification for each statement, and it ends up with the conclusion 
desired. The following are the six types of justifications allowed for 
statements in proofs: (i) “by hypothesis . . .”; (ii) “by axiom . . .”; (iii) “by 
theorem . . .”; (iv) “by definition . . .”; (v) “by step . . .”; (vi) “by rule . . . 
of logic”; and a justification may involve several of the aforementioned 
types.  
In particular, Euclid articulated: 

i. A set of definitions, such as the following: 
 A point is that which has no part or magnitude (i.e., it does not 

have a concrete size). 
 A line is length without breadth.  
 The ends of a line are points. A straight line is a line that lies 

evenly with the points on itself.  
 A surface is that which has length and breadth only. 
 The edges of a surface are lines.  
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 A plane surface is a surface that lies evenly with the straight 
lines on itself. 

ii. A set of fundamental rules (axioms): 
 Things that are equal to the same thing are equal to each other. 
 If equals are added to equals, then the wholes are equal. 
 If equals are subtracted from equals, then the remainders are 

equal. 
 Things that coincide with each other are equal to each other. 
 The whole is greater than the part. 
 Things that are double of the same things are equal to each 

other. 
 Things that are halves of the same things are equal to each 

other. 
iii. A set of fundamental propositions (postulates): 

 Postulate 1: a straight line may be drawn from one point to any 
other point. Given two distinct points, there is a unique straight 
line that passes through them.  

 Postulate 2: a terminated straight line can be produced 
indefinitely. 

 Postulate 3: a circle can be drawn with any center and any 
radius. 

 Postulate 4: all right angles are equal to each other. 
 Postulate 5 (known as the Parallel Postulate): if a line segment 

intersects two straight lines forming two interior angles on the 
same side that sum to less than two right angles, then the two 
lines, if extended indefinitely, meet on that side on which the 
angles sum to less than two right angles. 

According to Euclidean geometry, space is three-dimensional and 
isotropic (i.e., it has the same value when measured in different 
directions). This scientific conception of space clashes with several 
mythical and folk perceptions of space, according to which space is 
connected with a form of temporality, and it is unisotropic (for instance, 
the “upward” and the “forward” directions are evaluated as superior to the 
“downward” and the “backward” directions). The Euclidean perception of 
space, combined with the concept of gravity, found its fullest expression in 
Isaac Newton’s calculus and mechanics.  
In view of Euclid’s geometric treatises and the subsequent development of 
geometry as a scientific discipline, geometry is “an axiomatic in which we 
ignore all representation, and in which the word ‘space’ designates a 
structure, i.e., a system of axioms and deductions” (Saddo Ag Almouloud, 
“Demonstration in Geometry: Historical and Philosophical Perspectives,” 
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Quantitative Research Journal, vol. 8, Special Edition: Philosophy of 
Mathematics, 2020, p. 562). In other words, in mathematics, by the term 
“space,” we mean a non-empty set endowed with some mathematical 
structure. In general, in mathematics, the term “structure” refers to a class 
of mathematical objects described by axioms. Moreover, sometimes 
mathematicians use the term “structure” in order to refer to the description 
of the way in which an object could be reconstructed from simpler objects 
of the same kind.   
 

Euclidean Geometry 
The two most basic geometric concepts are those of an angle and of a 
straight line. An angle may be considered to be an amount of a rotation or 
turning. In Figure 4, the line 𝑂𝐴  has been rotated about 𝑂  in an anti-
clockwise direction, until it takes up the position 𝑂𝐵. The angle through 
which the line has turned is the amount of opening between the lines 𝑂𝐴 
and 𝑂𝐵. If the line 𝑂𝐴 is rotated until it returns to its original position, 
then it will have described one revolution. Angles are usually measured in 
degrees, minutes, and seconds as follows: 60 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 = 1 𝑚𝑖𝑛𝑢𝑡𝑒 , 
60 𝑚𝑖𝑛𝑢𝑡𝑒𝑠 = 1 𝑑𝑒𝑔𝑟𝑒𝑒 , and 360 𝑑𝑒𝑔𝑟𝑒𝑒𝑠 = 1 𝑟𝑒𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛 . For 
instance, an angle of 32 degrees 18 minutes and 3 seconds is written as 

follows: 32ఖ18ᇱ3ᇱ′ . A “right angle” is the 
ଵ

ସ
th of a revolution, and, 

therefore, it contains 90ఖ. An “acute angle” is less than 90௢. An “obtuse 
angle” lies between 90௢ and 180௢. A “reflex angle” is greater than 180௢. 
“Complementary angles” are angles whose sum is 90௢. “Supplementary 
angles” are angles whose sum is 180௢. 
 
Figure 4: An angle. 

 
 
While we usually measure angles in degrees, we can also measure angles 
in radians. Referring to Figure 5,  

𝑎𝑛𝑔𝑙𝑒 𝑖𝑛 𝑟𝑎𝑑𝑖𝑎𝑛𝑠 =
𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑎𝑟𝑐

𝑟𝑎𝑑𝑖𝑢𝑠 𝑜𝑓 𝑐𝑖𝑟𝑐𝑙𝑒
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so that 𝜃 𝑟𝑎𝑑𝑖𝑎𝑛𝑠 =
௟

௥
⇔ 𝑙 = 𝑟𝜃. 

 
Figure 5: Measuring angles in radians. 
 

 
 
In geometry, the abstraction of a straight line can be attributed to 
mathematical intuition. According to the ancient Greek mathematician 
Euclid, an arbitrary straight line can be construed as a “length without 
breadth” that is perceived as a whole. Furthermore, there are points on 
every straight line, each point on the straight line corresponds to a real 
number, and the straight line is complete. For this reason, it is known as 
the arithmetic or geometric continuum. In fact, the ancient Greek 
mathematicians’ awareness of the existence of real numbers was 
developed with reference to geometric processes, in the sense that they 
construed a real number either as a completed process of combining units 
or monads (that is, as a rational number) or as an incomplete process of 
measuring non-commensurable quantities (that is, as an irrational number). 
Properties of angles and straight lines: 

i. The total angle of a straight line is 180௢. 
ii. When two straight lines intersect, the opposite angles are equal, as 

shown in Figure 6, where ∠𝐴 = ∠𝐶 and ∠𝐵 = ∠𝐷. 
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Figure 6: Opposite angles formed by intersecting straight lines. 

 
 

iii. If two parallel lines are cut by a transversal, then, as shown in 
Figure 7: the corresponding angles are equal (i.e., 𝑎 = 𝑙, 𝑏 = 𝑚, 
𝑐 = 𝑝, and 𝑑 = 𝑞); the alternate angles are equal (i.e., 𝑑 = 𝑚 and 
𝑐 = 𝑙); and the interior angles are supplementary (i.e., 𝑑 + 𝑙 =
180௢ and 𝑐 + 𝑚 = 180௢). Conversely, if two straight lines are cut 
by a transversal, the lines are parallel if one of the following is 
true: two corresponding angles are equal; two alternate angles are 
equal; two interior angles are supplementary.  

 
Figure 7: Angles formed by two parallel lines cut by a transversal. 

 
Types of triangles on the basis of their angles and their sides: 

i. An “acute-angled” triangle has all its angles less than 90௢. 
ii. A “right-angled” triangle has one of its angles equal to 90௢. The 

side opposite to the right angle is the longest side, and it is called 
the “hypotenuse.” 

iii. An “obtuse-angled” triangle has one angle greater than 90௢. 
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iv. A “scalene” triangle has all three sides of different length. 
v. An “isosceles” triangle has two sides and two angles equal. The 

equal angles lie opposite to the equal sides. 
vi. An “equilateral” triangle has all its sides and angles equal. Each 

angle of an equilateral triangle is equal to 60௢. 
Angle properties of triangles: 
i. The sum of the angles of a triangle is equal to 180௢ 
ii. In every triangle, the greatest angle is opposite to the longest side, 

and the smallest angle is opposite to the shortest side. Moreover, 
in every triangle, the sum of the lengths of any two sides is always 
greater than the length of the third side. 

iii. When the side of a triangle is produced, the exterior angle so 
formed is equal to the sum of the opposite interior angles. For 
instance, in Figure 8, ∠𝜃 = ∠𝐴 + ∠𝐵. 

 
Figure 8: Exterior angle. 

 
 

iv. In an isosceles triangle, the perpendicular (drawn from the point 
where the two equal sides meet) to the base bisects the angle 
between the two equal sides. Moreover, it bisects the base of the 
triangle. 

Two triangles are said to be “congruent” if they are equal in every respect, 
both with regard to their corresponding angles and to their corresponding 
sides. If one side and two angles in one triangle are equal to one side and 
two similarly located angles in another triangle, then these triangles are 
congruent. Moreover, if two sides and the angle between them in one 
triangle are, respectively, equal to two sides and the angle between them in 
another triangle, then these triangles are congruent. Given two right-
angled triangles, if their hypotenuses are equal to each other and one other 
side in each triangle are also equal to each other, then these right-angled 
triangles are congruent. 
Two triangles are said to be “similar” if they are equi-angular. Two 
triangles are equi-angular if and only if their corresponding sides are 
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proportional. For instance, a triangle △ 𝐴𝐵𝐶  and a triangle △ 𝑋𝑌𝑍  are 
equi-angular if and only if 
஺஻

௑௒
=

஺஼

௑௓
=

஻஼

௒௓
. 

Areas of triangles: The area of any triangle is: 

𝑎𝑟𝑒𝑎 =
ଵ

ଶ
× 𝑏𝑎𝑠𝑒 × ℎ𝑒𝑖𝑔ℎ𝑡. 

Triangles having equal bases and equal heights are equal in area. 
Moreover, the areas of congruent triangles are equal. 
One of the most important geometric theorems is the Pythagorean 
Theorem, which states that, in every right-angled triangle, the square of 
the hypotenuse is equal to the sum of the squares of the other two sides. As 
mentioned earlier, the Pythagorean Theorem led Greek mathematicians to 
prove the existence of irrational numbers. The Pythagorean Theorem can 
be proved in an algebraic way, using the concept of a locus, as follows. 
Pythagorean Theorem: Consider a right-angled triangle △ 𝐴𝐵𝐶 , whose 
hypotenuse is 𝑐 , and whose other two sides are 𝑎  and 𝑏 , as shown in 
Figure 9. Then  
𝑎ଶ + 𝑏ଶ = 𝑐ଶ.  
Proof: Given the triangle shown in Figure 9, we create four triangles 
identical to it, and we use them in order to form a square with side lengths 
𝑎 + 𝑏 as shown in Figure 10. The area of this square is  
𝐴 = (𝑎 + 𝑏)(𝑎 + 𝑏).  
 
Figure 9: A right-angled triangle. 
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Figure 10: Proof of the Pythagorean Theorem. 
 

 
 
In Figure 10, inside the big square, the hypotenuses of the four identical 
triangles form another smaller square, whose area is equal to 𝑐ଶ. Each of 

the four triangles has an area of 
௔௕

ଶ
. In general, notice that, given an 

arbitrary rectangle 𝐴𝐵𝐶𝐷 whose height is ℎ, and whose base is 𝑏, its area 
is equal to ℎ𝑏 . Therefore, if we draw a diagonal from one vertex, say 
diagonal 𝐴𝐶 , it will break the rectangle into two congruent, or equal, 
triangles, and the area of each of these triangles is half the area of the 

rectangle, that is, 
௛௕

ଶ
. The area of all four of the triangles that are shown in 

Figure 10 is equal to 4
௔௕

ଶ
= 2𝑎𝑏 . Adding up the areas of the smaller 

square and of the four triangles, we obtain  
𝐴 = 𝑐ଶ + 2𝑎𝑏. 
Hence, given that, as we have shown, 𝐴 = (𝑎 + 𝑏)(𝑎 + 𝑏), it holds that 
(𝑎 + 𝑏)(𝑎 + 𝑏) = 𝑐ଶ + 2𝑎𝑏 ⇔ 𝑎ଶ + 𝑏ଶ = 𝑐ଶ.■ 
 

Quadrilaterals and Polygons 
A “quadrilateral” is any four-sided figure. Given that a quadrilateral can be 
split up into two triangles, the sum of its angles is 360௢.  
A “parallelogram” has both pairs of opposite sides parallel. If the base of a 
parallelogram is equal to 𝑏 and its height is equal to ℎ, then its area is 
given by the following formula: 𝐴 = 𝑏ℎ . Parallelograms having equal 
bases and equal heights are equal in area. A parallelogram has the 
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following properties: (i) the sides that are opposite to each other are equal 
in length; (ii) the angles that are opposite to each other are equal; (iii) the 
diagonals bisect each other; (iv) the diagonals each bisect the 
parallelogram.  
A “rectangle” is a parallelogram with all its angles equal to 90௢. If the 
length of a rectangle is equal to 𝑙 and its width is equal to 𝑤, then its area 
is equal to 𝑙𝑤, and its perimeter is equal to 2𝑙 + 2𝑤. A rectangle has all 
the properties of a parallelogram, but the diagonals are equal in length. 
A “rhombus” is a parallelogram with all its sides equal in length. It has all 
the properties of a parallelogram, but in addition it has the following 
properties: (i) the diagonals bisect at right angles; (ii) the diagonal bisects 
the angle through which it passes.  
A “square” is a rectangle with all its sides equal in length. If the length of 
each side of a square is equal to 𝑎, then its area is equal to 𝑎ଶ, and its 
perimeter is equal to 4𝑎. A square has all the properties of a parallelogram, 
a rectangle, and a rhombus.  
A “trapezoid” is a quadrilateral having only one pair of parallel sides (as 
opposed to a parallelogram, which has both pairs of opposite sides 
parallel). The parallel sides are called the “bases” of the trapezoid, while 
the other two sides are called the “legs” of the trapezoid. If the bases 
(parallel sides) of a trapezoid are equal to 𝑎 and 𝑏, respectively, and if its 

height is equal to ℎ, then its area is equal to 
ଵ

ଶ
ℎ(𝑎 + 𝑏). 

 
Analytic Geometry and Trigonometric Functions  

Analytic geometry signifies the introduction of coordinates into geometry in 
a systematic way―specifically, by unifying aspects of algebra and aspects 
of geometry. The development of analytic geometry through the 
algebraization of geometry set the stage for the development of 
infinitesimal calculus. The first pioneers of analytic geometry were the 
second-century B.C.E. Greek astronomer and mathematician Hipparchus 
of Nicaea, who introduced coordinates for the sphere (in the context of his 
studies of the night sky), and the third-century B.C.E. Greek geometer 
Apollonius of Perga, who introduced coordinates for the study of conic 
sections.  
Ancient Greek mathematicians, such as Apollonius of Perga, were the first 
to observe that circles, ellipses, hyperbolas, and parabolas result from the 
intersection of a cone by an adequate plane. A cone is defined to be a 
three-dimensional geometric shape that tapers smoothly from a flat 
circular base to a point called the vertex (or apex). A circle is produced 
when the cone is cut by a plane that is parallel to the base of the cone. An 
ellipse is produced when the cone is cut by a plane that is not parallel to 
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the base of the cone or the side of the cone, and it cuts only one nappe of 
the cone. A hyperbola is produced when the intersecting plane cuts both 
nappes of the cone. A parabola is produced when the oblique section of the 
cone is parallel to the slant height (the height of a cone from the vertex to 
the periphery, rather than the center, of the base). In the Middle Ages, the 
use of coordinates in mathematics and analytic geometry was further 
analyzed and developed by the fourteenth-century French philosopher and 
mathematician Nicolas d’Oresme.  
By the term “locus,” we mean a set of all the points that satisfy a specific 
rule. Moreover, the path drawn by a point moving according to a given 
rule is called the “locus of the point.” Thus, using the concept of a locus, 
we can study geometric problems through algebra. In analytic geometry, 
we put traditional (Euclidean) geometry on the Cartesian plane. René 
Descartes has pointed out that “any problem in geometry can easily be 
reduced to such terms that knowledge of lengths of certain straight lines is 
sufficient for its construction” (René Descartes, “On Analytic Geometry,” 
translated by David E. Smith and Marcia L. Latham, in A Source Book in 
Mathematics, edited by David E. Smith, New York: Dover, 1959, p. 397). 
In particular, according to Descartes, “just as arithmetic consists of only 
four or five operations, namely, addition, subtraction, multiplication, 
division, and the extraction of roots, which may be considered a kind of 
division, so in geometry,” we can find required lines by merely adding or 
subtracting other lines; or else, by working as follows (ibid, pp. 397–98): 
 

. . . taking one line which I shall call unity in order to relate it as closely as 
possible to numbers, and which can in general be chosen arbitrarily, and 
having given two other lines, to find a fourth line which shall be to one of 
the given lines as the other is to unity (which is the same as multiplication); 
or, again, to find a fourth line which is to one of the given lines as unity is 
to the other (which is equivalent to division); or, finally, to find one, two, 
or several mean proportionals between unity and some other line (which is 
the same as extracting the square root, cube root, etc., of the given line). 

 
Consider two points 𝑃(𝑥ଵ, 𝑦ଵ) and 𝑄(𝑥ଶ, 𝑦ଶ) on the 𝑥𝑦-plane and connect 
them with a straight line segment as shown in Figure 11.  
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Figure 11: Slope and Distance. 
 

 
 
The 𝑥-coordinate of point 𝑃 is 𝑥ଵ, the 𝑥-coordinate of point 𝑄 is 𝑥ଶ , and 
the distance between 𝑥ଵ and 𝑥ଶ is 𝑥ଶ − 𝑥ଵ; in order to avoid the use of plus 
and minus signs, we can use the absolute value |𝑥ଶ − 𝑥ଵ| . The 𝑦 -
coordinate of point 𝑃  is 𝑦ଵ , the 𝑦-coordinate of point 𝑄  is 𝑦ଶ , and the 
distance between 𝑦ଶ and 𝑦ଵ is 𝑦ଶ − 𝑦ଵ; in order to avoid the use of plus 
and minus signs, we can use the absolute value |𝑦ଶ − 𝑦ଵ|. Therefore, the 
horizontal distance between points 𝑃  and 𝑄  is 𝑥ଶ − 𝑥ଵ , and the vertical 
distance between points 𝑃  and 𝑄  is 𝑦ଶ − 𝑦ଵ . Now, consider the right-
angled triangle that is defined by the points 𝑃(𝑥ଵ, 𝑦ଵ), 𝑄(𝑥ଶ, 𝑦ଶ), and the 
point 𝑅 (the intersection between the horizontal side and the vertical side): 
the three sides of this right-angled triangle are the hypotenuse 𝑃𝑄 , the 
horizontal side, which is 𝑥ଶ − 𝑥ଵ, and the vertical side, which is 𝑦ଶ − 𝑦ଵ. 
The “slope,” or “gradient,” of the straight line segment 𝑃𝑄, denoted by 
𝑚௉ொ, is the quotient of the “rise” over the “run,” comparing how much one 
travels vertically (“up and down”) versus how much one travels 
horizontally. Thus, it relates the steepness or inclination of the straight line 
segment 𝑃𝑄 to the coordinates; symbolically: 

𝑠𝑙𝑜𝑝𝑒 = 𝑚௉ொ =
𝑟𝑖𝑠𝑒

𝑟𝑢𝑛
=

𝑦ଶ − 𝑦ଵ

𝑥ଶ − 𝑥ଵ

=
𝛥𝑦

𝛥𝑥
 

(see Figure 11; the Greek letter Δ is used to indicate change). 
In Figure 11, the distance between points 𝑃  and 𝑄 , denoted by 𝑑௉ொ , is 
given by (and, indeed, is a version of) the Pythagorean Theorem. 
Therefore, in Figure 11, 

൫𝑑௉ொ൯
ଶ

= (𝑟𝑢𝑛)ଶ + (𝑟𝑖𝑠𝑒)ଶ 
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⇔ 𝑑௉ொ = ඥ(𝑥ଶ − 𝑥ଵ)ଶ + (𝑦ଶ − 𝑦ଵ)ଶ. 
It can be easily verified that the midpoint of the straight line segment 

joining points (𝑥ଵ, 𝑦ଵ) and (𝑥ଶ, 𝑦ଶ) is ቀ
௫భା௫మ

ଶ
,

௬భା௬మ

ଶ
ቁ. 

All points (𝑥, 𝑦) in ℝଶ satisfying the equation 𝑦 = 𝑚𝑥 + 𝑏 form a straight 
line, and 𝑚 is the slope of the straight line. For the slope 𝑚 of the straight 
line passing through the points (𝑥ଵ, 𝑦ଵ) and (𝑥ଶ, 𝑦ଶ), we have: 

i. If 𝑥ଵ = 𝑥ଶ, 𝑚 is undefined (the line is vertical). 

ii. If 𝑥ଵ ≠ 𝑥ଶ, then 𝑚 =
௱௬

௱௫
=

௬మି௬భ

௫మି௫భ
. 

Two non-vertical straight lines 𝑦ଵ  and 𝑦ଶ , with slopes 𝑚ଵ  and 𝑚ଶ 
respectively, are parallel if and only if 𝑚ଵ = 𝑚ଶ (i.e., their slopes are 
equal), and they are perpendicular if and only if 𝑚ଵ𝑚ଶ = −1 (i.e., the 
product of their slopes is −1). 
In order to find the equation of a non-vertical straight line, we work as 
follows: 

i. we find a point (𝑥ଵ, 𝑦ଵ) on the line;  
ii. we find the slope 𝑚 of the line; 
iii. we write the equation of the line as follows:  

𝑦 − 𝑦ଵ = 𝑚(𝑥 − 𝑥ଵ) ; this equation is called the “point-slope” 
form of the equation of a line. 

For instance, let us find the equation of the straight line passing through 
the points (5, −0.5) and (10, 9.5). Firstly, we define the point (𝑥ଵ, 𝑦ଵ) =
(5, −0.5) . Secondly, we find the slope of the required line: 𝑚 =
ଽ.ହି(ି଴.ହ)

ଵ଴ିହ
= 2. Thirdly, we find the equation of the required line: 𝑦 − 𝑦ଵ =

𝑚(𝑥 − 𝑥ଵ) ⇒ 𝑦 − (−0.5) = 2(𝑥 − 5) ⇒ 𝑦 = 2𝑥 − 10.5.  
 

Circle 
As we can see in Figure 12, a circle with center 𝑂(𝑣, 𝑤) and radius 𝑟 is the 
set of all points in the 𝑥𝑦-plane whose distance from 𝑂 is 𝑟 (in Figure 12, 
𝑂(𝑣, 𝑤) = 𝑂(2, −1), and 𝑟 = 3). 
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Figure 12: Circle. 

 

 
 

If (𝑥, 𝑦) is a point on the circle with center 𝑂(𝑣, 𝑤) and radius 𝑟, then the 
distance formula implies that  

𝑟 = ඥ(𝑥 − 𝑣)ଶ + (𝑦 − 𝑤)ଶ ⇔ 𝑟ଶ = (𝑥 − 𝑣)ଶ + (𝑦 − 𝑤)ଶ, 
which is the standard form of the equation of a circle with center (𝑣, 𝑤) 
and radius 𝑟. The circumference of a circle of radius 𝑟 is 𝐶 = 2𝜋𝑟, and the 
area of a circle of radius 𝑟 is 𝐴 = 𝜋𝑟ଶ, where 𝜋 ≈ 3.14 is Archimedes’s 
constant (the ratio of the circle’s circumference to its diameter). 
Archimedes approximated 𝜋 by using the fact that the circumference of a 
circle is bounded by the perimeter of an inscribed polygon and the 
perimeter of a circumscribed polygon. In particular, he used a 96-sided 
inscribed polygon and a 96 -sided circumscribed polygon to find the 
following approximation: 

3 +
ଵ଴

଻ଵ
< 𝜋 < 3 +

ଵ଴

଻଴
. 

It is worth mentioning that the degenerate possibilities for a circle are the 
following: a point or no graph at all. 
The study of the circle underpins trigonometry. The term “trigonometry” 
appeared for the first time in the book Trigonometria by Bartholomaeus 
Pitiscus (1561–1613) in 1595, and it literally means measuring (and, more 
broadly, studying) “trigons” (“trigon” being the Latin word for “triangle”). 
The acknowledged founder of trigonometry is the ancient Greek 
astronomer and mathematician Hipparchus of Nicaea (ca. 190–ca. 120 
B.C.E.). Moreover, around 100 C.E., another Greek mathematician, 
Menelaus of Alexandria, published a series of treatises on chords.  
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Trigonometric Functions 

In the context of analytic geometry, we can also study the basic 
trigonometric functions on the unit circle (specifically, on a circle whose 
center is (0,0) and whose radius 𝑟 = 1).  
 
Figure 13: The Number Circle. 
 

 
 
Consider a circle of unit radius, as shown in Figure 13, and let point 𝐴 (the 
right-hand endpoint of the horizontal diameter) be a reference point. Let an 
anti-clockwise motion round the circle be a positive direction, and a 
clockwise motion be a negative direction. A circle of unit radius with a 
reference point and the direction of tracing specified is called the “number 
circle.” Given an arbitrary point 𝑃 of the number circle, there are infinitely 
many arcs beginning at the point 𝐴 and terminating at the point 𝑃. One of 
these arcs is the shortest arc connecting the points 𝐴 and 𝑃, and all the 
other arcs are obtained from the shortest arc by adding or subtracting an 
integral number of complete revolutions. Hence, every point 𝑃  of the 
number circle is associated with an infinite set of numbers that consists of 
the values of all the arcs beginning at the point 𝐴 and terminating at the 
point 𝑃  (the lengths of the arcs are taken with the plus or minus sign 
according as the motion from the point 𝐴 to the point 𝑃 is anti-clockwise 
or clockwise, respectively).  
The circumference of the circle of unit radius is equal to 2𝜋. Therefore, 
the lengths of all the arcs terminating at the given point 𝑃 differ from one 
another by an integral number multiple of 2𝜋, so that the general form of 
these quantities is 𝑥 + 2𝜋𝑎 , where 𝑎 ∈ ℤ , and 𝑥  is the length of the 
shortest arc connecting the points 𝐴 and 𝑃. Thus, for every real number 𝑥, 
there is a point 𝑃(𝑥) of the number circle such that the length of the arc 
𝐴𝑃 is 𝑥, and every point 𝑃 of the circle corresponds to an infinite set of 
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numbers of the form 𝑥 + 2𝜋𝑎, where 𝑎 ∈ ℤ, and 𝑥 is the length of one of 
the arcs connecting the points 𝐴 and 𝑃. 
Assume that the center of the number circle coincides with the origin 
𝑂(0,0) of the rectangular coordinate system 𝑋𝑂𝑌, as shown in Figure 14. 
Let 𝑥 be an arbitrary real number. Then, on the number circle, we find the 
point 𝑃(𝑥) that corresponds to 𝑥. The ordinate of the point 𝑃(𝑥) is called 
the “sine” of the number 𝑥 (denoted by 𝑠𝑖𝑛𝑥), the abscissa of the point 
𝑃(𝑥) is called the “cosine” of the number 𝑥 (denoted by 𝑐𝑜𝑠𝑥), the ratio 
௦௜௡௫

௖௢௦௫
 is called the “tangent” of the number 𝑥 (denoted by 𝑡𝑎𝑛𝑥), and the 

ratio 
௖௢௦௫

௦௜௡௫
 is called the “cotangent” of the number 𝑥 (denoted by 𝑐𝑜𝑡𝑥).  

 
Figure 14: Trigonometric Functions. 
 

 
 
Notice that the reference point 𝐴 on the number circle corresponds to the 
number 0, that is, 𝐴 = 𝐴(0). Since the abscissa and the ordinate of this 
point are 1 and 0, respectively, we have 𝑐𝑜𝑠0 = 1, 𝑠𝑖𝑛0 = 0, and 𝑡𝑎𝑛0 =
௦௜௡଴

௖௢௦଴
= 0. The point 𝐵 of intersection of the circle and the positive ray of 

the axis 𝑂𝑌 corresponds to the number 𝜋/2. Since the abscissa and the 
ordinate of the point 𝐵 are 0 and 1 respectively, we have cos (

గ

ଶ
) = 0 and 

sin (
గ

ଶ
) = 1, whereas tan (

గ

ଶ
) is not defined. Similarly, as shown in Figure 

14, given the coordinates of the points 𝐶 and 𝐷, we realize that 𝑐𝑜𝑠𝜋 =

−1, 𝑠𝑖𝑛𝜋 = 0, 𝑡𝑎𝑛𝜋 = 0, cos (
ଷగ

ଶ
) = 0, 𝑠𝑖𝑛 (

ଷగ

ଶ
) = −1, and 𝑡𝑎𝑛 (

ଷగ

ଶ
) is not 

defined. The parametrization of the unit circle can be written as follows: 
(𝑐𝑜𝑠𝜃, 𝑠𝑖𝑛𝜃) 

where 0 ≤ 𝜃 ≤ 2𝜋. 
We can summarize the basic definitions and the basic formulas of 
trigonometry as follows:  

𝑆𝑖𝑛𝑒: sin𝜃 =
௢௣௣௢௦௜௧௘ ௦௜ௗ௘

௛௬௣௢௧௘௡௨௦௘
, 
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𝐶𝑜𝑠𝑖𝑛𝑒: 𝑐𝑜𝑠𝜃 =
௔ௗ௝௔௖௘௡௧ ௦௜ௗ௘

௛௬௣௢௧௘௡௨௦௘
, 

𝑇𝑎𝑛𝑔𝑒𝑛𝑡: 𝑡𝑎𝑛𝜃 =
௢௣௣௢௦௜௧௘ ௦௜ௗ௘

௔ௗ௝௔௖௘௡௧ ௦௜ௗ௘
, 

𝐶𝑜𝑠𝑒𝑐𝑎𝑛𝑡: 𝑐𝑠𝑐𝜃 =
௛௬௣௢௧௘௡௨௦

௢௣௣௢௦௜௧௘ ௦௜ௗ௘
=

ଵ

௦௜௡ఏ
, 

𝑆𝑒𝑐𝑎𝑛𝑡: 𝑠𝑒𝑐𝜃 =
௛௬௣௢௧௘௡௨௦௘

௔ௗ௝௔௖௘௡௧ ௦௜ௗ௘
=

ଵ

௖௢௦ఏ
, 

𝐶𝑜𝑡𝑎𝑛𝑔𝑒𝑛𝑡: 𝑐𝑜𝑡𝜃 =
௔ௗ௝௔௖௘௡௧ ௦௜ௗ௘

௢௣௣௢௦௜௧௘ ௦௜ௗ௘
=

ଵ

௧௔௡ఏ
,  

and the basic trigonometric identities: 
𝑠𝑖𝑛ଶ𝑎 + 𝑐𝑜𝑠ଶ𝑎 = 1, 
𝑠𝑖𝑛(−𝑎) = −𝑠𝑖𝑛𝑎, 
𝑐𝑜𝑠(−𝑎) = 𝑐𝑜𝑠𝑎, 
sin (𝑎 ± 𝑏) = 𝑠𝑖𝑛𝑎 ∙ 𝑐𝑜𝑠𝑏 ± 𝑐𝑜𝑠𝑎 ∙ 𝑠𝑖𝑛𝑏, 
cos (𝑎 ± 𝑏) = 𝑐𝑜𝑠𝑎 ∙ 𝑐𝑜𝑠𝑏 ∓ 𝑠𝑖𝑛𝑎 ∙ 𝑠𝑖𝑛𝑏, 

𝑠𝑖𝑛𝑎 + 𝑠𝑖𝑛𝑏 = 2𝑠𝑖𝑛
ଵ

ଶ
(𝑎 + 𝑏) ∙ 𝑐𝑜𝑠

ଵ

ଶ
(𝑎 − 𝑏), 

𝑐𝑜𝑠𝑎 + 𝑐𝑜𝑠𝑏 = 2𝑐𝑜𝑠
ଵ

ଶ
(𝑎 + 𝑏) ∙ 𝑐𝑜𝑠

ଵ

ଶ
(𝑎 − 𝑏), 

𝑠𝑖𝑛2𝑎 = 2𝑠𝑖𝑛𝑎 ∙ 𝑐𝑜𝑠𝑎, 
𝑐𝑜𝑠2𝑎 = 𝑐𝑜𝑠ଶ𝑎 − 𝑠𝑖𝑛ଶ𝑎, 

𝑠𝑖𝑛
ଵ

ଶ
𝑎 = ට

ଵି௖௢௦

ଶ
, 

𝑐𝑜𝑠
ଵ

ଶ
𝑎 = ට

ଵା௖௢௦

ଶ
, 

sin (𝑎 ± 𝜋 2⁄ ) = ±𝑐𝑜𝑠𝑎, 
cos (𝑎 ± 𝜋 2⁄ ) = ∓𝑠𝑖𝑛𝑎.  
The inverse trigonometric functions are denoted as follows: 𝑎𝑟𝑐𝑠𝑖𝑛𝑥 ≡
𝑠𝑖𝑛ିଵ𝑥  ( 𝑦 = 𝑎𝑟𝑐𝑠𝑖𝑛𝑥 ⇔ 𝑥 = 𝑠𝑖𝑛𝑦) , 𝑎𝑟𝑐𝑐𝑜𝑠𝑥 ≡ 𝑐𝑜𝑠ିଵ𝑥  ( 𝑦 =
𝑎𝑟𝑐𝑐𝑜𝑠𝑥 ⇔ 𝑥 = 𝑐𝑜𝑠𝑦) , and 𝑎𝑟𝑐𝑡𝑎𝑛𝑥 ≡ 𝑡𝑎𝑛ିଵ𝑥  ( 𝑦 = 𝑎𝑟𝑐𝑡𝑎𝑛𝑥 ⇔ 𝑥 =
𝑡𝑎𝑛𝑦). 
 

Ellipse 
As we can see in Figure 15, an “ellipse” is the set of all points in a plane 
the sum of whose distances from two fixed points (“foci”) is constant. 
Foci: (−𝑐, 0) and (𝑐, 0) . Notice that, if the two foci coincide, then we 
receive a circle. The Greek word ellipse, literally meaning “omission,” 
was first applied by Apollonius of Perga, because, in the case of an ellipse, 
the conic section of the cutting plane makes a smaller angle with the base 
than does the side of the cone. 
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Figure 15: Ellipse. 

 

 
 
The standard form of the equation of an ellipse with center at the origin 
and foci on the 𝑥-axis is 
௫మ

௔మ +
௬మ

௕మ = 1. 

By setting 𝑦 = 0, we find that the 𝑥-intercepts are (−𝑎, 0) and (𝑎, 0). By 
the setting 𝑥 = 0, we find that the 𝑦-intercepts are (0, −𝑏) and (0, 𝑏). The 
larger segment from (−𝑎, 0) to (𝑎, 0) is called the “major axis,” while the 
“minor axis” is the segment from (0, −𝑏) to (0, 𝑏). The endpoints of the 
major axis are called the “vertices of the ellipse”; vertices: (−𝑎, 0) and 
(𝑎, 0).  
If the foci are placed on the 𝑦-axis at (0, −𝑐) and (0, 𝑐), then the standard 
form of the equation of an ellipse is 
௫మ

௕మ +
௬మ

௔మ = 1. 

In this case, the major axis is along the 𝑦-axis, the foci are (0, 𝑐) and 
(0, −𝑐), and the vertices are (0, 𝑎) and (0, −𝑎). 
Given the definition of an ellipse, the degenerate possibilities for an ellipse 
are the following: a point or no graph at all. 
In our solar system, many bodies revolve in elliptical orbits around a 
larger body that is located at one focus. In the seventeenth century, 
Johannes Kepler, based on Apollonius’s mathematical study of the ellipse, 
articulated a rigorous explanation of planetary motions.  
Moreover, regarding the ellipse, it should be mentioned that it has a 
reflection property that causes any ray or wave that originates at one focus 
to strike the ellipse and pass through the other focus. In terms of acoustics, 
the aforementioned property implies that, in a room with an elliptical 
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ceiling, even a slight noise made at one focus can be heard at the other 
focus, but, if people are standing between the foci, then they hear nothing. 
Such rooms are known as whispering galleries.  
As regards architecture, it should be mentioned that ornamental arches are 
often elliptical in shape; in other words, arches whose main purpose is 
beauty and not strength are often elliptical in shape.  
 

Hyperbola 
As we can see in Figure 16, a “hyperbola” is the set of all points in a plane 
the difference of whose distances from two fixed points (“foci”) is a 
positive constant (the Greek word hyperbola literally means 
“extravagance”). Hence, the distances between the foci and a point on the 
figure maintain a constant difference for a hyperbola and a constant sum 
for an ellipse.  
 
Figure 16: Hyperbola. 
 

 
 
Given the definition of a hyperbola, the degenerate possibilities for a 
hyperbola are two intersecting straight lines.  
The standard form of a hyperbola with center at the origin and foci on the 
𝑥-axis is 
௫మ

௔మ −
௬మ

௕మ = 1. 

By setting 𝑦 = 0, we find that the 𝑥-intercepts are (−𝑎, 0) and (𝑎, 0). The 
line segment joining these two points is called the “transverse axis.” The 
endpoints of the transverse axis are called the “vertices of the hyperbola.” 
By setting 𝑥 = 0, we find that there are no 𝑦-intercepts.  The line segment 
from (0, 𝑏) to (0, −𝑏) is called the “conjugate axis.” In order to determine 
the significance of 𝑏, we write 
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௫మ

௔మ −
௬మ

௕మ = 1 as 𝑦 =
±௕௫

௔
ට1 −

௔మ

௫మ. 

As |𝑥| tends to infinity, 1 −
௔మ

௫మ tends to 1, and, therefore, the graph of the 

hyperbola approaches the lines  

𝑦 = ±
௕

௔
𝑥. 

These lines are called the “asymptotes of the hyperbola” (they are the 
diagonals of a rectangle of dimensions 2𝑎 by 2𝑏).  
If the foci are placed on the 𝑦-axis at (0, −𝑐) and (0, 𝑐), then the standard 
form of the equation of a hyperbola is 
௬మ

௔మ −
௫మ

௕మ = 1, 

and, in this case, the asymptotes are given by  
𝑦 = ±

௔

௕
𝑥. 

 
Parabola 

As we can see in Figure 17, a “parabola” is the set of all points in a plane 
that are equidistant from a fixed line (“directrix”) and a fixed point 
(“focus”) not on the line (the word “parabola” derives from the Greek 
terms “parā,” meaning “beside,” and “bolē,” meaning “a throw,” and, 
therefore, “parabola” literally means “para-beside”―that is, placing side 
by side). 
 
Figure 17: Parabola. 
 

 
 
The standard form of the equation of a parabola with directrix 𝑥 = −𝑝 and 
focus at (𝑝, 0) is 
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4𝑝𝑥 = 𝑦ଶ. 
The line through the focus that is perpendicular to the directrix is called 
the “axis of symmetry.” In this case, the axis of symmetry is the 𝑥-axis, 
and the parabola opens to the right. The point on the axis of symmetry that 
is midway between the focus and the directrix is called the “vertex,” and 
the vertex is the turning point of the parabola. The standard form of the 
equation of a parabola with directrix 𝑥 = 𝑝 and focus at (−𝑝, 0) is 
−4𝑝𝑥 = 𝑦ଶ, 
and, in this case, the parabola opens to the left.  
Obviously, the axis of symmetry of a parabola may be the 𝑦-axis. If the 
directrix is 𝑦 = −𝑝 and the focus is at (0, 𝑝), then the standard form of the 
equation of a parabola is 
𝑥ଶ = 4𝑝𝑦, 
and the parabola opens upward. If the directrix is 𝑦 = 𝑝 and the focus is at 
(0, −𝑝), then the standard form of the equation of a parabola is 
𝑥ଶ = −4𝑝𝑦, 
and the parabola opens downward.  
As regards the parabola in general, it should be mentioned that it has a 
reflection property that causes any ray or wave that originates at the focus 
and strikes the parabola to be reflected parallel to the axis of symmetry. 
Thus, for instance, flashlights and searchlights use a parabolic reflector 
with the bulb located at the focus. Additionally, due to the reflection 
property of a parabola, any ray or wave that comes into a parabolic 
reflector parallel to the axis of symmetry is directed to the focus point. For 
this reason, radars, radio antennas, and reflecting telescopes operate 
according to this principle. In astronomy, the parabola features in both the 
construction of telescopes and in the motion of comets around the Sun. 
Finally, due to their great strength, parabolic arches are used extensively in 
bridges, cathedrals, and elsewhere in architecture and engineering, 
especially in case we have equally spaced load.  
 

Volumes and Surface Areas 
By the term “volume,” we mean the amount of three-dimensional space 
enclosed by a closed surface. The volume of any solid having a uniform 
cross-section is equal to: 
cross-sectional area×length of solid. 
The surface area of any solid having a uniform cross-section is equal to: 
curved surface+ends; namely: 
perimeter of cross-sections×length of solid+total area of ends. 
The volume of a sphere with radius 𝑟 is equal to 
ସ

ଷ
𝜋𝑟ଷ,  



Nicolas Laos 108

and its surface area is equal to 
4𝜋𝑟ଶ. 
The volume of a cylinder whose height is ℎ and whose base is a circle with 
radius 𝑟 is equal to 
𝜋𝑟ଶℎ, 
and its surface area is equal to 
2𝜋𝑟ℎ + 2𝜋𝑟ଶ = 2𝜋𝑟(ℎ + 𝑟). 
The volume of a cone whose vertical height is ℎ and whose base is a circle 
with radius 𝑟 is equal to  
ଵ

ଷ
𝜋𝑟ଶℎ, 

and, if 𝑙 is its slant height, then its surface area is equal to 
𝜋𝑟𝑙 + 𝜋𝑟ଶ. 
The volume of a pyramid whose height is ℎ and whose base’s area is equal 
to 𝐴 is given by the following formula:  

𝑉 =
ଵ

ଷ
𝐴ℎ. 

The surface area of a pyramid is equal to the sum of the areas of the 
corresponding triangles plus the area of the base. 
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Chapter 7 
Vectors, Vector Spaces, and Normed Vector Spaces 

 
The discipline of mathematics that deals with matrices (covered in Chapter 
3) and vectors (and, more generally, with vector spaces and linear 
transformations) is called Linear Algebra.  
A “scalar” is a quantity that can be specified by determining only its 
magnitude. However, the quantities that are specified by determining both 
magnitude and direction are called “vectors.” In other words, a “vector” is 
a quantity that has both a direction and a magnitude of length; therefore, it 
is graphically denoted by an oriented line segment (“arrow”). In physics, 
vectors are very useful, because they can visually represent position, 
displacement, velocity, and acceleration. Moreover, vector graphics are 
used in computers, since they can be scaled to a larger size without losing 
any image quality. 
If the coordinates of a point 𝑃 in the coordinate plane are (𝑥, 𝑦), and if we 
denote the origin of the coordinate system by 𝑂(0,0), then a vector 𝑂𝑃 is 
denoted by 𝑂𝑃ሬሬሬሬሬ⃗ , since the length 𝑂𝑃  represents the magnitude, and the 
arrow represents the direction. The column vector (matrix) corresponding 
to 0𝑃ሬሬሬሬሬ⃗  is 

ቀ
𝑥
𝑦ቁ. 

Since the coordinates of point 𝑃 are (𝑥, 𝑦), the length from 𝑂(0,0) to 𝑃 is 

ඥ𝑥ଶ + 𝑦ଶ, according to the Pythagorean Theorem. Notice that, frequently, 
we do not need to use arrows in order to indicate that letters represent 
vectors (in particular where there is no likelihood of confusion).  
The operations between vectors are based on matrix algebra. For instance, 

given two vectors 𝑂𝐴ሬሬሬሬሬ⃗ = ቀ
𝑝
𝑞ቁ and 𝑂𝐵ሬሬሬሬሬ⃗ = ቀ

𝑟
𝑠

ቁ,  

their sum is a vector 𝑂𝐶ሬሬሬሬሬ⃗  such that 

𝑂𝐶ሬሬሬሬሬ⃗ = 𝑂𝐴ሬሬሬሬሬ⃗ + 𝑂𝐵ሬሬሬሬሬ⃗ = ቀ
𝑝
𝑞ቁ + ቀ

𝑟
𝑠

ቁ = ቀ
𝑝 + 𝑟
𝑞 + 𝑠ቁ. 

In general, we can define the following vector operations: 
Vector addition: 𝑢ሬ⃗ + 𝑣⃗ = (𝑢ଵ + 𝑣ଵ, 𝑢ଶ + 𝑣ଶ, … , 𝑢௡ + 𝑣௡); 
Scalar multiplication: 𝑘𝑢ሬ⃗ = (𝑘𝑢ଵ, 𝑘𝑢ଶ, … , 𝑘𝑢௡); 
Negation: −𝑢ሬ⃗ = (−1)𝑢ሬ⃗ = (−𝑢ଵ, −𝑢ଶ, … , −𝑢௡); 
Dot Product (or Scalar Product or Inner Product):  
𝑢ሬ⃗ ∙ 𝑣⃗ = 𝑢ଵ𝑣ଵ + 𝑢ଶ𝑣ଶ + ⋯ + 𝑢௡𝑣௡ = ∑ 𝑢௜𝑣௜

௡
௜ୀଵ ;  

Norm (Length): ‖𝑢ሬ⃗ ‖ = √𝑢ሬ⃗ ∙ 𝑢ሬ⃗ = ඥ𝑢ଵ
ଶ + 𝑢ଶ

ଶ + ⋯ + 𝑢௡
ଶ  

(specifically, the norm of a vector is the distance of the vector from the 
origin); 
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where: 𝑢ሬ⃗ = (𝑢ଵ, 𝑢ଶ, … , 𝑢௡) and 𝑣⃗ = (𝑣ଵ, 𝑣ଶ, … , 𝑣௡) are vectors in ℝ௡, and 
𝑘 is a real number (scalar). 
Cross Product of two vectors in a 3-dimensional space: Consider two 

vectors 𝑢ሬ⃗ = (𝑢ଵ, 𝑢ଶ, 𝑢ଷ) and 𝑣⃗ = (𝑣ଵ, 𝑣ଶ, 𝑣ଷ), and let 𝚤, 𝚥, and 𝑘ሬ⃗  be the unit 
vectors of the three coordinate axes respectively. Then the cross product of  
𝑢ሬ⃗  and  𝑣⃗ is a vector given by the following determinant:  

𝑢ሬ⃗ × 𝑣⃗ = ቮ
𝚤 𝚥 𝑘ሬ⃗

𝑢ଵ 𝑢ଶ 𝑢ଷ

𝑣ଵ 𝑣ଶ 𝑣ଷ

ቮ = ቚ
𝑢ଶ 𝑢ଷ

𝑣ଶ 𝑣ଷ
ቚ 𝚤 − ቚ

𝑢ଵ 𝑢ଷ

𝑣ଵ 𝑣ଷ
ቚ 𝚥 + ቚ

𝑢ଵ 𝑢ଶ

𝑣ଵ 𝑣ଶ
ቚ 𝑘ሬ⃗ =

(𝑢ଶ𝑣ଷ − 𝑢ଷ𝑣ଶ)𝚤 − (𝑢ଵ𝑣ଷ − 𝑢ଷ𝑣ଵ)𝚥 + (𝑢ଵ𝑣ଶ − 𝑢ଶ𝑣ଵ)𝑘ሬ⃗ . 
The geometric significance of this operation is that, if 𝜃  is the angle 
between 𝑢ሬ⃗  and 𝑣⃗ with 0 ≤ 𝜃 ≤ 𝜋, then  
𝑢ሬ⃗ × 𝑣⃗ = ‖𝑢ሬ⃗ ‖‖𝑣⃗‖(𝑠𝑖𝑛𝜃)𝑛ሬ⃗ , 
where 𝑛ሬ⃗  is a unit vector perpendicular to the plane containing 𝑢ሬ⃗  and 𝑣⃗ 
(with your right hand, point your index finger along vector 𝑢ሬ⃗ , and point 
your middle finger along vector 𝑣⃗; then 𝑛ሬ⃗  goes in the direction of your 
extended thumb). The magnitude of the cross product (|𝑢ሬ⃗ × 𝑣⃗|) can be 
interpreted as the positive area of the parallelogram having 𝑢ሬ⃗  and 𝑣⃗ as its 
sides. Whilst the resultant of the dot product of two vectors 𝑢ሬ⃗  and 𝑣⃗ is a 
scalar quantity, the cross product of two vectors 𝑢ሬ⃗  and 𝑣⃗ is a third vector 
whose direction is perpendicular to both 𝑢ሬ⃗  and 𝑣⃗ (the direction is given by 
the aforementioned right-hand rule). Two vectors are parallel to each other 
if and only if they are scalar multiples of each other. 
The most abstract definition of a vector is that a vector is an element of a 
“vector (or linear) space,” which, in turn, can be defined as follows: let 𝑈 
be a set endowed with two operations: addition and scalar multiplication, 
defined in the following way: 
+: 𝑈 × 𝑈 → 𝑈  defined by (𝑢, 𝑣) ∈ 𝑈 × 𝑈 → 𝑢 + 𝑣 ∈ 𝑈  for all 𝑢, 𝑣 ∈ 𝑈 , 
that is, 𝑈 is “closed under addition”; 
∙ : 𝑘 × 𝑈 → 𝑈  defined by (𝑘, 𝑢) ∈ 𝐾 × 𝑈 → 𝑘 ∙ 𝑢 ∈ 𝑈  for every 𝑘 ∈ 𝐾 
(where 𝐾 is a field, such as ℝ) and for every 𝑢 ∈ 𝑈, that is, 𝑈 is “closed 
under scalar multiplication.” Of course,0 ∈ 𝑈 , since, for every 𝑢 ∈ 𝑈 , 
(−1)𝑢 ∈ 𝑈 , and, therefore, 𝑢 − 𝑢 ∈ 𝑈 ⇒ 0 ∈ 𝑈 . As a result of the 
aforementioned definition, we say that 𝑈  under the operations of + 
(addition) and ∙ (scalar multiplication) forms a “vector space” (or “linear 
space”) over the field 𝐾; and, therefore, a “vector” can be defined as an 
element of such a 𝑈.  
For instance, we can prove that, if  
𝑉 = {𝑎𝑥ଶ + 𝑏𝑥 + 𝑐|𝑎, 𝑏, 𝑐 ∈ ℝ}, 
then 𝑉 is a vector space over ℝ as follows: 
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Step 1: 0= 0𝑥ଶ + 0𝑥 + 0 ∈ 𝑉.  
In other words, 0 ∈ 𝑉. 
Step 2: Let  

൜
𝑣ଵ = 𝑎ଵ𝑥ଶ + 𝑏ଵ𝑥 + 𝑐ଵ

𝑣ଶ = 𝑎ଶ𝑥ଶ + 𝑏ଶ𝑥 + 𝑐ଶ

 . 

Then 𝑣ଵ + 𝑣ଶ = (𝑎ଵ + 𝑎ଶ)𝑥ଶ + (𝑏ଵ + 𝑏ଶ)𝑥 + (𝑐ଵ + 𝑐ଶ) ∈ 𝑉.  
In other words, 𝑉 is closed under addition. 
Step 3: Let 𝑣 = 𝑎𝑥ଶ + 𝑏𝑥 + 𝑐 with 𝑎, 𝑏, 𝑐 ∈ ℝ.  
Then 𝑘𝑣 = (𝑘𝑎)𝑥ଶ + (𝑘𝑏)𝑥 + (𝑘𝑐) ∈ 𝑉. 
In other words, 𝑉 is closed under scalar multiplication. 
Therefore, 𝑉 = {𝑎𝑥ଶ + 𝑏𝑥 + 𝑐|𝑎, 𝑏, 𝑐 ∈ ℝ}  is a vector space over ℝ . In 
other words, the set of all real quadratic polynomials forms a vector space 
over ℝ.  
On the other hand, we can prove that a sphere 𝑆 is not a vector space as 
follows: let 𝑣 be a vector belonging to the sphere 𝑆. If we multiply 𝑣 by an 
adequate number 𝑘, then 𝑘𝑣 does not belong to 𝑆 any more (it “pierces” 
the sphere). Hence, a sphere is not a vector space (it is not closed under 
scalar multiplication). This example helps us to understand why no 
bounded set, in general, is a vector space. 
Linearly Independent Vectors: Let 𝑉 be a vector space over 𝐾. The vectors 
𝑣ଵ, 𝑣ଶ, … , 𝑣௡ of 𝑉 are “linearly independent” if and only if every time 
𝑘ଵ𝑣ଵ + 𝑘ଶ𝑣ଶ + ⋯ + 𝑘௡𝑣௡ = 0 ⇒ 𝑘ଵ = 𝑘ଶ = ⋯ = 𝑘௡ = 0. 

For instance, the vectors 𝑣ଵ = ቀ
1 0
0 0

ቁ, 𝑣ଶ = ቀ
0 1
0 0

ቁ, 𝑣ଷ = ቀ
0 0
1 0

ቁ, and 

𝑣ସ = ቀ
0 0
0 1

ቁ are linearly independent, since  

𝑘ଵ𝑣ଵ + 𝑘ଶ𝑣ଶ + ⋯ + 𝑘௡𝑣௡ = 0 

⇒ ቀ
𝑘ଵ 0
0 0

ቁ + ቀ
0 𝑘ଶ

0 0
ቁ + ൬

0 0
𝑘ଷ 0

൰ + ൬
0 0
0 𝑘ସ

൰ = ቀ
0 0
0 0

ቁ 

⇒ ൬
𝑘ଵ 𝑘ଶ

𝑘ଷ 𝑘ସ
൰ = ቀ

0 0
0 0

ቁ ⇒ 𝑘ଵ = 𝑘ଶ = 𝑘ଷ = 𝑘ସ = 0. 

Linearly Dependent Vectors: Let 𝑉 be a vector space over 𝐾. The vectors 
𝑣ଵ, 𝑣ଶ, … , 𝑣௡  of 𝑉  are “linearly dependent” if and only if 𝑘ଵ𝑣ଵ + 𝑘ଶ𝑣ଶ +
⋯ + 𝑘௡𝑣௡ = 0 for some 𝑘௜ ≠ 0, where 𝑖 = 1,2, … , 𝑛. 
For instance, the vectors 𝑣ଵ = (0,1) , 𝑣ଶ = (1,0) , and 𝑣ଷ = (1,1)  are 
linearly dependent. 
Basis: Let 𝑉 be a vector space over 𝐾. The vectors 𝑣ଵ, 𝑣ଶ, … , 𝑣௡  form a 
“basis” of 𝑉  if and only if these vectors are linearly independent and 
generate (or span) 𝑉; that is, every vector of 𝑉 must be expressed in terms 
of 𝑣ଵ, 𝑣ଶ, … , 𝑣௡ . For instance, if 𝑉 = {𝑎 + 𝑏𝑥 + 𝑐𝑥ଶ|𝑎, 𝑏, 𝑐 ∈ ℝ} , then 
𝑣ଵ = 1, 𝑣ଶ = 𝑥, and 𝑣ଷ = 𝑥ଶ form a basis of 𝑉, because: (i) 𝑣ଵ, 𝑣ଶ, and 𝑣ଷ 
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are linearly independent, since no vector from {1, 𝑥, 𝑥ଶ} can be written in 
terms of the other vectors; and (ii) {1, 𝑥, 𝑥ଶ} generate 𝑉, since, for any 𝑣 ∈
𝑉, it holds that 𝑣 = 𝑘 + 𝑙𝑥 + 𝑚𝑥ଶ = 𝑘 ∙ 1 + 𝑙𝑥 + 𝑚𝑥ଶ. Every (non-zero) 
vector space over a field 𝐾 has at least one basis (actually, it has many 
different bases). However, every vector space 𝑉 has an invariant property: 
the number of vectors in every basis of 𝑉  remains the same, and the 
“dimension” of a vector space 𝑉 is the number of elements of any of its 
bases. 
When we study vector spaces, and abstract mathematical spaces in 
general, we must keep in mind that the term “space” signifies a collection 
of vectors that interact in a certain way, which is determined by the 
corresponding structure (e.g., by a set of operations, by a norm, etc.). We 
can define a norm in an abstract way as follows: given a vector (or linear) 
space 𝑋 over ℝ, a “norm” ‖∙‖ for 𝑋 is a function on 𝑋 that assigns to each 
element a real number (symbolically: ‖∙‖: 𝑋 → ℝ) satisfying the following 
properties: 
for every 𝑥 ∈ 𝑋: 

i. ‖𝑥‖ ≥ 0, 
ii. ‖𝑥‖ = 0 if and only if 𝑥 = 0, 
iii. ‖𝑘𝑥‖ = |𝑘|‖𝑥‖ for any scalar 𝑘, and, 
 for every 𝑥, 𝑦 ∈ 𝑋, 
iv. ‖𝑥 + 𝑦‖ ≤ ‖𝑥‖ + ‖𝑦‖ (the triangle inequality). 

A vector (or linear) space that is equipped with a norm ‖∙‖ is denoted by 
(𝑋, ‖∙‖) and is called a “normed vector space” (or “normed linear space”). 
Different norms can be defined on the same vector space, thus giving rise 
to different normed vector spaces.  
Example 1: (ℝ, |∙|). The set of real numbers (ℝ) is a normed vector space 
with norm given by the absolute value (or modulus), that is,  
‖𝑥‖ = |𝑥|, 
and we call this the “usual norm” for ℝ. 
Example 2: (ℝ௡ , ‖∙‖ଶ). The set of ordered 𝑛-tuples of real numbers (ℝ௡) is 
a normed vector space with norm ‖∙‖ଶ defined as follows: 
for any real vector 𝑥 = (𝑘ଵ, 𝑘ଶ, … , 𝑘௡),  
‖𝑥‖ଶ = ඥ|𝑘ଵ|ଶ + |𝑘ଶ|ଶ + ⋯ + |𝑘௡|௡, 
and we call this the “Euclidean norm.” 
Example 3: (ℝ௡ , ‖∙‖ଵ). The set of ordered 𝑛-tuples of real numbers (ℝ௡) is 
a normed vector space with norm ‖∙‖ଵ defined as follows: 
for any real vector 𝑥 = (𝑘ଵ, 𝑘ଶ, … , 𝑘௡),  
‖𝑥‖ଵ = |𝑘ଵ| + |𝑘ଶ| + ⋯ + |𝑘௡|. 
Example 4: (ℝ௡, ‖∙‖ஶ). The set of ordered 𝑛-tuples of real numbers (ℝ௡) 
is a normed vector space with norm ‖∙‖ஶ defined as follows: 
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for any real vector 𝑥 = (𝑘ଵ, 𝑘ଶ, … , 𝑘௡),  
‖𝑥‖ஶ = 𝑚𝑎𝑥{|𝑘௜|, 𝑤ℎ𝑒𝑟𝑒 𝑖 = 1,2, … , 𝑛}, 
and we call this the “supremum (or uniform) norm” for ℝ௡. 
Example 5: (ℬ(𝑋), ‖∙‖ஶ). For any non-empty set 𝑋, we denote by ℬ(𝑋) 
the set of bounded real functions on 𝑋. Notice that a function 𝑓 on some 
set 𝑋 with real values is said to be “bounded” if the set of its values is 
bounded―that is, if there exists a real number 𝑀 such that, for every 𝑥 ∈
𝑋, it holds that |𝑓(𝑥)| ≤ 𝑀.  
ℬ(𝑋) is a real vector space under the pointwise definitions of addition and 
scalar multiplication. Moreover, ℬ(𝑋) is a normed vector space with norm 
‖∙‖ஶ defined by 
‖𝑓‖ஶ = 𝑠𝑢𝑝{|𝑓(𝑥)|, 𝑤ℎ𝑒𝑟𝑒 𝑥 ∈ 𝑋}, 
and we call this the “supremum  (or uniform) norm” for ℬ(𝑋). Notice that 
Example 4 is the special case when 𝑋 = {1,2, … , 𝑛}. 
Example 6: 𝑙ଶ-space, also known as the “Hilbert (sequence) space.” This is 
a generalization of the Euclidean 𝑛-space. The set 𝑙ଶ whose elements are 
sequences of scalars (real numbers) 𝑥 = {𝑘ଵ, 𝑘ଶ, … , 𝑘௡ , … }  such that 
∑|𝑘௡|ଶ is convergent, is a real vector space under the pointwise definitions 
of addition and scalar multiplication, and it is a normed vector space with 
norm ‖∙‖ଶ defined by 
‖𝑥‖ଶ = ඥ∑ |𝑘௜|

ଶஶ
௜ୀଵ . 

In an arbitrary normed vector space (𝑋, ‖∙‖), the set 
𝑆(0; 1) = {𝑥 ∈ 𝑋 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 ‖𝑥‖ = 1} 

is called the “unit sphere”; the set 
𝐵[0; 1] = {𝑥 ∈ 𝑋 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 ‖𝑥‖ ≤ 1} 

is called the “closed unit ball”; and the set 
𝐵(0; 1) = {𝑥 ∈ 𝑋 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 ‖𝑥‖ < 1} 

is called the “open unit ball.” In Figure 18, we consider the shape of the 
unit sphere in several coordinate space examples: (a) in (ℝଶ, ‖∙‖ଶ), where 
𝑆൫(0,0); 1൯ = {(𝑘, 𝑙) 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑘ଶ + 𝑙ଶ = 1} ; (b) in (ℝଶ, ‖∙‖ஶ) , where 
𝑆൫(0,0); 1൯ = {(𝑘, 𝑙) 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑚𝑎𝑥{|𝑘|, |𝑙|} = 1}; and (c) in (ℝଶ, ‖∙‖ଵ), 
where 𝑆൫(0,0); 1൯ = {(𝑘, 𝑙) 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 |𝑘| + |𝑙| = 1}. 
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Figure 18: The shape of the unit sphere in several coordinate space examples. 
 

 
 

Linear Transformations: Linear transformations are transformations 
(functions) that preserve the operations of vector addition and scalar 
multiplication. Thus, a transformation 𝑇 is linear if: 

i. 𝑇(𝑢ሬ⃗ + 𝑣⃗) = 𝑇(𝑢ሬ⃗ ) + 𝑇(𝑣⃗) 
ii. 𝑇(𝑐𝑢ሬ⃗ ) = 𝑐𝑇(𝑢ሬ⃗ ), where 𝑐 is a scalar quantity. 

Remark: If 𝑇 is a linear transformation, then 𝑇൫0ሬ⃗ ൯ = 0ሬ⃗ . 
Example 1: If 𝐴  is any 𝑚 × 𝑛  matrix, then the mapping 𝑇: ℝ௡ → ℝ௠ 
which is matrix-vector multiplication  

𝑇(𝑥⃗) = 𝐴𝑥⃗ 
is a linear transformation.  
Example 2: Projection is a linear transformation. In particular, in ℝଶ, a 
projection is a linear transformation 𝑇: ℝଶ → ℝଶ, which takes every vector 
in the plane into a vector in the plane. The “vector projection” of 𝑣⃗ onto 𝑢ሬ⃗  
is denoted by 𝑝𝑟𝑜𝑗௨ሬሬ⃗ 𝑣⃗ , and it is defined as follows: 

𝑝𝑟𝑜𝑗௨ሬሬ⃗ 𝑣⃗ = ቆ
𝑣⃗ ∙ 𝑢ሬ⃗

‖𝑢ሬ⃗ ‖ଶ
ቇ 𝑢ሬ⃗  

where the operator ∙ denotes the dot product, and ‖𝑢ሬ⃗ ‖ is the length of 𝑢ሬ⃗ . 
This formula indicates that the new vector is going in the direction of 𝑢ሬ⃗  
(notice that the vector projection is the vector produced when one vector is 
resolved into two component vectors, one that is parallel to the second 
vector and one that is perpendicular to the second vector). The “scalar 
projection” of of 𝑣⃗ onto 𝑢ሬ⃗  is equal to 

𝑣ଵ = ‖𝑣⃗ ‖𝑐𝑜𝑠𝜃 
where 𝜃 is the angle between 𝑣⃗ and 𝑢ሬ⃗  (notice that the scalar projection is 
the length of the vector projection). 
Example 3: Rotation is a linear transformation. In particular, in ℝଶ, we 
write 𝑅𝑜𝑡ఏ: ℝଶ → ℝଶ for the linear transformation that rotates vectors in  
ℝଶ counter-clockwise through the angle 𝜃. Its matrix is  
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ቀ
𝑐𝑜𝑠𝜃 −𝑠𝑖𝑛𝜃
𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃

ቁ 

and, to perform the rotation on a plain point with standard coordinates 𝑣⃗ =
(𝑥, 𝑦) , it should be written as a column vector and multiplied by 
𝑅𝑜𝑡ఏ: ℝଶ → ℝଶ, namely: 

𝑅𝑜𝑡ఏ𝑣⃗ = ቀ
𝑐𝑜𝑠𝜃 −𝑠𝑖𝑛𝜃
𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃

ቁ ቀ
𝑥
𝑦ቁ = ൬

𝑥𝑐𝑜𝑠𝜃 − 𝑦𝑠𝑖𝑛𝜃
𝑥𝑠𝑖𝑛𝜃 + 𝑦𝑐𝑜𝑠𝜃

൰. 

The kernel (or null space) of a linear transformation is the subset of the 
domain that is transformed into the zero vector. In formal notation, the 
kernel of a linear transformation 𝑇: 𝑉 → 𝑊 is denoted by 𝑘𝑒𝑟(𝑇), and it is 
the set of all input vectors 𝑣⃗ ∈ 𝑉  such that 𝑇(𝑣⃗) = 0ሬ⃗ . The kernel is a 
measure of injectivity. In fact, since the kernel consists of the elements 
sent to 0ሬ⃗ , the dimension of the kernel tells us how much the corresponding 
linear transformation shrinks the source space into the target space. Hence, 
a linear transformation is injective if and only if its kernel is trivial.  
In linear algebra, we often need to know which vectors have their 
directions unchanged by a linear transformation. An “eigenvector” (or 
“characteristic vector”) is such a vector. Hence, an eigenvector 𝑣⃗  of a 
linear transformation 𝑇 is merely scaled by a constant factor 𝜆 when the 
linear transformation is applied to it; symbolically, 𝑇(𝑣⃗) = 𝜆𝑣⃗  . The 
corresponding “eigenvalue” (or “characteristic value”) is the multiplying 
factor 𝜆. In other words, if 𝑇 is a linear transformation from a vector space 
𝑉 over a field 𝐹 into itself and 𝑣⃗ is a non-zero vector in 𝑉, then 𝑣⃗ is an 
eigenvector of 𝑇 if 𝑇(𝑣⃗) is a scalar multiple of 𝑣⃗, that is, 𝑇(𝑣⃗) = 𝜆𝑣⃗ where 
𝜆 is a scalar in 𝐹, and then 𝜆 is said to be the eigenvalue associated with 𝑣⃗. 
Let 𝐴 be an 𝑛 × 𝑛 matrix, and let 𝑋 ∈ ℝ௡ be a non-zero vector for which 

𝐴𝑋 = 𝜆𝑋 
for some scalar 𝜆. Then 𝜆 is said to be the eigenvalue of the matrix 𝐴, and 
𝑋 is said to be an eigenvector of 𝐴 associated with 𝜆. If this is the case, 
then 

𝐴𝑋 − 𝜆𝑋 = 0 ⇔ (𝐴 − 𝜆𝐼)𝑋 = 0 ⇔ (𝜆𝐼 − 𝐴)𝑋 = 0 
where 𝐼 is the corresponding identity matrix. Therefore, when we have to 
find eigenvectors, we have to find the non-trivial solutions of this 
homogeneous system of equations. The expression (determinant) 
𝑑𝑒𝑡(𝜆𝐼 − 𝐴) is a polynomial (in the variable 𝑥) called the “characteristic 
polynomial” of 𝐴. 
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Chapter 8 
Non-Euclidean Geometries 

 
Ancient geometry culminated in Euclid’s Elements. However, in the fifth 
century C.E., the Greek philosopher Proclus criticized Euclid’s parallel 
postulate (“if a line segment intersects two straight lines forming two 
interior angles on the same side that sum to less than two right angles, then 
the two lines, if extended indefinitely, meet on that side on which the 
angles sum to less than two right angles”) by arguing that it should be 
struck out of the axioms of geometry altogether, because it is actually a 
theorem involving many difficulties. Proclus offered the example of a 
hyperbola that approaches its asymptotes as closely as one likes without 
ever meeting them, thus indicating that the opposite of Euclid’s conclusion 
is at least conceivable. Consequently, according to Proclus, Euclid’s 
parallel postulate should be treated as a theorem, which should be proved 
from the other axioms.  
Euclid’s parallel postulate was so obscure and so intimately related to the 
other axioms that, for many centuries, mathematicians vainly attempted to 
prove it by proceeding from the others. Leo Gersonides (1288–1344) was 
arguably the first mathematician in Western Europe who tried to prove the 
parallel postulate. Euclid’s parallel postulate became the focus of keen 
attention by famous mathematicians, such as: Ch. Clavius (1574), P. 
Cataldi (1603), G. A. Borelli (1658), G. Vitale (1680), J. Wallis (1663), G. 
G. Saccheri (1733), J. H. Lambert (1766), A.-M. Legendre (1800), F. K. 
Schweikart (1818), F. Taurinus (1825), and C. F. Gauss. Although their 
attempts were unsuccessful, they played a very important role in the 
development of modern mathematics, because they laid the foundations 
for a new, non-Euclidean geometry. This geometry was based on the 
rejection of Euclid’s parallel postulate, and was invented by the Russian 
mathematician Nikolai Ivanovich Lobachevski (1792–1856), who initially 
called this geometry “imaginary” and, later, “pangeometry.” In 1826, 
Lobachevski delivered his first communication on non-Euclidean 
geometry. Lobachevski’s work opened up a new era in the development of 
geometry. In 1832, a similar research paper of the Hungarian 
mathematician J. Bolyai was published. In the 1830s, Lobachevski argued 
that, in order to establish the validity of his non-Euclidean geometry, he 
needed the aid of experiments, such as astronomical observations, as in the 
case of other natural laws (see: Eric Temple Bell, The Search for Truth, 
New York: Reynal and Hitchcock, 1934). Similar ideas were put forward 
by C. F. Gauss, who did not, however, publish his work.  
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In Gaussian–Lobachevskian geometry, known as hyperbolic geometry, 
Euclid’s parallel postulate is replaced by the so-called “hyperbolic axiom”: 
for any given line 𝐿 and point 𝑃 not on 𝐿, in the plane containing both line 
𝐿 and point 𝑃, there exist at least two distinct lines through 𝑃 that do not 
intersect 𝐿, as shown in Figure 19(a). In Euclidean geometry, the sum of 
the three interior angles of a triangle is always equal to 𝜋 radians (i.e., 
180௢, a straight line). In hyperbolic geometry, however, the sum of the 
three interior angles of a triangle is always strictly less than 𝜋 radians, as 
shown in Figure 19(b). The difference is referred to as the “defect.” 
 
Figure 19: Hyperbolic Axiom and Hyperbolic Triangle. 

 

                        
 

(a) 

 

                                                                             
 

 (b) 
 
   The renowned German mathematician Bernhard Riemann (1826–66), 
who was a student of Gauss, had the most profound insight in non-
Euclidean geometry. In his investigations of the function theory, Riemann 
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developed new methods based on geometric representation. Remember 
that ℝ௡  is the space of all ordered sets (called points or vectors) 𝑥 =
(𝑥ଵ, 𝑥ଶ, … , 𝑥௡)  of 𝑛  real numbers; the numbers 𝑥ଵ, 𝑥ଶ, … , 𝑥௡  are the 
coordinates of a point (or vector) 𝑥 . We say that ℝ௡  is “standardly 
embedded” in ℝ௡ା௞  if a point (𝑥ଵ, 𝑥ଶ, … , 𝑥௡) from ℝ௡  is identified with 
the point (𝑥ଵ, … , 𝑥௡ , 0, … ,0) from ℝ௡ା௞. In the 1850s, Riemann invented 
the concept of an abstract geometric surface that need not be embeddable 
in Euclidean three-dimensional space. On this surface, the “lines” can be 
interpreted as geodesics, and the intrinsic curvature of the surface can be 
precisely defined, as shown in Figure 20(a): a “geodesic” is the shortest 
path between two points on a curved surface (i.e., the non-Euclidean 
equivalent of a Euclidean straight line); like, for instance, on the surface of 
the Earth (e.g., airplanes, wishing to minimize the time that they spend on 
the air, do not follow Euclidean straight lines, but they follow shortest 
curves known as geodesics). In spherical geometry, “great circles,” or 
“geodesics,” are intersections with planes through the center of the sphere. 
Thus, it is not quite true that, given any two points, there is a unique line 
through them, because, if one chooses two points on the sphere that are 
opposite, or “antipodal,” then there is a whole family of great circles that 
go through them.  
In general, Riemannian geometry is geometry on the ellipsoid or on the 
sphere; thus, it exists on surfaces that have constant positive curvature 
(Fig. 20). Gaussian–Lobachevskian geometry exists on surfaces that have 
constant negative curvature (Fig. 19). Euclidean geometry exists on 
surfaces that have constant zero curvature. This is the way in which 
modern geometers construe the reality of non-Euclidean planes. Therefore, 
whereas hyperbolic triangles are “thin” triangles (i.e., their angle sum is 
strictly less than 180ο, as shown in Figure 19(b)), Riemannian triangles 
(i.e., triangles on the ellipsoid or on the sphere) are “fat” triangles (i.e., 
their angle sum is strictly greater than 180ο, as shown in Figure 20(b)). 
Notice that, if 𝑎 = (𝑎ଵ, 𝑎ଶ, 𝑎ଷ) and 𝑏 = (𝑏ଵ, 𝑏ଶ, 𝑏ଷ) are points on a sphere 
of radius 𝑟 > 0  centered at the origin of Euclidean 3 -space, then the 
distance from 𝑎 to 𝑏 along the surface of the sphere is 

𝑑(𝑎, 𝑏) = 𝑟 ∙ 𝑎𝑟𝑐𝑐𝑜𝑠 ൬
𝑎 ∙ 𝑏

𝑟ଶ
൰ = 𝑟 ∙ 𝑎𝑟𝑐𝑐𝑜𝑠 ൬

𝑎ଵ𝑏ଵ + 𝑎ଶ𝑏ଶ + 𝑎ଷ𝑏ଷ

𝑟ଶ
൰ 

as can be easily seen by considering the plane through 𝑎, 𝑏, and the origin. 
If 𝜃 is the angle between the vectors 𝑎 and 𝑏, then 𝑎 ∙ 𝑏 = 𝑟ଶ𝑐𝑜𝑠𝜃, and the 
short arc joining 𝑎 and 𝑏 has length 𝑟𝜃. 
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Figure 20: Riemannian Geometry on the Sphere (where “Lines” are Geodesics) 
and a Spherical Triangle. 
 

               
 
                            (a)        (b) 
 
When the great French mathematician and philosopher Henri Poincaré 
(1854–1912) was asked which geometry is true, he answered as follows:  
 

If geometry were an experimental science, it would not be an exact 
science. It would be subjected to continual revision . . . The geometric 
axioms are therefore neither synthetic a priori intuitions [as Kant has 
contended] nor experimental facts [as Newton has assumed]. They are 
conventions. Our choice among all possible conventions is guided by 
experimental facts; but it remains free, and is only limited by the necessity 
of avoiding every contradiction, and thus it is that postulates may remain 
rigorously true even when the experimental laws which have determined 
their adoption are only approximate . . . One geometry cannot be more true 
than another: it can only be more convenient (Henri Poincaré, Science and 
Hypothesis, translated by Mélanie Frappier, Andrea Smith, and David J. 
Stump, London: Bloomsbury, 2017, p. 50). 

 
Guided by Max Planck’s research work in quantum physics, by Bernhard 
Riemann’s research work in non-Euclidean geometry, and by Constantin 
Carathéodory’s research work in mathematical analysis and the axiomatization 
of thermodynamics, Albert Einstein concluded that space and time are 
functions of each other, so that, by referring to space, we actually refer to a 
temporal correspondence of space, and vice versa. Einstein’s theory of 
relativity implies that, in contrast to Newton’s perception of a three-
dimensional space, we should perceive a four-dimensional space whose 
fourth dimension is time. Thus, time is part of the substance of space; 
conversely, time is underpinned by the three classical dimensions of space. 
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The experiments on which Einstein was based in order to articulate his 
general theory of relativity―according to which mass and energy are, in 
essence, mutually transformable forms of the same reality―presupposed 
the existence of a four-dimensional continuum (space-time) whose 
curvature is determined by gravity.    
Riemannian geometry was used by Albert Einstein in order to formulate 
the general theory of relativity. According to Newtonian mechanics, which 
is formulated in the context of Euclidean geometry, assuming zero 
curvature, the natural trajectory of a physical body that is not acted upon 
by any external force is a straight line. According to the general theory of 
relativity, gravity manifests itself as space-time curvature. Therefore, what 
Newton has called natural straight-line trajectories should be generalized 
into curved paths known as geodesics, or great circle arcs.  
The general theory of relativity explains the operation of gravity. A very 
simple way in which one can present Einstein’s general theory of relativity 
is the following metaphor: imagine a big rubber sheet stretched nice and 
taut before your eyes. If you watch a little marble as it rolls across the 
surface of this rubber sheet, then you will realize that it follows a simple 
straight-line trajectory. But if you watch the movement of a heavy rock on 
this rubber sheet, then you will realize that now the rubber sheet is 
deformed, warped, curved. In contrast to the previous marble, this rock 
does not follow a straight-line trajectory, but it follows a curved trajectory 
along the curved surface of the rubber sheet. Einstein took this idea and 
applied it to the fabric of space. Originally, the fabric of space may look 
nice and flat, like the rubber sheet in the previous example. However, if 
the Sun appears, the fabric of space curves. Similarly, in the vicinity of the 
Earth, the fabric of space curves, and the Moon is kept in orbit around the 
Earth because it rolls along a valley in the curved environment that is 
created by the Earth’s mass. This is the manner in which, according to 
Einstein, gravity is communicated from place to place: through warps and 
curves in the fabric of the space, more specifically through warps and 
curves in space-time. For instance, the Earth is kept in orbit around the 
Sun because it rolls along a valley in the curved environment that is 
created by the Sun’s mas, and, similarly, as I mentioned before, the Moon 
is kept in orbit around the Earth because it rolls along a valley in the 
curved environment that is created by the Earth’s mass. For this reason, 
the general theory of relativity is necessarily founded on Riemannian 
geometry.  
It is worth mentioning that the general theory of relativity makes the 
following predictions: rays of light passing close to a star should be bent 
towards it, and physical processes should take place more slowly in 
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regions of low gravitational potential than in regions of high gravitational 
potential.  
Moreover, the German physicist Arnold Sommerfeld in 1909 and the 
Serbian-Croatian mathematician Vladimir Veričak in 1912 proved that the 
special theory of relativity, which explains how speed affects mass, time, 
and space, is intimately related to hyperbolic geometry. In particular, 
according to the special theory of relativity, a light wave always travels at 
the same speed. In other words, the speed of light is always constant but 
time is relative, depending on one’s state of motion. Observers in relative 
motion experience time differently.  
 
Appendix: Measuring distance between two points on the Earth’s surface 

Lines of longitude (i.e., lines running North-South that measure angular 
distance from the Prime Meridian) and lines of latitude (i.e., lines running 
East-West that measure distance from the Equator) are used as reference 
points. Meridians coincide with points of the same longitude, and parallels 
coincide with points of the same latitude. By the term “great circle,” we 
mean a circle that circumnavigates the Earth and passes through the center 
of the Earth. A great circle divides the Earth in half, and, thus, the Equator 
is a great circle, but no other latitudes. All lines of latitude, except for the 
Equator, are “small circles.” All lines of longitude are “great circles.” The 
shortest distance between any two points on the Earth’s surface lies along 
a great circle.  
First of all, we know that the circumference of a circle is given by the 
formula 𝐶 = 2𝜋𝑟, and an arc length is a fraction of a circle; and such a 

fraction is equal to 
ఏ

ଷ଺଴೚. Hence, the formula for the computation of an arc 

length is 

𝑙 =
ఏ

ଷ଺଴೚ × 2𝜋𝑟.                                                                                          (1) 

When we have to find the distance between two points on the Earth’s 
surface, we use formula (1) with the angle 𝜃 being the angular distance 
from the center of the Earth. The radius of the Earth is approximately 
6,371𝑘𝑚. Therefore: the formula for finding the distance between two 
points with the same longitude is 
 

𝑑(𝑥, 𝑦) =
𝐴𝑛𝑔𝑢𝑙𝑎𝑟 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒

360௢
× 2𝜋 × 6,371𝑘𝑚 

 
where the angular distance is the angle between the two points relative to 
the center of the Earth; and the formula for finding the distance (along a 
parallel) between two points with the same latitude is 
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𝑑(𝑥, 𝑦) =
𝐴𝑛𝑔𝑢𝑙𝑎𝑟 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒

360௢
× 2𝜋 × 6,371𝑘𝑚 × 𝑐𝑜𝑠𝜃 

 
where 𝜃 is the latitude, and the angular distance is the angle between the 
two points relative to the center of the small circle of the parallel on which 
they are located.  
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Chapter 9 
Infinitesimal Calculus: 

Limits, Continuity, Differentiation, Integration,  
Partial Differentiation, and Multiple Integration 

 
“Infinitesimal calculus” is a branch of mathematical analysis that concerns 
itself with the systematic study of the concept of an “infinitely small 
function,” a function of a variable 𝑥  whose absolute value, |𝑓(𝑥)| , 
becomes and remains smaller than any given number as a result of 
variation of 𝑥 . The method of the “infinitesimals” (“infinitely small” 
quantities) was originally used by ancient Greek mathematicians, who 
determined areas and volumes by the so-called “method of exhaustion,” in 
which infinitesimal quantities are used in order to prove that two given 
magnitudes (or two ratios between given magnitudes) are equal.  
The method of exhaustion was originally developed in the fifth century 
B.C.E. by the Athenian scholar Antiphon, and it was put in a rigorous 
scientific setting shortly afterwards by the Greek mathematician and 
astronomer Eudoxus of Cnidus, who used it in order to calculate areas and 
volumes. The Greek mathematician and acknowledged father of 
“Euclidean geometry” Euclid, and the Greek mathematician, physicist, and 
engineer Archimedes, made extensive use of the method of exhaustion in 
order to prove several mathematical propositions. For instance, as already 
mentioned, Archimedes used the method of exhaustion in order to 
compute the area of a circle by approximating the area of a circle from 
above and below, by circumscribing and inscribing regular polygons of an 
increasingly larger number of sides (so that sides become “infinitesimals,” 
namely, infinitely small). Moreover, Archimedes was able to calculate the 
length of various tangents to the spiral (i.e., to a curve emanating from a 
point moving farther away as it revolves around the point).  
In few words, infinitesimal calculus, or simply calculus, is concerned with 
two kinds of problems: problems of tangents to curves, and problems of 
areas or volumes of regions. Thus, having studied both of these kinds of 
problem in a rigorous and systematic way, Archimedes can be considered 
to be the first pioneer of calculus. Some other great pioneers of calculus 
are the Flemish Jesuit and mathematician Gregory of Saint Vincent (1584–
1667), the Dutch-French philosopher and mathematician René Descartes 
(1596–1650), the Italian mathematician and Jesuate Bonaventura 
Francesco Cavalieri (1598–1647), the French lawyer and amateur 
mathematician Pierre de Fermat (ca. 1607–65), the English clergyman and 
mathematician John Wallis (1616–1703), the English Christian theologian 
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and mathematician Isaac Barrow (1630–77), and the Scottish 
mathematician and astronomer James Gregory (1638–75). 
Infinitesimal calculus is primarily aimed at solving problems concerning 
“change.” Thus, infinitesimal calculus is used in many fields, including 
physics, engineering, biology, economics, statistics, and the mathematical 
modelling of social, political, military, and psychological problems. In the 
seventeenth century, infinitesimal calculus was erected as a rigorous 
framework of science as a result of, and in the context of, the 
revolutionary achievements that took place in the scientific discipline of 
celestial mechanics, whose protagonists were Nicolaus Copernicus, 
Galileo Galilei, Tycho Brahe, Johannes Kepler, and Isaac Newton. In its 
contemporary rigorous form, calculus was formulated independently in 
England by Sir Isaac Newton and in Germany by Gottfried Wilhelm 
Leibniz in the last quarter of the seventeenth century, using the algebraic 
set-up and, especially, the Cartesian set-up, which had been introduced 
and developed by their predecessors. Calculus consists of “differential 
calculus” (which is concerned with problems of tangents to curves) and 
“integral calculus” (which is concerned with problems of areas or volumes 
of regions). 
 

Limit and Continuity of a Function 
Whenever, by a known value of one quantity, we can find the value of 
another quantity, we say that there is a “functional dependence” between 
these quantities. For instance, if the length 𝑥 of the side of a square is 
known, then its area can be found by the formula 𝐴 = 𝑥ଶ. In this way, we 
specify the functional dependence between the length of the side of a 
square and its area.  
As already explained, the specification of a “numerical function” requires 
a set of numbers 𝑋 and a rule 𝑓, according to which every number 𝑥 that 
belongs to the set 𝑋 is associated with a certain number (the value of the 
function). An independent variable taking on values from the set 𝑋 is said 
to be the “argument” of the function. Given a member 𝑎 of the set 𝑋, the 
value of the function 𝑓 for the argument 𝑎 is denoted by 𝑓(𝑎).  
If a function 𝑓 is specified on a set 𝑋 , then the set 𝑋  is said to be the 
“domain” of this function, and the set of all the values of the function is 
said to be its “range.” As already mentioned, a function 𝑓: 𝑋 → 𝑌 assigns 
to each element 𝑥 ∈ 𝑋 exactly one element 𝑦 ∈ 𝑌.  
We can read the expression 𝑦 = 𝑓(𝑥) as follows: “𝑦 is a function of 𝑥,” 
meaning that, as the variable 𝑥 varies, the variable 𝑦 also varies according 
to some rule 𝑓 ; in this case, 𝑦  is the dependent variable, and 𝑥  is the 
independent variable.  
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Analytic representation of a function: Assume that we are given a 
collection of operations that must be performed with the argument 𝑥 in 
order to obtain a function value. Then the function is said to be represented 
by an “analytic expression.” For instance, consider the following 
functions: 𝑦 = 𝑥ଶ + 𝑥 + 1 , 𝑥 ∈ [0,1] ; 𝑦 = 𝑥ଶ + 𝑥 + 1 , 𝑥 ∈ [−2,3] ; and 
𝑦 = 𝑥ଶ + 𝑥 + 1, 𝑥 ∈ (−∞, +∞). Even though the analytic expressions of 
these functions are the same in form, we have three different functions, 
because they are defined on three different sets (their domains are 
different). 
Graphical representation of a function: Assume that a function 𝑓 is given 
by an analytic expression 𝑓(𝑥), that is, 𝑦 = 𝑓(𝑥) with 𝑥 ∈ 𝑋, where 𝑋 is 
the corresponding real interval, on which 𝑓 is defined. The “graph” of the 
function 𝑓 is a set of points of the coordinate plane that have coordinates 
൫𝑥, 𝑓(𝑥)൯, where 𝑥 ∈ 𝑋. If a function is even, then its graph is symmetric 
with respect to the axis of ordinates. If a function is odd, then its graph is 
symmetric about the origin.  
A function 𝑦 = 𝑓(𝑥) is defined to be “increasing” on its domain if, for any 
two of its points 𝑥ଵ  and 𝑥ଶ  such that 𝑥ଵ < 𝑥ଶ , the inequality 𝑓(𝑥ଵ) <
𝑓(𝑥ଶ) is satisfied; in other words, if to a greater value of the argument 
there corresponds a greater value of the function. A function 𝑦 = 𝑓(𝑥) is 
defined to be “decreasing” on its domain if, for any two of its points 𝑥ଵ 
and 𝑥ଶ  such that 𝑥ଵ < 𝑥ଶ , the inequality 𝑓(𝑥ଵ) > 𝑓(𝑥ଶ)  is satisfied; in 
other words, if a smaller value of the function corresponds to a greater 
value of the argument.  
A function 𝑓 is said to have a “period” 𝑇 if, for any value of 𝑥 for which 𝑓 
is defined, the following equalities hold: 
𝑓(𝑥 − 𝑇) = 𝑓(𝑥) = 𝑓(𝑥 + 𝑇). 
The aforementioned definition implies that, if a function 𝑓 with period 𝑇 is 
defined at the point 𝑥, it is also defined at the points 𝑥 + 𝑇 and 𝑥 − 𝑇. If a 
function 𝑓 has a non-zero period 𝑇, then it is said to be “periodic.” For 
instance, if time is measured in years, then the distance from the Earth to 
the Sun is given by a periodic function whose period is equal to 1. 
One of the simplest functions is the “linear function” (or “linear 
equation”), where 𝑦 = 𝑚𝑥 + 𝑐 . In this, 𝑦  and 𝑥  are “variables” (that is, 
they can take on many values), while 𝑚 and 𝑐 are “constants” (that is, they 
have fixed values). As already explained, if we plot 𝑦  against 𝑥  on a 
diagram, the result will be a straight line, hence the name. A “non-linear 
function” (“non-linear equation”) is any other sort of function (equation). 
For instance, 𝑦 = 𝑥ଶ is a quadratic equation that is downward-sloping for 
negative values of 𝑥  and upward-sloping for positive values of 𝑥 . 
Functions come in many forms, and they are very useful as models of the 
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real world when they are simple or can be satisfactorily approximated by, 
or manipulated into simple forms. 
The concept of a limit, or a limiting process, is central to all mathematical 
analysis. In fact, one can argue that, from the perspective of mathematical 
analysis, “analysis” means taking limits. In his book entitled Cours 
d’analyse, the French mathematician Augustin-Louis Cauchy (1789–
1857), one of the founders of modern mathematical analysis, explained the 
concept of a limit of a function in a clear, formal, and arithmetic, rather 
than geometric, way by arguing as follows: “when the successive values 
attributed to a variable approach indefinitely a fixed value so as to end by 
differing from it by as little as one wishes, this last is called the limit of all 
the others” (quoted in: Carl B. Boyer, The History of Calculus and Its 
Conceptual Development, New York: Dover, 1959, p. 272). 
Consider an arbitrary function 𝑓(𝑥)  defined at all values in an open 
interval of the number line ℝ containing a point 𝑥଴ , with the possible 
exception of 𝑥଴ itself, and let 𝐿 be a real number. The “limit of a function” 
𝑓(𝑥)  at a point 𝑥଴  is 𝐿  if and only if the values of 𝑥  (where 𝑥 ≠ 𝑥଴) 
approach the number 𝑥଴  (notice that 𝑓(𝑥଴)  may not be defined, since, 
according to the definition of a limit, 𝑥 tends to 𝑥଴, but 𝑥 never becomes 
equal to 𝑥଴). In other words, as 𝑥 gets closer to 𝑥଴, 𝑓(𝑥) gets closer and 
stays close to 𝐿; symbolically: 
𝑙𝑖𝑚௫→௫బ

𝑓(𝑥) = 𝐿.  
Remark: Let 𝑎 be a real number and 𝑐 a constant. Then 
𝑙𝑖𝑚௫→௔𝑥 = 𝑎, and 
𝑙𝑖𝑚௫→௔𝑐 = 𝑐. 
Let us recall that the distance between any two points 𝑎  and 𝑏  on the 
number line ℝ is |𝑎 − 𝑏|. Therefore, the statement 

|𝑓(𝑥) − 𝐿| < 𝜀 
means that the distance between 𝑓(𝑥) and 𝐿 is less than 𝜀 , and, by the 
definition of an absolute value, the statement 

0 < |𝑥 − 𝑎| < 𝛿 
is equivalent to the statement  

𝑎 − 𝛿 < 𝑥 < 𝑎 + 𝛿, so that 𝑥 ≠ 𝑎. 
Thus, the Cauchy epsilon-delta definition of a limit is the following: 
assume that, for all 𝑥 ≠ 𝑎, an arbitrary function 𝑓(𝑥) is defined over an 
open interval containing 𝑎. Then  

𝑙𝑖𝑚௫→௔𝑓(𝑥) = 𝐿 
if and only if, for every 𝜀 > 0 , there exists a 𝛿 > 0  such that, if 0 <
|𝑥 − 𝑎| < 𝛿 , then |𝑓(𝑥) − 𝐿| < 𝜀 . The statement (with the universal 
quantifier) “for every 𝜀 > 0” means “for every positive distance 𝜀  from 
𝐿”; the statement (with the existential quantifier) “there exists a 𝛿 > 0” 
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means that there is a positive distance 𝛿  from 𝑎 ; and the conditional 
statement “if 0 < |𝑥 − 𝑎| < 𝛿 , then |𝑓(𝑥) − 𝐿| < 𝜀” means that, if 𝑥  is 
closer than 𝛿 to 𝑎, and 𝑥 ≠ 𝑎, then the value of 𝑓(𝑥) is closer than 𝜀 to 𝐿. 
Consider a function 𝑓 whose domain is 𝐷௙. Let 𝑎 be an interior point of 
𝐷௙. Then 𝑓 is said to be “continuous at the point” 𝑎 if 
𝑙𝑖𝑚௫→௔𝑓(𝑥) exists finitely and 
𝑙𝑖𝑚௫→௔𝑓(𝑥) = 𝑓(𝑎), 
meaning: if the limit of 𝑓(𝑥) as 𝑥 tends to 𝑎 is equal to the value of 𝑓(𝑥) 
at 𝑎. If 𝑎 is a boundary point of 𝐷௙  (i.e., in this case, an endpoint of a 
closed interval), then we distinguish the following two cases:  

i. if 𝐷௙ = (𝑥ଵ, 𝑎], then 𝑓(𝑥) is said to be “continuous from the left” 
at 𝑎 if 𝑙𝑖𝑚௫→௔ష𝑓(𝑥) = 𝑓(𝑎); 

ii. if 𝐷௙ = [𝑎, 𝑥ଶ) , then 𝑓(𝑥)  is said to be “continuous from the 
right” at 𝑎 if 𝑙𝑖𝑚௫→௔శ𝑓(𝑥) = 𝑓(𝑎). 

The aforementioned definition of continuity can also be given in the 
following equivalent forms: 

(i) A function 𝑓  is continuous at 𝑎 ∈ 𝐷௙  if and only if, for every 
sequence (𝑥௡) with 𝑙𝑖𝑚௡→ஶ𝑥௡ = 𝑎, where 𝑥௡ ∈ 𝐷௙ , it holds that 
𝑙𝑖𝑚௡→ஶ𝑓(𝑥௡) = 𝑓(𝑎). An infinite sequence (𝑥௡) of real numbers 
𝑥ଵ, 𝑥ଶ, … , 𝑥௡  has a limit 𝑎  if and only if the distance |𝑥௡ − 𝑎| 
tends to zero as the indices of the terms of this sequence become 
greater than some value 𝑛଴. This means that, after a finite set of 
𝑛଴ terms of this sequence, the remaining infinitely many terms of 
the given sequence, namely, 𝑥௡బାଵ, 𝑥௡బାଶ, 𝑥௡బାଷ, … , converge 
indefinitely to the value 𝑎. The sequential definition of continuity 
was originally developed by the German mathematician Heinrich 
Eduard Heine (1821–81).  

(ii) A function 𝑓 is continuous at 𝑥 = 𝑎 ∈ 𝐷௙ if and only if:  
 ∀𝜀 > 0, ∃𝛿 > 0||𝑥 − 𝑎| < 𝛿 ⇒ |𝑓(𝑥) − 𝑓(𝑎)| < 𝜀.  

A function 𝑓 is said to be “continuous over (or on, or in) an open interval” 
(𝑥ଵ, 𝑥ଶ) if 𝑓 is continuous at every point in that interval (𝑥ଵ may be −∞, 
and/or 𝑥ଶ may be +∞). A function 𝑓 is said to be “continuous over (or on, 
or in) the closed interval” [𝑥ଵ, 𝑥ଶ] if the following conditions hold: firstly, 
𝑓 is continuous at every 𝑥 in the open interval (𝑥ଵ, 𝑥ଶ); secondly, 𝑓(𝑥ଵ) 
and 𝑓(𝑥ଶ)  both exist; and, thirdly, 𝑙𝑖𝑚௫→௫భ

శ𝑓(𝑥) = 𝑓(𝑥ଵ) , and 
𝑙𝑖𝑚௫→௫మ

ష𝑓(𝑥) = 𝑓(𝑥ଶ).  
If we compare the definition of the limit of a function with the definition 
of the continuity of a function, we realize that they have the same 
structure, but they also have the following differences:  
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i. In the case of the limit of a function (Cauchy epsilon-delta 
definition), we have 0 < |𝑥 − 𝑎| < 𝛿, or 𝑥 ≠ 𝑎, whereas, in the 
case of continuity, we have only |𝑥 − 𝑎| < 𝛿, meaning that the 
definition of continuity holds also when 𝑥 = 𝑎.  

ii. Instead of the value 𝐿 that is used in the definition of the limit of a 
function, the definition of the continuity of a function uses the 
value 𝑓(𝑎) , meaning that, in the case of the continuity of a 
function, the function must be defined at the point 𝑎. Indeed, it is 
meaningless to talk about the continuity (or the discontinuity) of a 
function at a point that does not belong to its domain of definition.  

iii. In the definition of the limit of a function (Cauchy epsilon-delta 
definition), the point 𝑎  must be an accumulation point of the 
domain of definition 𝐷௙ of the corresponding function. Therefore, 
it may not belong to 𝐷௙. In the definition of the continuity of a 
function, meanwhile, the point 𝑎 must belong to the domain of 
definition 𝐷௙ of the corresponding function.  

In intuitive terms, a function is said to be continuous if it varies with no 
abrupt breaks or jumps. Hence, points of continuity are characterized by 
the fact that, for small changes in the argument, the value of the function 
changes but little, whereas points of discontinuity are characterized by the 
fact that, for small changes in the argument, the function can change 
considerably. For instance, consider a load that is suspended on a thread 
above a table. Due to this load (supposed to be a material particle), the 
thread extends, and the distance 𝑙  from the load to the point of thread 
suspension is a function of the mass 𝑚  of the load, symbolically, 𝑙 =
𝑓(𝑚) , where 𝑚 ≥ 0 . For small changes in the mass of the load, the 
distance 𝑙 will change but little. But, if the mass of the load approaches the 
tensile strength 𝑚଴ of the thread, then a small increase in the mass of the 
load may cause a break in the thread. Thus, the distance 𝑙 will increase 
jump-wise and become equal to the distance 𝐿 from the suspension point 
to the surface of the table. On the half-closed interval [0, 𝑚଴), the graph of 
the function 𝑙 = 𝑓(𝑚) is a continuous line, and, at the point 𝑚଴, it suffers 
a discontinuity. Consequently, we get a graph consisting of two branches: 
at all points except 𝑚଴, the function 𝑙 = 𝑓(𝑚) is continuous, in the sense 
that it exhibits a smooth change. At the point 𝑚଴ , however, it has a 
discontinuity, in the sense that it exhibits a jump-wise change. In Figure 
21, we see an example of a “jump discontinuity.” 
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Figure 21: Jump Discontinuity. 
 

 
 

Differential Calculus 
Assume that a function 𝑦 = 𝑓(𝑥) is defined at the points 𝑥 and 𝑥ଵ . The 
difference 𝑥ଵ − 𝑥  is called the “increment of the argument,” and it is 
denoted by 𝛥𝑥. The difference 𝑓(𝑥ଵ) − 𝑓(𝑥) is called the “increment of 
the function,” and it is denoted by 𝛥𝑓 or 𝛥𝑦. Therefore, 𝛥𝑥 = 𝑥ଵ − 𝑥 ⇔
𝑥ଵ = 𝑥 + 𝛥𝑥 , and 𝛥𝑓 = 𝑓(𝑥ଵ) − 𝑓(𝑥) = 𝑓(𝑥 + 𝛥𝑥) − 𝑓(𝑥) . Using this 
formula, we can compute the value of 𝛥𝑓  for any given 𝑥  and 𝛥𝑥 . 
Moreover, notice that a function 𝑦 = 𝑓(𝑥) is continuous at a point 𝑥 = 𝑎 
if and only if 𝑙𝑖𝑚௱௫→଴𝛥𝑓 = 0, where 𝛥𝑥 = 𝑥 − 𝑎 and 𝛥𝑓 = 𝑓(𝑥) − 𝑓(𝑎). 
Assume that, for function 𝑦 = 𝑓(𝑥), at a given point 𝑥, there exists the 
limit of the ratio of the increment of the function, 𝛥𝑓, to the increment of 
the argument, 𝛥𝑥, provided that 𝛥𝑥 → 0. Then the function 𝑦 = 𝑓(𝑥) is 
said to be “differentiable at the point 𝑥 ,” and this limit is called the 
“derivative of the function 𝑦 = 𝑓(𝑥)” at the point 𝑥, and it is denoted by 
ௗ௙(௫)

ௗ௫
, or 𝑓ᇱ(𝑥), or 𝑦ᇱ. Symbolically: 

ௗ௙(௫)

ௗ௫
≡ 𝑓ᇱ(𝑥) ≡ 𝑦ᇱ = 𝑙𝑖𝑚௱௫→଴

௱௙

௱௫
= 𝑙𝑖𝑚௱௫→଴

௙(௫ା௱௫)ି௙(௫)

௱௫
. 

Notice that 𝑓ᇱ(𝑥) is a new function defined at every such point 𝑥 at which 
the indicated limit exists; this function is called the “derivative of the 
function 𝑦 = 𝑓(𝑥),” and it measures the rate of change of 𝑦 with regard to 
𝑥.  
Let 𝑠 = 𝑠(𝑡) denote the distance travelled by a point moving in a straight 
line on which a reference point, the unit of measurement, and the direction 
are chosen (notice that 𝑠(𝑡) is the position of the point on the straight line 
at instant 𝑡). In physics, the “average velocity” of motion during a time 
interval is defined as the ratio of the net displacement to the elapsed 
time―that is, the average velocity during the time interval from 𝑡ଵ to 𝑡ଶ is 
expressed by the quantity  
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𝑣௔௩ =
௦(௧మ)ି௦(௧భ)

௧మି௧భ
. 

If we set 𝑡ଵ = 𝑡, then we obtain 

𝑣௔௩ =
௦(௧ା௱௧)ି௦(௧)

௱௧
=

௱௦

௱௧
. 

Suppose that the average velocity of a particle is measured for a number of 
different time intervals, and that it is not constant. In other words, the 
particle under consideration is moving with varying velocity. We then 
have to compute the velocity of the particle at any given instant of time. 
This is called the instantaneous velocity. The (numerical value of the) 
“instantaneous velocity,” or the (numerical value of the) velocity at instant 
𝑡, is defined as the limit of the average velocity of motion during the time 
interval [𝑡, 𝑡 + 𝛥𝑡] provided that 𝛥𝑡 → 0, symbolically: 

𝑣௜௡௦௧ = 𝑙𝑖𝑚௱௧→଴
௱௦

௱௧
, 

which is the derivative of displacement 𝑠 = 𝑠(𝑡) with respect to time,  

𝑣௜௡௦௧ =
ௗ௦(௧)

ௗ௧
. 

Similarly, we can compute the instantaneous rate of change of any other 
physical or (quantifiable) socio-economic phenomenon with respect to its 
independent variable. For instance, in economics, inflation is defined as 
the derivative of price (as a function of time) with respect to time; the rate 
of change of demand with respect to price is defined as the derivative of 
the quantity demanded (as a function of price) with respect to price 
( 𝑑𝑄/𝑑𝑃 , where 𝑄 = 𝑓(𝑃) ); and the point price-elasticity of demand, 
which measures the degree to which the desire for something changes as 
its price changes within the same demand curve, is equal to the absolute 
value of the derivative of the quantity demanded with respect to price 

multiplied by the point’s price divided by its quantity (ቚ
ௗொ

ௗ௉
ቚ

௉

ொ
).   

Given a function 𝑦 = 𝑓(𝑥), we realize that, in order to find the rate of 
change of 𝑦 with regard to 𝑥 at a particular point, we need to find the slope 
of the tangent line to the curve at that point. In differential calculus, a main 
objective is to try to understand tangents to curves, as illustrated in 
Figure5-22. Hence, it is important to define a tangent line to an arbitrary 
plane curve in a rigorous way. A tangent line cannot be rigorously defined 
as a straight line having only one common point with the corresponding 
curve. In order to define a tangent line to an arbitrary plane curve in a 
rigorous way, we must use the concept of a limit. Let 𝐿 be an arc of some 
curve, and 𝑀଴ be a point of this curve. We draw a secant 𝑀଴𝑁 through the 
point 𝑀଴. If the point 𝑁, moving in the curve, approaches the point 𝑀଴, 
then the secant 𝑀଴𝑁 turns about the point 𝑀଴. Thus, it may so happen that, 
as the point 𝑁 approaches 𝑀଴, the secant tends to a certain limit position 
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𝑀଴𝑇, so that 𝑀଴𝑇 is referred to as the “secant” to the curve 𝐿 at the point 
𝑀଴, as illustrated in Figure 22. Then the “tangent line” to the curve 𝐿 at the 
point 𝑀଴ is defined as the limit position of the secant 𝑀଴𝑁 as 𝑁 → 𝑀଴. 
 
Figure 22: A tangent line to a curve.  
 

 
 
Let us try to compute the slope of the tangent line for the case when the 
curve 𝐿 is the graph of a certain function 𝑦 = 𝑓(𝑥). Let 𝑀଴ be a point of 
the graph with abscissa 𝑥଴  and ordinate 𝑦଴ = 𝑓(𝑥଴). Assuming that the 
tangent line to the curve 𝐿 at the point 𝑀଴ does exist, we take one more 
point 𝑁(𝑥଴ + 𝛥𝑥, 𝑦଴ + 𝛥𝑦) on the curve, as illustrated in Figure 23, and 
we draw a straight line through the points 𝑀଴ and 𝑁. If 𝜑 is the slope of 
this secant to the positive direction of the 𝑥-axis, then 

|𝐵𝑁| = 𝛥𝑦, |𝑀଴𝐵| = 𝛥𝑥, and 𝑡𝑎𝑛𝜑 =
|஻ே|

|ெబ஻|
=

௱௬

௱௫
, 

so that the slope of this secant is 𝑘௧௔௡ = 𝑙𝑖𝑚ே→ெబ
𝑡𝑎𝑛𝜑 = 𝑙𝑖𝑚௱௫→଴𝑡𝑎𝑛𝜑. 

If we denote the slope of the tangent line to the axis of abscissas with 𝜃, as 
shown in Figure 23, then the slope of the tangent line is 

𝑘௧௔௡ = 𝑡𝑎𝑛𝜃 = 𝑙𝑖𝑚௱௫→଴𝑡𝑎𝑛𝜑 = 𝑙𝑖𝑚௱௫→଴
௱௬

௱௫
. 
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Figure 23: The slope of a tangent line. 
 

 
 
Consequently, in order to draw a non-vertical tangent line to the graph of 
the function 𝑦 = 𝑓(𝑥)  at a point with abscissa 𝑥଴ , it is necessary and 

sufficient that, at this point, the limit 𝑙𝑖𝑚௱௫→଴
௱௬

௱௫
 exists finitely; in fact, this 

limit is equal to the slope of the tangent line. In other words, we create an 
infinite sequence of slopes, and then we say that the slope of the given 
tangent line is the infinite limit of this sequence. Hence, infinitesimal 
calculus provides us with abstract objects (such as a tangent to a curve) at 
which only infinite tasks can arrive through the concept of a limit. The 
concept of a limit has a deep philosophical significance, because it secures 
the theoretical convenience of being able to do an infinite number of tasks 
through a theoretical concept—namely, that of a limit—without actually 
doing each one of them, which would be practically impossible. This 
abstraction underpins the foundations of calculus as it was articulated by 
Newton and Leibniz in the seventeenth century. In view of the foregoing, 
the slope of the tangent line to the graph of a function 𝑦 = 𝑓(𝑥) at the 
point 𝑥଴ is equal to the value of the derivative at the point of tangency; 
symbolically: 𝑘௧௔௡ = 𝑓ᇱ(𝑥) . This is the geometric significance of the 
derivative. 
Basic rules of differentiation: Let 𝑋 ⊆ ℝ be an interval, 𝑎 ∈ 𝑋, and 𝑓: 𝑋 →
ℝ  and 𝑔: 𝑋 → ℝ  be functions that are differentiable at 𝑎 . Then the 
following relations hold: 
If 𝑘 ∈ ℝ, then the function 𝑘𝑓 is differentiable at 𝑎, and 

(𝑘𝑓)ᇱ(𝑎) = 𝑘𝑓ᇱ(𝑎). 
The function 𝑓 + 𝑔 is differentiable at 𝑎, and 

(𝑓 + 𝑔)ᇱ(𝑎) = 𝑓ᇱ(𝑎) + 𝑔ᇱ(𝑎). 
The function 𝑓 ∙ 𝑔 is differentiable at 𝑎, and 

(𝑓 ∙ 𝑔)ᇱ(𝑎) = 𝑓ᇱ(𝑎)𝑔(𝑎) + 𝑓(𝑎)𝑔ᇱ(𝑎).  

If 𝑔(𝑎) ≠ 0, then the function 
௙

௚
 is differentiable at 𝑎, and 
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ቀ
௙

௚
ቁ

ᇱ

(𝑎) =
௙ᇲ(௔)௚(௔)ି௙(௔)௚ᇲ(௔)

௚(௔)మ . 

Power rule:  
ௗ

ௗ௫
𝑥௡ = 𝑛𝑥௡ିଵ, where 𝑛 is an arbitrary real number. 

Obviously, 
ௗ

ௗ௫
(𝑐) = 0 for any constant 𝑐; and 

ௗ

ௗ௫
(𝑥) = 1 for any 𝑥 ∈ ℝ. 

Differentiation of a composite function.: ቀ𝑓൫𝑔(𝑥)൯ቁ
ᇱ

= 𝑓ᇱ൫𝑔(𝑥)൯ ∙ 𝑔ᇱ(𝑥). 

In other words, if 𝑦 = 𝑦൫𝑢(𝑥)൯, then 
ௗ௬

ௗ௫
=

ௗ௬

ௗ௨
∙

ௗ௨

ௗ௫
. 

Higher order derivatives: It is evident that the first derivative 
ௗ௬

ௗ௫
 expresses 

the rate of change of 𝑦 with respect to 𝑥 (e.g., velocity). Then 
ௗ

ௗ௫
ቀ

ௗ௬

ௗ௫
ቁ ≡

ௗమ௬

ௗ௫మ ≡ 𝑦ᇱᇱ  expresses the rate of change of the first derivative of 𝑦  with 

respect to 𝑥 (e.g., acceleration), and 
ௗయ௬

ௗ௫య ≡ 𝑦ᇱᇱᇱ ≡ 𝑦(ଷ) expresses the rate of 

change of the second derivative of 𝑦  with respect to 𝑥  (e.g., jerk). Of 

course, we can compute the 𝑛th derivative of 𝑦 = 𝑓(𝑥), denoted by 
ௗ೙௬

ௗ௫೙ ≡

𝑦(௡), where 𝑛 is called the order of the derivative.  
Basic differentiation formulas (following directly from the definition of the 
derivative of a function): 

i. 
ௗ

ௗ௫
(𝑎௡𝑥௡ + 𝑎௡ିଵ𝑥௡ିଵ + ⋯ + 𝑎ଵ𝑥 + 𝑎଴) = 𝑎௡ ∙ 𝑛𝑥௡ିଵ +

𝑎௡ିଵ ∙ (𝑛 − 1)𝑥௡ିଶ + ⋯ + 𝑎ଵ. 

ii. 
ௗ

ௗ௫
(𝑒௫) = 𝑒௫. 

iii. 
ௗ

ௗ௫
(𝑙𝑛𝑥) =

ଵ

௫
. 

iv. 
ௗ

ௗ௫
(𝑎௫) = 𝑎௫𝑙𝑛𝑎. 

v. 
ௗ

ௗ௫
(𝑥௫) = 𝑥௫(1 + 𝑙𝑛𝑥) ; notice that 𝑦 = 𝑥௫ ⇔ 𝑙𝑛𝑦 = 𝑙𝑛𝑥௫ =

𝑥𝑙𝑛𝑥 (and we apply the product rule for derivatives). 

vi. 
ௗ

ௗ௫
(𝑙𝑜𝑔௔𝑥) =

ଵ

௫௟௡௔
. 

vii. 
ௗ

ௗ௫
(𝑠𝑖𝑛𝑥) = 𝑐𝑜𝑠𝑥; and 

ௗ௔௥௖௦௜௡௫

ௗ௫
=

ଵ

ඥଵି௫మ
 for  −1 < 𝑥 < 1. 

viii. 
ௗ

ௗ௫
(𝑐𝑜𝑠𝑥) = −𝑠𝑖𝑛𝑥; and 

ௗ௔௥௖௖௢௦௫

ௗ௫
=

ିଵ

ඥଵି௫మ
 for −1 < 𝑥 < 1. 

ix. 
ௗ

ௗ௫
(𝑡𝑎𝑛𝑥) =

ଵ

௖௢௦మ௫
= 𝑠𝑒𝑐ଶ𝑥; and 

ௗ௔௥௖௧௔௡௫

ௗ௫
=

ଵ

ଵା௫మ. 

x. 
ௗ

ௗ௫
(𝑐𝑜𝑡𝑥) = −

ଵ

௦௜௡మ௫
= −𝑐𝑠𝑐ଶ𝑥; and 

ௗ௔௥௖௖௢௧௫

ௗ௫
=

ିଵ

ଵା௫మ. 

Investigation of the behavior of a function using differential calculus: If a 
function 𝑦 = 𝑓(𝑥) is differentiable on an interval (𝑎, 𝑏), then: 
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i. 𝑓 is increasing on the interval (𝑎, 𝑏) if and only if its derivative is 
non-negative in this interval; symbolically: 𝑓ᇱ(𝑥) ≥ 0 ∀ 𝑥 ∈
(𝑎, 𝑏); 

ii. 𝑓 is decreasing on the interval (𝑎, 𝑏) if and only if its derivative is 
non-positive in this interval; symbolically: 𝑓ᇱ(𝑥) ≤ 0 ∀ 𝑥 ∈
(𝑎, 𝑏). 

Geometric significance: A differentiable function increases where its 
graph has positive slopes, and decreases where its graph has negative 
slopes. If 𝑓ᇱ(𝑥) = 0, then 𝑓(𝑥) is constant (in a sense, it increases and 
decreases simultaneously).   
We often have to solve optimization problems―that is, to choose from 
various variants the best one for some reasons. For instance, builders must 
know how to select the dimensions of a square beam in order to ensure its 
best tensile strength, aircraft builders must know what orbit ensures 
minimum fuel consumption, agronomists must know what seeding rate 
will guarantee the richest harvest, logistics managers must know how to 
minimize the transportation cost, production managers must know how to 
minimize costs and maximize utility, artillery officers must know what 
inclination of a gun tube will result in the greatest range of fire, and so on. 
Most optimization problems reduce to finding the extreme values, 
meaning the greatest and the lowest values, of a function.  
Assume that a function 𝑦 = 𝑓(𝑥) is continuous at a point 𝑥 = 𝑐, and that 
there exists a neighborhood (𝑐 − 𝛿, 𝑐 + 𝛿)  of this point such that the 
inequality 𝑓ᇱ(𝑥) > 0 holds in the interval  (𝑐 − 𝛿, 𝑐), and the inequality 
𝑓ᇱ(𝑥) < 0  holds in the interval (𝑐, 𝑐 + 𝛿) . Then 𝑥 = 𝑐  is a “point of 
maximum” for 𝑓(𝑥) . In other words, if 𝑓(𝑥)  increases in the interval 
(𝑐 − 𝛿, 𝑐) to the left of 𝑐, and decreases in the interval (𝑐, 𝑐 + 𝛿) to the 
right of 𝑐, then 𝑥 = 𝑐 is a “point of maximum” for 𝑓(𝑥).  
On the other hand, assume that a function 𝑦 = 𝑓(𝑥) is continuous at a 
point 𝑥 = 𝑐 , and that, for some 𝛿 > 0 , it holds that 𝑓ᇱ(𝑥) < 0  in the 
interval (𝑐 − 𝛿, 𝑐), and 𝑓ᇱ(𝑥) > 0 in the interval (𝑐, 𝑐 + 𝛿). Then 𝑥 = 𝑐 is 
a “point of minimum” for 𝑓(𝑥). In other words, if 𝑓(𝑥) decreases in the 
interval (𝑐 − 𝛿, 𝑐) to the left of 𝑐, and increases in the interval (𝑐, 𝑐 + 𝛿) 
to the right of 𝑐, then 𝑥 = 𝑐 is a “point of minimum” for 𝑓(𝑥).  
Consequently, we obtain the following algorithm for investigating a 
function 𝑦 = 𝑓(𝑥) for an extremum (maximum or minimum): 

i. Find the derivative 𝑓ᇱ(𝑥). 
ii. Find the critical points, that is, the points at which the function is 

continuous and the derivative 𝑓ᇱ(𝑥) is either equal to zero or does 
not exist.  
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iii. Consider the neighborhood of each critical point found that does 
not contain another critical point and investigate the sign of the 
derivative to the left and to the right of the critical point under 
consideration.  

iv. Using the aforementioned sufficient conditions for a maximum 
and a minimum, draw relevant conclusions (when passing through 
a maximum, the derivative changes sign from plus to minus, 
whereas, when passing through a minimum, the derivative 
changes sign from minus to plus). 

For instance, let us investigate the function 𝑓(𝑥) = 𝑥ଷ − 9𝑥ଶ + 24𝑥 for an 
extremum. We work as follows: 

i. We have 𝑓ᇱ(𝑥) = 3𝑥ଶ − 18𝑥 + 24.  
ii. Equating the derivative to zero, we find the two roots (solutions) 

of the equation 3𝑥ଶ − 18𝑥 + 24 = 0, namely: 𝑥ଵ = 2 and 𝑥ଶ = 4 
(the curve has horizontal tangents at these values). In this case, the 
derivative is defined everywhere, and, therefore, there are no 
other critical points. 

iii. We study the behavior of the function in a neighborhood of the 
point 𝑥ଵ = 2 and in a neighborhood of the point 𝑥ଶ = 4. We see 
the following: when passing through the point 𝑥ଵ = 2 , the 
derivative changes sign from plus to minus, whereas, when 
passing through the point 𝑥ଶ = 4 , the derivative changes sign 
from minus to plus. 

iv. At 𝑥ଵ = 2, the function has a maximum 𝑦௠௔௫ = 20. At 𝑥ଶ = 4, 
the function has a minimum 𝑦௠௜௡ = 16. 

Notice that, if 𝑥 is a critical point of 𝑓(𝑥) and the second derivative of 
𝑓(𝑥) is positive (resp. negative), then 𝑥 is “local minimum” (resp. “local 
maximum”) of 𝑓(𝑥). 
A function 𝑓(𝑥) is said to be “concave up” on an interval 𝑋  if all the 
tangents to 𝑓(𝑥) on 𝑋 are below the graph of 𝑓(𝑥), as shown, for instance, 
in Figure 24 (i.e., it “opens” up). A function 𝑓(𝑥) is said to be “concave 
down” on an interval 𝑋 if all the tangents to 𝑓(𝑥) on 𝑋 are above the graph 
of 𝑓(𝑥), as shown, for instance, in Figure 25 (i.e., it “opens” down).  
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Figure 24: A Concave-Up Function. 

 
 

Figure 25: A Concave-Down Function. 
 

 
 
Let 𝑓 be a function differentiable on (𝑎, 𝑏). (i) If 𝑓ᇱ is increasing (namely, 
if 𝑓ᇱᇱ(𝑥) > 0  on (𝑎, 𝑏) ), then 𝑓  is concave up on (𝑎, 𝑏) . (ii) If 𝑓ᇱ  is 
decreasing (namely, if 𝑓ᇱᇱ(𝑥) < 0 on (𝑎, 𝑏)), then 𝑓 is concave down on 
(𝑎, 𝑏). (iii) If 𝑓ᇱ is constant, then the graph of 𝑓 has no concavity.  
If 𝑓: (𝑎, 𝑏) → ℝ changes its direction of concavity at 𝑥଴ , then the point 
(𝑥଴, 𝑓(𝑥଴)) is said to be a “point of inflection.” In other words, 𝑥଴  is a 
point of inflection if 𝑥଴ ∈ (𝑎, 𝑏) so that either 𝑓 is concave down in (𝑎, 𝑥଴) 
and concave up in (𝑥଴, 𝑏), or 𝑓 is concave up in (𝑎, 𝑥଴) and concave down 
in (𝑥଴, 𝑏).  
Rolle’s Theorem: Let 𝑓: [𝑎, 𝑏] → ℝ be a function satisfying the following 
conditions: 

i. 𝑓 is continuous on the closed interval [𝑎, 𝑏], 
ii. 𝑓 is differentiable on the open interval (𝑎, 𝑏), and 
iii. 𝑓(𝑎) = 𝑓(𝑏).  

Then there exists at least one point 𝑐 ∈ (𝑎, 𝑏) such that 𝑓ᇱ(𝑐) = 0.  
Geometric interpretation of Rolle’s Theorem: Under the above conditions, 
there exists a point 𝑐 at which the tangent line to the graph of 𝑦 = 𝑓(𝑥) is 
parallel to the 𝑥-axis, as shown in Figure 26. In particular, conditions (i) 
and (ii) imply that the curve 𝑦 = 𝑓(𝑥) is continuous from 𝑥 = 𝑎 to 𝑥 = 𝑏, 
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and it has a definite tangent at each point between 𝑥 = 𝑎 and 𝑥 = 𝑏; and 
condition (iii) implies that the ordinates at the endpoints 𝑎 and 𝑏 are equal.  
Algebraic interpretation of Rolle’s Theorem: Since, according to condition 
(iii), 𝑓(𝑎) = 𝑓(𝑏) , let 𝑓(𝑎) = 𝑓(𝑏) = 0 . Then Rolle’s Theorem means 
that, if 𝑓(𝑥) is a polynomial in 𝑥 , and if 𝑎  and 𝑏  are two roots of the 
equation 𝑓(𝑥) = 0 , then the equation 𝑓ᇱ(𝑥) = 0  has at least one root 
between 𝑎 and 𝑏. In fact, the French mathematician Michel Rolle, after 
whom the above theorem is named, proved the given theorem in 1691 only 
in the case of polynomial functions, and a general proof of this theorem 
was achieved and published by Augustin-Louis Cauchy in 1823. The name 
“Rolle’s Theorem” was first used by the German mathematician, logician, 
psychologist, and philosopher Moritz Wilhelm Drobisch in the 1830s. 
 
Figure 26: Rolle’s Theorem. 
 

 
 
In mathematical analysis, the mean value theorems play a very important 
role, because they examine the relationship between the values of a 
function and the values of the derivative of the given function. The Italian-
French mathematician and astronomer Joseph-Louis Lagrange (1736–
1813) has proved the following mean value theorem, which allows us to 
express the increment of a function on an interval through the value of the 
derivative at an intermediate point of the corresponding segment: 
Lagrange’s Mean Value Theorem: If 𝑓: [𝑎, 𝑏] → ℝ  is a function 
continuous on [𝑎, 𝑏] and differentiable on (𝑎, 𝑏), then there exists a 𝑐 ∈

(𝑎, 𝑏) such that 𝑓ᇱ(𝑐) =
௙(௕)ି௙(௔)

௕ି௔
. 

Geometric interpretation of Lagrange’s Mean Value Theorem: As shown 
in Figure 27, Lagrange’s Mean Value Theorem implies that the slope of 
the chord passing through the points of the graph corresponding to the 
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ends of the segment 𝑎 and 𝑏 is equal to 𝑘 = 𝑡𝑎𝑛𝜃 =
௙(௕)ି௙(௔)

௕ି௔
, and then 

there exists a point 𝑥 = 𝑐  inside the closed interval [𝑎, 𝑏] such that the 
tangent to the graph at 𝑥 = 𝑐 is parallel to the chord. In other words, if a 
function 𝑓 is continuous on the closed interval [𝑎, 𝑏] and differentiable on 
the open interval (𝑎, 𝑏), then there exists a point 𝑐 in the interval (𝑎, 𝑏) 
such that 𝑓ᇱ(𝑐)  is equal to the function’s average rate of change over 
[𝑎, 𝑏]. 
 
Figure 27: Lagrange’s Mean Value Theorem. 
 

 
 
For instance, given 𝑓(𝑥) = 𝑥ଶ + 𝑥 + 1, if we are asked to find the point 𝑐 
at which 𝑓ᇱ(𝑥) gets its mean value over [0,2], then we work as follows: 
we confirm that the hypotheses of Lagrange’s Mean Value Theorem are 

satisfied, and, therefore, ∃𝑐 ∈ (𝑎, 𝑏)|
௙(௕)ି௙(௔)

௕ି௔
= 𝑓ᇱ(𝑐) ⇒

௙(ଶ)ି௙(଴)

ଶି଴
= 3 =

𝑓ᇱ(𝑐) = 2𝑐 + 1 ⇒ 𝑐 = 1. 
Optimization: (i) If we are enclosing a rectangular field (whose length is 𝑥 
and whose width is 𝑦) with 100 𝑓𝑡 of fence material, and one side (𝑥) of 
the field is a building, then we can determine the dimensions that will 
maximize the enclosed area as follows: we have to maximize the function 
𝐴 = 𝑥𝑦 subject to the constraint of 𝑥 + 2𝑦 = 100. Hence, 𝑥 = 100 − 2𝑦, 
and then 𝐴 = (100 − 2𝑦)𝑦 = 100𝑦 − 2𝑦ଶ. We differentiate and find the 
critical point(s). In fact, 𝐴ᇱ = 100 − 4𝑦; thus, the critical point is 𝑦 = 25, 
and this is a maximum, since 𝐴ᇱᇱ(25) < 0. Finally, we find 𝑥 as follows: 
𝑥 = 100 − 2(25) = 50. Consequently, the required dimensions are 50 ×
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25. (ii) We can determine the points on 𝑦 = 𝑥ଶ + 1 that are closest to the 
point (0,2)  as follows: we have to minimize the distance function 𝑓 =
𝑑ଶ = (𝑥 − 0)ଶ + (𝑦 − 2)ଶ  subject to the constraint of  𝑦 = 𝑥ଶ + 1 . 
Hence, 𝑥ଶ = 𝑦 − 1 , and then the distance function becomes 𝑓 = 𝑦ଶ −
3𝑦 + 3. We differentiate and find the critical point(s). In fact, 𝑓ᇱ = 2𝑦 −

3; thus, the critical point is 𝑦 =
ଷ

ଶ
, and this is a minimum, since 𝑓ᇱᇱ ቀ

ଷ

ଶ
ቁ >

0 . Finally, we find 𝑥  as follows: 𝑥ଶ =
ଷ

ଶ
− 1 =

ଵ

ଶ
⇒ 𝑥 = ±

ଵ

√ଶ
. 

Consequently, the points on 𝑦 = 𝑥ଶ + 1 that are closest to the point (0,2) 

are ቀ
ଵ

√ଶ
,

ଷ

ଶ
ቁ and ቀ−

ଵ

√ଶ
,

ଷ

ଶ
ቁ. 

The curvature of a curve: By the term “curvature,” we refer to the measure 
of how sharply a curve bends. If 𝑦 = 𝑓(𝑥)  is a plane curve, then the 
curvature at any point 𝑃(𝑥, 𝑦) is expressed in terms of the first and the 
second derivatives of the function 𝑓(𝑥) by the formula 

𝐾 =
|𝑓ᇱᇱ(𝑥)|

[1 + (𝑓ᇱ(𝑥))ଶ]
య

మ

 

where 𝐾 characterizes the speed of rotation of the tangent to the curve at 
the given point. Curvature is one of the key concepts of differential 
geometry. Differential geometry is a combination of calculus and analytic 
geometry applied to curves and surfaces. The pioneers of differential 
geometry are C. Huygens, A. C. Clairaut, L. Euler, A.-L. Cauchy, and G. 
Monge. In the twentieth century, curvature played a very important role in 
the development of modern physics due to the theory of relativity. 
 

Integral Calculus 
As already mentioned, in calculus, we start with two general questions 
about functions. Firstly, how steep is a function at a point? Secondly, what 
is the area underneath a graph over some region? The first question is 
answered using a tool called the “derivative.” In other words, the 
derivative measures the rate of change of a function at a point. The second 
question is answered using a tool called the “integral.” 
Integration can be construed as the inverse of differentiation. Let 𝑓: 𝐼 → ℝ 
be a function, where 𝐼  is an interval; in fact, 𝐼  may have one of the 
following forms: 
[𝑎, 𝑏], [𝑎, 𝑏), (𝑎, 𝑏], (𝑎, 𝑏), [𝑎, +∞), (𝑎, +∞), (−∞, 𝑏], (−∞, 𝑏), (−∞, +∞) 
where 𝑎, 𝑏 ∈ ℝ.  
If 𝐹: 𝐼 → ℝ is a function such that 𝐹ᇱ(𝑥) = 𝑓(𝑥) ∀𝑥 ∈ 𝐼, then 𝐹 is called 
the “antiderivative” of 𝑓 in 𝐼, and it is denoted by  
𝐹(𝑥) = ∫ 𝑓(𝑥)𝑑𝑥, where 𝑥 ∈ 𝐼, 



Nicolas Laos 140

according to Leibniz’s notation. In other words, ∫ 𝑓(𝑥)𝑑𝑥 = 𝐹(𝑥) + 𝑐 if 
and only if [𝐹(𝑥) + 𝑐]ᇱ = 𝑓(𝑥) . The aforementioned definition implies 
that the “indefinite integral” of a given function with respect to 𝑥 is a new 
function plus a constant if and only if the derivative of the new function 
and of the constant equals the given function. Thus, differentiation can be 
used in order to verify the result of an integral.  
Examples: 

i. ∫ 𝑎𝑑𝑥 = 𝑎𝑥 + 𝑐, because (𝑎𝑥 + 𝑐)ᇱ = 𝑎; 

ii. ∫ 𝑥௡𝑑𝑥 =
௫೙శభ

௡ାଵ
+ 𝑐 over the following intervals: (i) 𝑛 ≠ −1, 𝑥 >

0 ; (ii) 𝑛 ≠ −1, 𝑥 < 0 ; and (iii) 𝑛 ≥ 0, 𝑥 ∈ ℝ . For instance, 

∫ √𝑥𝑑𝑥 = ∫ 𝑥
ଵ

ଶൗ 𝑑𝑥 =
௫

య
మൗ

య

మ

+ 𝑐 =
ଶ

ଷ
𝑥

ଷ
ଶൗ + 𝑐, and ∫ 𝑥𝑑𝑥 =

௫మ

ଶ
+ 𝑐. 

If 𝑛 = −1, then ∫ 𝑥௡𝑑𝑥 = 𝑙𝑛|𝑥| + 𝑐; i.e., ∫
ௗ௫

௫
= 𝑙𝑛|𝑥| + 𝑐; 

iii. ∫ 𝑎௫𝑑𝑥 =
௔ೣ

௟௡௔
+ 𝑐; 

iv. ∫ 𝑙𝑛𝑎𝑥𝑑𝑥 = 𝑥(𝑙𝑛𝑎𝑥 − 1) + 𝑐; 

v. ∫ 𝑙𝑜𝑔௔ 𝑥𝑑𝑥 = 𝑥𝑙𝑜𝑔௔𝑥 −
௫

௟௡௔
=

௫௟௡௫ି

௟௡௔
; 

vi. ∫ 𝑠𝑖𝑛𝑥𝑑𝑥 = −𝑐𝑜𝑠𝑥 + 𝑐; 
vii. ∫ 𝑐𝑜𝑠𝑥𝑑𝑥 = 𝑠𝑖𝑛𝑥 + 𝑐; 

viii. ∫ 𝑡𝑎𝑛𝑥𝑑𝑥 = −𝑙𝑛|𝑐𝑜𝑠𝑥| + 𝑐  (notice that ∫ 𝑡𝑎𝑛𝑥𝑑𝑥 = ∫
௦௜௡௫

௖௢௦௫
𝑑𝑥 

and set 𝑢 = 𝑐𝑜𝑠𝑥  and 𝑑𝑢 = −𝑠𝑖𝑛𝑥𝑑𝑥 , so that ∫
௦௜௡௫

௖௢௦௫
𝑑𝑥 =

− ∫
ௗ௨

௨
= −𝑙𝑛|𝑢| + 𝑐, where 𝑢 = 𝑐𝑜𝑠𝑥). 

ix. ∫ 𝑐𝑜𝑡𝑥𝑑𝑥 = 𝑙𝑛|𝑠𝑖𝑛𝑥| + 𝑐. 
Let 𝑓: 𝐼 → ℝ and 𝑔: 𝐼 → ℝ be two functions. If their indefinite integrals 
exist over 𝐼, then there exists the indefinite integral of 𝑎𝑓 + 𝑏𝑔, where  𝑎 
and 𝑏 are constants, and  
∫[𝑎𝑓(𝑥) + 𝑏𝑔(𝑥)]𝑑𝑥 = 𝑎 ∫ 𝑓(𝑥)𝑑𝑥 + 𝑏 ∫ 𝑔(𝑥)𝑑𝑥. 
If the integral includes the expression √𝑎ଶ − 𝑥ଶ, then we set 𝑥 = |𝑎|𝑠𝑖𝑛𝜃 
or 𝑥 = |𝑎|𝑐𝑜𝑠𝜃 , so that: (i) if 𝑥 = |𝑎|𝑠𝑖𝑛𝜃 , then 𝑑𝑥 = |𝑎|𝑐𝑜𝑠𝜃𝑑𝜃  and 
√𝑎ଶ − 𝑥ଶ = |𝑎|𝑐𝑜𝑠𝜃 ; (ii) if 𝑥 = |𝑎|𝑐𝑜𝑠𝜃 , then 𝑑𝑥 = −|𝑎|𝑠𝑖𝑛𝜃𝑑𝜃  and 
√𝑎ଶ − 𝑥ଶ = |𝑎|𝑠𝑖𝑛𝜃. 
If the integral includes the expression √𝑎ଶ + 𝑥ଶ, then we set 𝑥 = |𝑎|𝑡𝑎𝑛𝜃 

or 𝑥 = |𝑎|𝑐𝑜𝑡𝜃. If 𝑥 = |𝑎|𝑡𝑎𝑛𝜃, then 𝑑𝑥 =
|௔|

௖௢௦మఏ
𝑑𝜃 and √𝑎ଶ + 𝑥ଶ =

|௔|

௖௢௦ఏ
. 

If the integral includes the expression √𝑥ଶ − 𝑎ଶ, then we set 𝑥 = |𝑎|
ଵ

௖௢௦ఏ
, 

so that 𝑑𝑥 = |𝑎|
௦௜

௖௢௦మఏ
𝑑𝜃 and √𝑥ଶ − 𝑎ଶ = |𝑎|

௦௜௡ఏ

௖௢
= |𝑎|𝑡𝑎𝑛𝜃. 

If the integral includes the expression √𝑎𝑥 + 𝑏, then we set √𝑎𝑥 + 𝑏 = 𝑡. 
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Integration by parts: ∫ 𝑢𝑑𝑣 = 𝑢𝑣 − ∫ 𝑣𝑑𝑢, 
where: 𝑢 = 𝑢(𝑥) and 𝑑𝑢 = 𝑢ᇱ(𝑥)𝑑𝑥 while 𝑣 = 𝑣(𝑥) and 𝑑𝑣 = 𝑣ᇱ(𝑥)𝑑𝑥. 
For instance, given the integral ∫ 𝑥𝑒௫𝑑𝑥, we set 𝑢 = 𝑥 and 𝑑𝑣 = 𝑒௫𝑑𝑥 . 
Then 𝑑𝑢 = 𝑑𝑥  and 𝑣 = ∫ 𝑒௫𝑑𝑥 = 𝑒௫ . Hence, ∫ 𝑥𝑒௫𝑑𝑥 = ∫ 𝑥𝑑𝑒௫ =
𝑥𝑒௫ − ∫ 𝑒௫𝑑𝑥 = 𝑥𝑒௫ − 𝑒௫ + 𝑐. 
The “definite integral” is written as  

න 𝑓(𝑥)𝑑𝑥
௕

௔

 

and represents the area bounded by the curve 𝑦 = 𝑓(𝑥), the 𝑥-axis, and the 
ordinates 𝑥 = 𝑎 and 𝑥 = 𝑏 if 𝑓(𝑥) ≥ 0. If 𝑓(𝑥) is sometimes positive and 
sometimes negative, then the definite integral represents the algebraic sum 
of the areas above and below the 𝑥-axis. In particular, the areas that are 
above the 𝑥-axis are considered to be positive, whereas the areas that are 
below the 𝑥-axis are considered to be negative. 

As shown in Figure 28, the definite integral ∫ 𝑓(𝑥)𝑑𝑥
௕

௔
 can be defined as 

follows: 
We subdivide the closed interval [𝑎, 𝑏] into 𝑛 subintervals 
[𝑎, 𝑥ଵ], [𝑥ଵ, 𝑥ଶ], … , [𝑥௞ିଵ, 𝑥௞], … , [𝑥௡ିଵ, 𝑏] 
by means of the points 𝑥ଵ, 𝑥ଶ, … , 𝑥௡ିଵ, which have been chosen arbitrarily. 
Hence, the set of points 𝑃 = {𝑎 = 𝑥଴, 𝑥ଵ, 𝑥ଶ, … , 𝑥௞ିଵ, 𝑥௞ , … , 𝑥௡ିଵ, 𝑥௡ = 𝑏} 
is a “partition” of 
[𝑎, 𝑏]. Let 𝛥𝑥௞  be the length of the 𝑘th subinterval, that is,𝛥𝑥௞ = 𝑥௞ −
𝑥௞ିଵ. Then the “norm” of partition 𝑃 is denoted by ‖𝑃‖, and it is equal to 
𝑚𝑎𝑥{𝛥𝑥௞|𝑘 = 1,2, … , 𝑛}. 
 
Figure 28: The Integral as the Limit of a Sum.  
 

 
 
In each of the 𝑛 subintervals mentioned in the aforementioned partition, 
we choose points 𝑐ଵ, 𝑐ଶ, … , 𝑐௡ in an arbitrary way, and we form the sum 

𝑆(𝑃, 𝑓, 𝑐௞) = 𝑓(𝑐ଵ)𝛥𝑥ଵ + 𝑓(𝑐ଶ)𝛥𝑥ଶ + ⋯ + 𝑓(𝑐௞)𝛥𝑥௞ + ⋯ +
𝑓(𝑐௡)𝛥𝑥௡ = ∑ 𝑓(𝑐௞)𝛥𝑥௞

௡
௞ୀଵ . 
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Notice that, as the number of subdivisions 𝑛 increases, ‖𝑃‖ vanishes―that 
is, ‖𝑃‖ → 0  as 𝑛 → ∞ . Hence, if 𝑙𝑖𝑚‖௉‖→଴𝑆(𝑃, 𝑓, 𝑐௞)  exists and is 
independent of the mode of subdivision of [𝑎, 𝑏], then this limit is said to 
be the integral of 𝑓 on [𝑎, 𝑏]; symbolically:  

𝑙𝑖𝑚‖௉‖→଴𝑆(𝑃, 𝑓, 𝑐௞) = න 𝑓(𝑥)𝑑𝑥
௕

௔

 

where 𝑓(𝑥)𝑑𝑥  is called the “integrand,” [𝑎, 𝑏]  is called the “range of 
integration,” and 𝑎  and 𝑏  are called the lower and the upper “limit of 
integration” respectively. Notice that the aforementioned limit exists if 
𝑓(𝑥)  is continuous (or sectionally continuous) on [𝑎, 𝑏] . Leibniz 

symbolized the definite integral of a function 𝑓(𝑥) on [𝑎, 𝑏] as ∫ 𝑓(𝑥)𝑑𝑥
௕

௔
, 

because the sign ∫ is an elongated S standing for the word “sum,” since 

Leibniz defined ∫ 𝑓(𝑥)𝑑𝑥
௕

௔
 as the sum of infinitely many rectangles of 

height 𝑓(𝑥) and infinitesimally small width 𝑑𝑥.  
The Fundamental Theorem of Infinitesimal Calculus states that: (i) For a 
function 𝑓, an antiderivative (or indefinite integral) 𝐹 may be obtained as 
the integral of 𝑓  over an interval with a variable upper bound. 
Symbolically: if 𝑓 is a continuous real-valued function defined on a closed 
interval [𝑎, 𝑏]  and 𝐹(𝑥) = ∫ 𝑓(𝑡)𝑑𝑡

௫

௔
, then 𝐹  is continuous for all 𝑥  in 

[𝑎, 𝑏]  and differentiable on (𝑎, 𝑏) , and 𝐹ᇱ(𝑥) ≡
ௗி(௫)

ௗ௫
= 𝑓(𝑥) . (ii) The 

integral of function 𝑓 over a fixed interval is equal to the change of any 
antiderivative 𝐹 between the ends of the interval. Symbolically: if 𝑓 is a 
continuous real-valued function defined on a closed interval [𝑎, 𝑏], if 𝐹 is 
a continuous function on [𝑎, 𝑏], and if 𝐹 is an antiderivative of 𝑓 on (𝑎, 𝑏), 

then 𝐹ᇱ(𝑥) ≡
ௗி(௫)

ௗ௫
= 𝑓(𝑥).  

 

Example: We calculate the value of ∫ 𝑥ଶ𝑑𝑥
ଷ

ଶ
 as follows: 

න 𝑥ଶ𝑑𝑥
ଷ

ଶ

=
𝑥ଷ

3
|ଶ

ଷ = 

ቀ𝑣𝑎𝑙𝑢𝑒 𝑜𝑓
௫య

ଷ
𝑤ℎ𝑒𝑛 𝑥 = 3ቁ − ቀ𝑣𝑎𝑙𝑢𝑒 𝑜𝑓

௫య

ଷ
𝑤ℎ𝑒𝑛 𝑥 = 2ቁ =

ଷయ

ଷ
−

ଶయ

ଷ
=

ଵଽ

ଷ
. 

The average value of a function 𝑓(𝑥) on the closed interval [𝑎, 𝑏] is 

𝑓̅ =
1

𝑏 − 𝑎
න 𝑓(𝑥)

௕

௔

𝑑𝑥 

(where𝑏 − 𝑎 is the length of the interval over which we are averaging, and 

∫ 𝑓(𝑥)
௕

௔
𝑑𝑥 is the area underneath the curve that we are averaging).  
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When the integrand 𝑓(𝑥)  is known only at certain points (e.g., those 
obtained by sampling), or when a formula for the integrand is known but it 
is difficult or impossible to find an antiderivative that is an elementary 
function, we may use numerical methods of integration―that is, 
approximate formulas for definite integrals. The simplest approximate 
formula for definite integrals is  

∫ 𝑓(𝑥)𝑑𝑥 ≈
ଵ

ଶ

௕

௔
(𝑏 − 𝑎)[𝑓(𝑎) + 𝑓(𝑏)], 

which is exact when 𝑓(𝑥) is linear. However, a much better approximate 
formula for definite integrals is 

∫ 𝑓(𝑥)𝑑𝑥 ≈
ଵ

଺

௕

௔
(𝑏 − 𝑎) ቂ𝑓(𝑎) + 4𝑓 ቀ

௔ା௕

ଶ
ቁ + 𝑓(𝑏)ቃ,  

which is known as “Simpson’s Rule” (named after the eighteenth-century 
British mathematician Thomas Simpson, who formulated it. Before him, 
however, Johannes Kepler had already used similar formulas. For this 
reason, “Simpson’s Rule” is sometimes called “Kepler’s Rule”). 
Simpson’s Rule derives from the observation that, if 𝑝(𝑥) = 𝐴𝑥ଶ + 𝐵𝑥 +

𝐶 , then ∫ 𝑝(𝑥)
௕

௔
𝑑𝑥 =

௕ି௔

଺
ቂ𝑝(𝑎) + 4𝑝 ቀ

௔ା௕

ଶ
ቁ + 𝑝(𝑏)ቃ , and it is used in 

order to approximate any integral ∫ 𝑓(𝑥)𝑑𝑥
௕

௔
, where 𝑓  is an arbitrary 

function, and not necessarily a quadratic polynomial (i.e., parabola). 
The calculation of the area between two arbitrary curves: In the first case, 
we want to determine the area 𝐴 between the equations 𝑦 = 𝑓(𝑥) and 𝑦 =
𝑔(𝑥)  over the interval [𝑎, 𝑏]  under the assumption that 𝑓(𝑥) ≥ 𝑔(𝑥) , 
meaning that the graph of 𝑓(𝑥) is above the graph of 𝑔(𝑥). Then 

𝐴 = ∫ [(𝑢𝑝𝑝𝑒𝑟𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛) − (𝑙𝑜𝑤𝑒𝑟𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛)]𝑑𝑥 = ∫ [𝑓(𝑥) −
௕

௔

௕

௔

𝑔(𝑥)] 𝑑𝑥, 
where 𝑎 ≤ 𝑥 ≤ 𝑏. 
In the second case, we want to determine the area 𝐴 between the equations 
𝑥 = 𝑓(𝑦) and 𝑥 = 𝑔(𝑦) over the interval [𝑐, 𝑑] under the assumption that 
𝑓(𝑦) ≥ 𝑔(𝑦), namely, 𝑥 = 𝑓(𝑦) is on the right-hand side of 𝑥 = 𝑔(𝑦). 
Then 

𝐴 = ∫ [(𝑟𝑖𝑔ℎ𝑡𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛) − (𝑙𝑒𝑓𝑡𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛)]𝑑𝑦
ௗ

௖
= ∫ [𝑓(𝑦) − 𝑔(𝑦)]

ௗ

௖
𝑑𝑦, 

where 𝑐 ≤ 𝑦 ≤ 𝑑. 
The area of a triangle can be calculated as follows: A triangle consists of 
tree lines connecting the three vertices. In order to find the area bounded 
by these three lines, we must find the equations of these three lines and 
integrate their differences. For instance, in order to find the area of the 
triangle with vertices (0,0), (1,1), and (2,0), we notice that it consists of 
the following three lines: 𝑦 = 0 , 𝑦 = 𝑥 , and 𝑦 = 2 − 𝑥 , as shown in 
Figure 29. 
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Figure 29: Calculating the area of a triangle. 
 

 
 
For the left half of the triangle (i.e., between the points 𝑥 = 0 and 𝑥 = 1), 
we need to find the area between 𝑦 = 𝑥 and 𝑦 = 0. For the right half of 
the triangle (i.e., between the points 𝑥 = 1 and 𝑥 = 2), we need to find the 
area between 𝑦 = 2 − 𝑥 and 𝑦 = 0. Hence, finally, we calculate 
𝐴(𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒) = 𝐴(𝑙𝑒𝑓𝑡 ℎ𝑎𝑙𝑓) + 𝐴(𝑟𝑖𝑔ℎ𝑡 ℎ𝑎𝑙𝑓),  
symbolically: 

∫ (𝑥 − 0)
ଵ

଴
𝑑𝑥 + ∫ [(2 − 𝑥) − 0]

ଶ

ଵ
𝑑𝑥 = 1 𝑠𝑞𝑢𝑎𝑟𝑒 𝑢𝑛𝑖𝑡. 

The area of a square can be calculated as follows: If 𝑎 is the length of the 
side of the square, then the area of the square is given by 𝐴(𝑠𝑞𝑢𝑎𝑟𝑒) =

∫ 𝑎𝑑𝑥 = 𝑎𝑥|଴
௔௔

଴
= 𝑎ଶ. 

The area of a circle whose radius is r can be calculated as follows: If we 
chop up the circle into triangular pie wedges with base 𝑑𝑥 and height 𝑟, 
then the area of each triangle is one-half the base 𝑑𝑥 times the height 𝑟. 
Adding them up, we obtain: 

න
1

2

ଶగ௥

଴

𝑟𝑑𝑥 =
1

2
𝑟𝑥|଴

ଶగ௥ = 𝜋𝑟ଶ 

given that the circumference of a circle of radius 𝑟 is 2𝜋𝑟. Similarly, we 
can work as follows: if we chop up the circle into circular rings with radius 
𝑥 and thickness 𝑑𝑥, then the area of each ring is its circumference 2𝜋𝑥 
times the thickness 𝑑𝑥. Adding them up, we obtain: 

∫ 2𝜋𝑥𝑑𝑥 = 𝜋𝑥ଶ௥

଴
|଴

௥ = 𝜋𝑟ଶ. 
The calculation of the volume of a solid of revolution: In order to obtain a 
solid of revolution, we start out with a curve 𝑦 = 𝑓(𝑥)  on an interval 
[𝑎, 𝑏], as shown, for instance, in Figure 30, and then we rotate this curve 
(360ο) about a given axis, so that a volume is generated, as shown, for 
instance, in Figure 31.  
In order to determine the volume of a solid of revolution on the interval 
[𝑎, 𝑏] , we work as follows: we divide the interval [𝑎, 𝑏]  into 𝑛 
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subintervals, each of which has width 𝛥𝑥 =
௕ି௔

௡
, and then we choose a 

point 𝑥௞
∗  (where 𝑘 = 1,2, … , 𝑛) from each subinterval. When we want to 

determine the area between two curves, we approximate the area by using 
rectangles on each subinterval. Understandably, when we want to compute 
the volume of a solid of revolution, we use disks on each subinterval to 
approximate the area. The area of the face of each disk is given by 𝐴(𝑥௞

∗), 
and the volume of each disk is given by 𝑉௞ = 𝐴(𝑥௞

∗)𝛥𝑥 . Hence, the 
volume of the corresponding solid of revolution on the interval [𝑎, 𝑏] can 
be approximated by 𝑉 ≈ ∑ 𝐴(𝑥௞

∗)𝛥𝑥௡
௞ୀଵ . Then, its exact volume is  

𝑉 = 𝑙𝑖𝑚௡→ஶ ∑ 𝐴(𝑥௞
∗)𝛥𝑥 = ∫ 𝐴(𝑥)𝑑𝑥

௕

௔
௡
௞ୀଵ , 

where 𝑎 ≤ 𝑥 ≤ 𝑏. 
In other words, in this case, the volume is the integral of the cross-
sectional area 𝐴(𝑥)  at any 𝑥 , and 𝑥 ∈ [𝑎, 𝑏] . Given that 𝐴 = 𝜋𝑟ଶ , 𝑟 =
𝑓(𝑥), and 𝑓(𝑥) is a non-negative continuous function from [𝑎, 𝑏] to ℝ, the 
volume of the solid generated by a region under 𝑦 = 𝑓(𝑥) bounded by the 
𝑥-axis and the vertical lines 𝑥 = 𝑎 and 𝑥 = 𝑏 via revolution about the 𝑥-
axis is   

𝑉 = 𝜋 ∫ [𝑓(𝑥)]ଶ௕

௔
𝑑𝑥; 

we take disks with respect to 𝑥, and 𝑟 = 𝑦 = 𝑓(𝑥); 𝑑𝑥 indicates that the 
area is rotated about the 𝑥-axis. 
 
Figure 30: A Curve. 
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Figure 31:A Solid of Revolution. 
 

 
 
If we rotate a curve about the 𝑦-axis, thus obtaining a cross-sectional area 
that is a function of 𝑦  instead of 𝑥 , then the aforementioned formula 
becomes 

𝑉 = ∫ 𝐴(𝑦)𝑑𝑦
ௗ

௖
, 

where 𝑐 ≤ 𝑦 ≤ 𝑑. Given that, in this case, 𝐴 = 𝜋𝑟ଶ , and 𝑟 = 𝑓(𝑦), the 
volume of the solid generated by a region under 𝑥 = 𝑓(𝑦) bounded by the 
𝑦-axis and the horizontal lines 𝑦 = 𝑐 and 𝑦 = 𝑑 via revolution about the 
𝑦-axis is 

𝑉 = 𝜋 ∫ [𝑓(𝑦)]ଶௗ

௖
𝑑𝑦; 

we take disks with respect to 𝑦, and 𝑟 = 𝑥 = 𝑓(𝑦); 𝑑𝑦 indicates that the 
area is rotated about the 𝑦-axis.  
If we have two curves 𝑦ଵ and 𝑦ଶ that enclose some area, and we rotate that 
area about the 𝑥-axis, then the volume of the solid formed is given by 

𝑉 = 𝜋 ∫ [(𝑦ଶ)ଶ − (𝑦ଵ)ଶ]
௕

௔
𝑑𝑥. 

The volume of a sphere can be calculated as follows: A sphere of radius 𝑟 
centered at the origin (0,0,0)  can be generated by revolving the upper 
semicircular disk enclosed between the 𝑥-axis and 𝑥ଶ + 𝑦ଶ = 𝑟ଶ about the 
𝑥-axis. If we revolve the semi-circle given by 

𝑦 = 𝑓(𝑥) = ඥ𝑟ଶ − 𝑥ଶ 
about the 𝑥-axis, we obtain a sphere of radius 𝑟. A cross-section of the 
sphere is a circle with radius 𝑓(𝑥)  and area 𝜋[𝑓(𝑥)]ଶ . If we slice the 
sphere vertically into disks, then each disk has infinitesimal thickness 𝑑𝑥, 
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and the volume of each disk is approximately 𝜋[𝑓(𝑥)]ଶ𝑑𝑥. If we add up 
the volumes of the disks, then we obtain the volume of the 
sphere―namely: 

𝑉 = 𝜋 ∫ [𝑓(𝑥)]ଶ௕

௔
𝑑𝑥 = 𝜋 ∫ (𝑟ଶ − 𝑥ଶ)𝑑𝑥 = 𝜋 ቀ𝑟ଶ𝑥 −

௫య

ଷ
ቁ

௥

ି௥
|ି௥

௥ =

𝜋 ቀ
ଶ

ଷ
𝑟ଷቁ − 𝜋 ቀ−

ଶ

ଷ
𝑟ଷቁ =

ସ

ଷ
𝜋𝑟ଷ. 

The volume of a cone can be calculated as follows: A cone with base 
radius 𝑟 and height ℎ can be formed by rotating a straight line through the 
origin (0,0,0) about the 𝑥-axis. The slope of the straight line is 𝑡𝑎𝑛𝜃 =

௥

௛
, 

so that the equation of the line is 𝑦 =
௥

௛
𝑥, and the limits of integration are 

𝑥 = 0 and 𝑥 = ℎ. Therefore, the volume of the corresponding cone is 

𝑉 = 𝜋 ∫ ቀ
௥

௛
𝑥ቁ

ଶ

𝑑𝑥 =
గ௥మ

௛మ

௛

଴
ቀ

௫య

ଷ
ቁ |଴

௛ =
ଵ

ଷ
𝜋𝑟ଶℎ. 

The volume of a cylinder with base radius 𝑟 and height ℎ (assuming that 

the plane 𝑥𝑂𝑦 is the cylinder’s base plane) is 𝑉 = 𝜋 ∫ 𝑟ଶ𝑑𝑥 =
௛

଴
𝜋𝑟ଶℎ. 

The calculation of the arc length of a curve: Let us consider a curve 𝛾 
defined by the parametric equations  
𝑥 = 𝑔(𝑡) and 𝑦 = 𝑓(𝑡), where 𝑡 ∈ [𝑎, 𝑏], 
as shown, for instance, in Figure 32, and let 𝑃 = {𝑡଴, 𝑡ଵ, … , 𝑡௡}  be a 
partition of [𝑎, 𝑏] . Intuitively, if we regard parameter 𝑡  as the time 
variable, then the curve may be thought of as the path of a moving point 
whose position vector at time 𝑡 is 𝛾(𝑡) = ൫𝑔(𝑡), 𝑓(𝑡)൯. 
 
Figure 32: The Arc Length of a Curve. 
 

 
 
Let 𝐴௞ = [𝑔(𝑡௞), 𝑓(𝑡௞)], where 𝑘 = 1,2, … , 𝑛, be the corresponding points 
of 𝛾, as shown in Figure 32. Then these points define a polygonal line. The 
sum  
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𝐿௉ = ෍ ඥ[𝑔(𝑡௜) − 𝑔(𝑡௜ିଵ)]ଶ + [𝑓(𝑡௜) − 𝑓(𝑡௜ିଵ)]ଶ

௡

௜ୀଵ

 

is the length of the polygonal line that is defined by the points 𝐴௞ 
(corresponding to a partition 𝑃); and the finer the partition 𝑃, the more the 
corresponding polygonal line tends to be identified with the curve 𝛾. Now, 
let us consider the set 𝐿  of all numbers 𝐿௉ , which correspond to all 
possible partitions 𝑃 of [𝑎, 𝑏], symbolically:  
𝐿 = {𝐿௉|𝑃 𝑖𝑠 𝑎 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 𝑜𝑓 [𝑎, 𝑏]}.  
If this set 𝐿 is bounded, then the curve is said to be “alignable,” and the 
supremum 𝑆 = 𝐿(𝛾) of this set is said to be the length of the curve 𝛾 . 
Moreover, we write 𝑆 = 𝐿௔

௕ (𝛾) in order to denote the length of the arc of 
the curve that is defined on the interval [𝑎, 𝑏].  
Notice that, if 𝛾 is an alignable curve on [𝑎, 𝑏], and if 𝑎 < 𝑐 < 𝑏, then 
𝐿௔

௕ (𝛾) = 𝐿௔
௖ (𝛾) + 𝐿௖

௕(𝛾). 
If the derivatives 𝑔ᇱ  and 𝑓ᇱ  are continuous on [𝑎, 𝑏], then the curve 𝛾 is 
alignable on [𝑎, 𝑏], and its length is given by 

𝑆 = 𝐿(𝛾) = ∫ ඥ[𝑔ᇱ(𝑡)]ଶ + [𝑓ᇱ(𝑡)]ଶ௕

௔
𝑑𝑡, 

where 𝑡 ∈ [𝑎, 𝑏]. If 𝛾 is defined by 𝑦 = 𝑓(𝑥), where 𝑥 ∈ [𝑎, 𝑏], and if the 
derivative 𝑓ᇱ(𝑥) exists and is continuous on [𝑎, 𝑏], then, setting 𝑥 = 𝑡 and 
𝑦 = 𝑓(𝑡)  in the aforementioned equation, we obtain the following 
formula: 

𝑆 = ∫ ඥ1 + [𝑓ᇱ(𝑥)]ଶ𝑑𝑥
௕

௔
, 

where 𝑥 ∈ [𝑎, 𝑏]. 
 

The physical significance of the integral 
The development of infinitesimal calculus by Newton and Leibniz is 
intimately related to the study of celestial mechanics, and physics in 
general, by them. Infinitesimal calculus, known also as the differentiation–
integration method, is concerned with the limits of applicability of 
physical laws. Physical laws are not absolute, and the validity of a law is 
restricted to the framework of the applicability limits (i.e., certain 
conditions). However, a physical law can be expanded by changing its 
form beyond the limits of applicability by means of infinitesimal calculus. 
This method is based on the following two principles: (i) the principle that 
a law can be represented in differential form, and (ii) the superposition 
principle, according to which the quantities that enter into the law are 
additive. 
Suppose that a physical law has the form 
𝑋 = 𝑌𝑍,                                                                                                     (∗) 
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where 𝑋 , 𝑌 , and 𝑍  are physical quantities, and, in particular, 𝑌  is a 
constant representing the given law’s limits of applicability. We can 
generalize the given law to the case where 𝑌  is not a constant but a 
function of 𝑍, that is, 𝑌 = 𝑌(𝑍), as follows: As shown in Figure 33, we 
isolate an interval 𝑑𝑍 so small that the variation of 𝑍 over this interval can 
be ignored. Hence, in the interval (“infinitesimal”) 𝑑𝑍 , we can 
approximately assume that 𝑌 is constant, and that the law (∗) is valid in 
this interval. Therefore,  
𝑑𝑋 = 𝑌(𝑍)𝑑𝑍,                                                                                         (∗∗) 
where 𝑑𝑋 is the variation of 𝑋 over 𝑑𝑍. Due to the superposition principle, 
that is, by summing the quantities (∗∗) over all the intervals of variation of 
𝑍, we obtain an expression for 𝑋 in the form 

𝑋 = ∫ 𝑌(𝑍)𝑑𝑍
ெ

௠
,  

where 𝑚 and 𝑀 are the initial and the final values of 𝑍, respectively.  
As a conclusion, the method of infinitesimal calculus consists of two parts: 
in the first part of the method, we find the differential (∗∗) of the quantity 
under investigation; in the second part of the method, we sum, or 
“integrate,” having adequately determined the integration variable and the 
limits of integration (in order to determine the integration variable, we 
must analyze the quantities on which the differential of the investigated 
quantity depends and choose the most important variable; and the limits of 
integration are the lower and the upper values of the integration variable).  
 
Figure 33: The method of infinitesimal calculus. 
 

 
 
 

Differentiation and Integration of Multivariable Functions 
So far, we have studied exclusively functions of a single (independent) 
variable 𝑥 , but we can also apply the concept of differentiation to 
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functions of several variables 𝑥, 𝑦, … Suppose that 𝑓(𝑥, 𝑦) is a function of 
two variables 𝑥 and 𝑦, and that the limits 
 

𝑙𝑖𝑚௱௫→଴

𝑓(𝑥 + 𝛥𝑥, 𝑦) − 𝑓(𝑥, 𝑦)

𝛥𝑥
 

and 

𝑙𝑖𝑚௱௬→଴

𝑓(𝑥, 𝑦 + 𝛥𝑦) − 𝑓(𝑥, 𝑦)

𝛥𝑦
 

exist for all values of 𝑥  and 𝑦  in question―that is, 𝑓(𝑥, 𝑦)  possesses a 

derivative 
ௗ௙

ௗ௫
 with respect to 𝑥 and a derivative 

ௗ௙

ௗ௬
 with respect to 𝑦. These 

derivatives are called the “partial derivatives” of 𝑓 , and they are 
respectively denoted by  
డ௙

డ௫
,

డ௙

డ௬
 or 

𝑓௫
ᇱ(𝑥, 𝑦), 𝑓௬

ᇱ(𝑥, 𝑦). 
Similarly, we can differentiate functions of three or more variables.  
In general, when calculating partial derivatives, we treat all independent 
variables other than the variable with respect to which we differentiate as 
constants. For instance, if 𝑓(𝑥, 𝑦) = 𝑥ଶ − 3𝑥𝑦 − 5, then 
డ௙

డ௫
=

డ

డ௫
(𝑥ଶ − 3𝑥𝑦 − 5) =

డ

డ௫
(𝑥ଶ) −

డ

డ௫
(3𝑥𝑦) −

డ

డ௫
(5) = 2𝑥 − 3𝑦, and 

డ௙

డ௬
=

డ

డ௬
(𝑥ଶ − 3𝑥𝑦 − 5) =

డ

డ௬
(𝑥ଶ) −

డ

డ௬
(3𝑥𝑦) −

డ

డ௬
(5) = −3𝑥. 

The geometric significance of  
డ௙

డ௫
|(௫బ,௬బ)  and 

డ௙

డ௬
|(௫బ,௬బ)  is illustrated in 

Figure 34. Let us consider a function 𝑧 = 𝑓(𝑥, 𝑦), whose graph in ℝଷ is a 
surface. We suppose that 𝑃(𝑥଴, 𝑦଴) is an arbitrary point of the domain of 
𝑓 . Notice that, in ℝଷ , the equation 𝑦 = 𝑦଴  represents a plane 𝛱  that is 
perpendicular to the 𝑦-axis. This plane intersects the surface 𝑧 = 𝑓(𝑥, 𝑦) 
by a curve 𝐶  whose equation is 𝑧 = 𝑓(𝑥, 𝑦଴). If 𝑄(𝑥଴, 𝑦଴, 𝑧଴) is a point 
belonging to 𝐶, so that its orthogonal projection to the plane 𝑥𝑂𝑦 is the 
point 𝑃 , then the slope of the tangent to the curve  𝐶  at 𝑄  is equal to 
డ௙

డ௫
|(௫బ,௬బ) = 𝑡𝑎𝑛𝜑 , where 𝜑  is the angle formed by the 𝑥 -axis and the 

tangent to the curve 𝐶 at 𝑄, as shown in Figure 34. In the same way, we 
can show that the slope of the tangent to the curve 𝐶  at 𝑄  is equal to 
డ௙

డ௬
|(௫బ,௬బ) = 𝑡𝑎𝑛𝜃 , where 𝜃  is the angle formed by the 𝑦 -axis and the 

tangent to the curve 𝐶 at 𝑄. 
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Figure 34: The geometric significance of a partial derivative 

 

 
 
Generalization: If 𝑓: ℝ௡ → ℝ is a function, 
ℝ௡ ∋ (𝑥ଵ, 𝑥ଶ, … , 𝑥௡) → 𝑓(𝑥ଵ, 𝑥ଶ, … , 𝑥௡) ∈ ℝ, 
then 

𝜕𝑓(𝑥ଵ, 𝑥ଶ, … , 𝑥௜ , … , 𝑥௡)

𝜕𝑥௜

 

= 𝑙𝑖𝑚௱௫೔→଴

𝑓(𝑥ଵ, 𝑥ଶ, … , 𝑥௜ + 𝛥𝑥௜ , … , 𝑥௡) − 𝑓(𝑥ଵ, 𝑥ଶ, … , 𝑥௜ , … , 𝑥௡)

𝛥𝑥௜

 

is the partial derivative of 𝑓(𝑥ଵ, 𝑥ଶ, … , 𝑥௡) with respect to 𝑥௜ , where 𝑖 =
1,2, … , 𝑛.  
We take for granted the obvious generalizations of the theorems of 
differentiation to two or more variables. 
We can integrate functions of several variables as follows: suppose that 
the domain of a bivariate function is the Cartesian product of two closed 
intervals―that is, a rectangle―say   
𝑅 = [𝑎, 𝑏] × [𝑐, 𝑑] = {(𝑥, 𝑦) ∈ ℝଶ|𝑎 ≤ 𝑥 ≤ 𝑏, 𝑐 ≤ 𝑦 ≤ 𝑑}. 
If 𝑅 = [𝑎, 𝑏] × [𝑐, 𝑑] , whenever the integrand is 𝑓(𝑥, 𝑦) , we have to 
integrate over two variables, 𝑥 and 𝑦, so that, for each variable, we have 
an integration sign. In order to indicate the variables involved, we have 𝑑𝑥 
and 𝑑𝑦, symbolically: 

∬ 𝑓(𝑥, 𝑦)
ோ

𝑑𝑥𝑑𝑦 ≡ ∫ ∫ 𝑓(𝑥, 𝑦)𝑑𝑥𝑑𝑦
௕

௔

ௗ

௖
, 

where 𝑓(𝑥, 𝑦) is an integrable function of two real variables. In this case, 
we compute the innermost integral first, and then we work our way 
outward. In particular, we compute the 𝑑𝑥  integral inside first, while 
treating 𝑦  as a constant, and then we integrate the result over 𝑦  as we 
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would do with any variable. One interpretation of the double integral of 
𝑓(𝑥, 𝑦) over the rectangle 𝑅  is the volume under the function (surface) 

𝑓(𝑥, 𝑦)  and above the 𝑥𝑦 -plane. For instance, ∫ ∫ 𝑥ଶ𝑦ଶ𝑑𝑥𝑑𝑦
ଵ

଴

ଶ

଴
 can be 

calculated as follows: We focus on the inner integral first: 

∫ ቂ∫ 𝑥ଶ𝑦ଶ𝑑𝑥
ଵ

଴
ቃ

ଶ

଴
𝑑𝑦; and, treating 𝑦 as a constant, we integrate normally for 

𝑥ଶ𝑑𝑥 , thus obtaining ∫ ቂ
௫య௬మ

ଷ
|଴
ଵቃ

ଶ

଴
𝑑𝑦 = ∫ ቂ

ଵయ௬మ

ଷ
−

଴య௬మ

ଷ
ቃ

ଶ

଴
𝑑𝑦 = ∫ ቂ

௬మ

ଷ
ቃ

ଶ

଴
𝑑𝑦 . 

Now, we are left with a normal definite integral: ∫
௬మ

ଷ

ଶ

଴
𝑑𝑦 =

௬య

ଷ∙ଷ
|଴

ଶ =

௬య

ଽ
|଴

ଶ =
ଶయ

ଽ
−

଴య

ଽ
=

଼

ଽ
. Therefore, ∫ ∫ 𝑥ଶ𝑦ଶ𝑑𝑥𝑑𝑦

ଵ

଴

ଶ

଴
=

଼

ଽ
. 

Furthermore, double integrals can be used in order to compute areas as 
follows: the area 𝐴 of a plane region 𝑅 is given by the formula 
𝐴 = ∬ 𝑑𝑥𝑑𝑦

ோ
, 

in Cartesian coordinates. Notice that, if  
𝑅 = {(𝑥, 𝑦) ∈ ℝଶ|𝑎 ≤ 𝑥 ≤ 𝑏, ℎଵ(𝑥) ≤ 𝑦 ≤ ℎଶ(𝑥)}, 
then the area of 𝑅 is 

𝐴 = ∬ 𝑑𝑥𝑑𝑦
ோ

= ∫ ∫ 𝑑𝑦
௛మ(௫)

௛భ(௫)

௕

௔
𝑑𝑥 = ∫ [ℎଶ(𝑥) − ℎଵ(𝑥)]

௕

௔
𝑑𝑥, 

where ℎଵ(𝑥) and ℎଶ(𝑥) are two curves.  
The order in which we do the integrations does not matter, provided that 
we keep track of the limits of integration of each variable. For instance, in 

the double integral ∫ ∫ 𝑓(𝑥, 𝑦)𝑑𝑥𝑑𝑦
௕

௔

ௗ

௖
, 𝑑𝑥  is associated with the 𝑥 

integrand, which runs from 𝑎  to 𝑏 , while 𝑑𝑦  is associated with the 𝑦 
integrand, which runs from 𝑐 to 𝑑, and, therefore, 

න න 𝑓(𝑥, 𝑦)𝑑𝑥𝑑𝑦 = න න 𝑓(𝑥, 𝑦)𝑑𝑦𝑑𝑥
ௗ

௖

௕

௔

௕

௔

ௗ

௖

 

meaning that the limits of integration of each integrand remain the same. 
This result is known as Fubini’s Theorem: given that a definite double 
integral can be thought of as a process of adding up all the infinitesimal 
elements of a (Cartesian) area 𝑑𝑥𝑑𝑦 (imagine little rectangles) over the 
required region, thus obtaining the area of that region, the equality 
between the aforementioned two iterated integrals (i.e., Fubini’s Theorem) 
can be thought of as an infinite version of the idea that addition is 
commutative and associative.  
Increasing the number of integrals in the context of multiple integration is 
the same as increasing the number of dimensions, so that a single integral 
gives a two-dimensional area, a double integral gives a three-dimensional 
volume, a triple-integral gives a four-dimensional hypervolume, etc. In 
general, the multiple integral of a function 𝑓(𝑥ଵ, … , 𝑥௡) in 𝑛 variables over 
a domain 𝑈 is represented by 𝑛 nested integral signs in the reverse order of 
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computation (in the sense that the leftmost integral is computed last), 
followed by the function and the integrand arguments in such an order that 
indicates that the integral with respect to the rightmost argument is 
computed last; and the domain of integration is either represented 
symbolically for every argument over each integral sign or it is indicated 
by a characteristic letter (variable) at the rightmost integral sign: 
 

න … න 𝑓(𝑥ଵ, … , 𝑥௡)𝑑
௎

𝑥ଵ … 𝑑𝑥௡ 

(𝑥ଵ, … , 𝑥௡ ∈ 𝑈). We take for granted the obvious generalizations of the 
theorems of integration to two or more variables. 
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Chapter 10 
Complex Numbers and Complex Analysis 

 
As we have already mentioned, the concept of a number has been 
extended from natural to real numbers, both because of human practice 
and because of the needs of mathematics itself. In particular, the concept 
of a number grew out of the counting of objects. Counting gave rise to the 
numbers 1, 2, 3, and so on, which are called natural numbers. Then the 
necessity of performing the operation of division led to the concept of 
positive fractional numbers; furthermore, the necessity of performing the 
operation of subtraction led to the concepts of zero and negative numbers; 
finally, the necessity of taking roots of positive numbers led to the concept 
of irrational numbers. The aforementioned operations are feasible in the 
set of real numbers. However, there are still impracticable operations―for 
instance, taking a square root of a negative number. Hence, there is a need 
to extend the concept of a number even further, specifically, to invent new 
numbers different from the real numbers.  
Indeed, if we adjoin to the real system ℝ a root 𝑖 of the polynomial 𝑥ଶ +
1 = 0, which is irreducible to ℝ, we obtain the system of complex number 
ℂ ≡ ℝ(𝑖). In other words, a (two-dimensional) number of the form 𝑧 =

𝑎 + 𝑏𝑖, where 𝑎, 𝑏 ∈ ℝ and 𝑖 = √−1, is called a “complex number”; the 
number 𝑎  is called the “real part” of 𝑧 = 𝑎 + 𝑏𝑖 , and it is denoted by 
𝑅𝑒(𝑧); the number 𝑏 is called the “imaginary part” of 𝑧 = 𝑎 + 𝑏𝑖, and it is 
denoted by 𝐼𝑚(𝑧); and 𝑖 = √−1 is called the “imaginary unit.” Hence, 
any polynomial equation with coefficients can be solved in the system of 
complex numbers; indeed, the system of complex numbers is the 
fundamental connection between geometry and algebra. 
We picture the complex number 𝑧 = 𝑎 + 𝑏𝑖 by putting 𝑎 on the 𝑥-axis and  
𝑏 (or rather 𝑏𝑖) on the 𝑦-axis.  
The “modulus” or “absolute value” of  𝑎 + 𝑏𝑖  is √𝑎ଶ + 𝑏ଶ , and it is 
denoted by 𝑚𝑜𝑑(𝑎 + 𝑏𝑖)  or |𝑎 + 𝑏𝑖| . The square of the modulus of a 
complex number 𝑧 = 𝑎 + 𝑏𝑖  is called its “norm,” and it is denoted by 
𝑁𝑚(𝑧); so that, if 𝑧 = 𝑎 + 𝑏𝑖, then 𝑁𝑚(𝑧) = 𝑎ଶ + 𝑏ଶ.  
The “argument” of 𝑧 = 𝑎 + 𝑏𝑖, denoted by 𝑎𝑟𝑔(𝑧), is a quantity 𝜃 such 

that 𝑐𝑜𝑠𝜃 =
௔

|௭|
 and 𝑠𝑖𝑛𝜃 =

௕

|௭|
. It is many-valued and determined only up 

to multiples of 2𝜋. 
If we define an origin 𝑂 and rectangular axes 𝑋ᇱ𝑂𝑋 and 𝑌ᇱ𝑂𝑌, and mark 
the point 𝑃  whose coordinates referred to these axes are 𝑥  and 𝑦 
respectively, then the complex number 𝑧 = 𝑥 + 𝑦𝑖 may be considered to 
be represented either by the point 𝑃 or by the vector 𝑂𝑃ሬሬሬሬሬ⃗ , drawn to 𝑃 from 
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the origin. The numbers 1 and 𝑖 = √−1 will be, respectively, represented 
by points 𝐴 and 𝐵 on 𝑂𝑋 and 𝑂𝑌  (respectively) at unit distance from 𝑂. 
Therefore, 𝑧 = 𝑥 + 𝑦𝑖 denotes the operation by which the vector 𝑂𝐴ሬሬሬሬሬ⃗ = 1 
is converted into the vector 𝑂𝑃ሬሬሬሬሬ⃗ = 𝑥 + 𝑦𝑖. The modulus and the argument 
of 𝑥 + 𝑦𝑖  are, respectively, equal to the radius vector and the vectorial 
angle of 𝑃, assuming that 𝑂𝑋 is the initial line, and that the radian is the 
unit angle; so that, calling these 𝑟  and 𝜃 , we obtain 𝑥 + 𝑦𝑖 =
𝑟(𝑐𝑜𝑠𝜃 + 𝑖𝑠𝑖𝑛𝜃) = 𝑟𝑒ఏ௜. 
In particular, the number 𝑖 = √−1 signifies a 90௢ rotation about the real 
axis, turning 1 into −1. Hence, 𝑖 = √−1 done twice, or squared, is equal 
to −1. From the perspective of real numbers, we are used to thinking of 
numbers on a line, but, with the introduction of imaginary numbers, we 
come up with two-dimensional numbers. Indeed, complex numbers are 
two-dimensional, since they are made up of the real axis and the imaginary 
axis, and we can transit from one to the other by rotating.  
In 1833 at the Royal Irish Academy, the Irish mathematician and 
astronomer Sir William Rowan Hamilton presented the complex numbers 
as ordered pairs of real numbers, thus denoting a complex number by an 
ordered pair (𝑎, 𝑏), and denoting the imaginary unit by 𝑖 = √−1, so that  
𝑖ଶ = (0,1) ∙ (0,1) = (−1,0) = −1.  
The zero of ℂ is (0,0), and the unit of ℂ is (1,0). 
In fact, as Hamilton has originally shown, the complex number system ℂ is 
the set ℝ × ℝ with operations defined as follows: 

(𝑎 + 𝑏𝑖) + (𝑐 + 𝑑𝑖) = (𝑎 + 𝑐) + (𝑏 + 𝑑)𝑖, 
(𝑎 + 𝑏𝑖) − (𝑐 + 𝑑𝑖) = (𝑎 − 𝑐) + (𝑏 − 𝑑)𝑖, 

(𝑎 + 𝑏𝑖)(𝑐 + 𝑑𝑖) = (𝑎𝑐 − 𝑏𝑑) + (𝑎𝑑 + 𝑏𝑐)𝑖, and 
(𝑎 + 𝑏𝑖)

(𝑐 + 𝑑𝑖)
=

(𝑎𝑐 + 𝑏𝑑) + (𝑏𝑐 − 𝑎𝑑)𝑖

𝑐ଶ + 𝑑ଶ
 

where 𝑎, 𝑏 ∈ ℝ, and 𝑖 = √−1. 
The (complex) “conjugate” of 𝑎 + 𝑏𝑖  is 𝑎 − 𝑏𝑖 , and the conjugate of a 
complex number 𝑧 is denoted by 𝑧̅ or by 𝑧∗; so that, if 𝑧 = 𝑎 + 𝑏𝑖, then: 
𝑧 + 𝑧̅ = 2𝑎, 𝑧 − 𝑧̅ = 2𝑖𝑏, 𝑧𝑧̅ = 𝑎ଶ + 𝑏ଶ. 
If a function 𝑔 takes real inputs and gives complex outputs, then the 
derivative with respect to its real input is computed by taking the 
derivatives of the real and the imaginary parts separately, namely: 

𝑑𝑔

𝑑𝑥
=

𝑑𝑅𝑒(𝑔)

𝑑𝑥
+ 𝑖

𝑑𝐼𝑚(𝑔)

𝑑𝑥
 

where 𝑖 = √−1, 𝑅𝑒(𝑔) is the real part of 𝑔, and 𝐼𝑚(𝑔) is the imaginary 
part of 𝑔. 
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The integral of a complex function 𝑓(𝑥) = 𝑔(𝑥) + 𝑖ℎ(𝑥)  between the 
limits 𝑎 and 𝑏 is defined by 

න 𝑓(𝑥)𝑑𝑥 = න [𝑔(𝑥) + 𝑖ℎ(𝑥)]𝑑𝑥 = න 𝑔(𝑥)𝑑𝑥 + 𝑖 න ℎ(𝑥)𝑑𝑥
௕

௔

௕

௔

௕

௔

௕

௔

 

where 𝑖 = √−1, and 𝑥 is a real variable. Obviously, the properties of such 
integrals may be deduced from the properties of the real integrals. 
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Chapter 11 
Vector Calculus 

 
When a function takes a real number and sends it to a vector, then it is said 
to be a vector-valued function. In the real plane, or in the 𝑥𝑦-plane, the 
general form of a vector-valued function is the following: 
𝑟(𝑡) = 𝑓(𝑡)𝚤̂ + 𝑔(𝑡)𝚥̂;                                                                               (1) 
and, in the real 3-dimensional space, or in the 𝑥𝑦𝑧-space, the general form 
of a vector-valued function is the following: 
𝑟(𝑡) = 𝑓(𝑡)𝚤̂ + 𝑔(𝑡)𝚥̂ + ℎ(𝑡)𝑘෠;                                                                 (2) 
where the component functions 𝑓, 𝑔, and ℎ are real-valued functions of the 
parameter 𝑡, and 𝚤̂, 𝚥̂, and 𝑘෠  are the corresponding unit vectors on the 𝑥-
axis, the 𝑦-axis, and the 𝑧-axis respectively. The standard unit vectors in 
the direction of the 𝑥 , 𝑦 , and 𝑧  axes of a 3 -dimensional Cartesian 
coordinate system are 

𝚤̂ = ൭
1
0
0

൱, 𝚥̂ = ൭
0
1
0

൱, and 𝑘෠ = ൭
0
0
1

൱. 

The “limit” of a vector-valued function 𝑟(𝑡)  is 𝐿ሬ⃗  as 𝑡  tends to 𝑎 , 
symbolically: 

𝑙𝑖𝑚௧→௔𝑟(𝑡) = 𝐿ሬ⃗  
if and only if 

𝑙𝑖𝑚௧→௔ฮ𝑟(𝑡) − 𝐿ሬ⃗ ฮ = 0. 
Therefore, (1) implies that 
𝑙𝑖𝑚௧→௔𝑟(𝑡) = [𝑙𝑖𝑚௧→௔𝑓(𝑡)]𝚤̂ + [𝑙𝑖𝑚௧→௔𝑔(𝑡)]𝚥̂, 
and (2) implies that 
𝑙𝑖𝑚௧→௔𝑟(𝑡) = [𝑙𝑖𝑚௧→௔𝑓(𝑡)]𝚤̂ + [𝑙𝑖𝑚௧→௔𝑔(𝑡)]𝚥̂ + [𝑙𝑖𝑚௧→௔ℎ(𝑡)]𝑘෠ , 
provided that the limits of the component functions 𝑓, 𝑔, and ℎ as 𝑡 → 𝑎 
exist. Similarly, we can define the limit of a vector-valued function of 𝑛 
component functions for 𝑛 > 3.  
A vector-valued function 𝑟(𝑡), where 𝑡 ∈ [𝑎, 𝑏], is said to be “continuous” 
at a point 𝑡଴ ∈ [𝑎, 𝑏]  if 𝑙𝑖𝑚௧→௧బ

𝑟(𝑡) = 𝑟(𝑡଴) ; and 𝑟(𝑡)  is said to be 
continuous on [𝑎, 𝑏] if it is continuous at every point of [𝑎, 𝑏].  
The derivative of a vector-valued function 𝑟(𝑡) , where 𝑡 ∈ [𝑎, 𝑏] , is 
defined as follows: 

𝑟ᇱሬሬሬ⃗ (𝑡) = 𝑙𝑖𝑚௱௧→଴

𝑟(𝑡 + 𝛥𝑡) − 𝑟(𝑡)

𝛥𝑡
 

provided that the limit exists. If 𝑟ᇱሬሬሬ⃗ (𝑡)  exists, then 𝑟(𝑡)  is said to be 
differentiable at 𝑡 . If 𝑟ᇱሬሬሬ⃗ (𝑡)  exists ∀𝑡 ∈ (𝑎, 𝑏) , then 𝑟(𝑡)  is said to be 
differentiable on the interval (𝑎, 𝑏). In order for 𝑟(𝑡) to be differentiable 
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on [𝑎, 𝑏] , 𝑟(𝑡)  must be differentiable on the interval (𝑎, 𝑏) , and the 
following two limits must exist as well:    

𝑟ᇱሬሬሬ⃗ (𝑎) = 𝑙𝑖𝑚௱௧→଴శ
௥⃗(௔ା௱௧)ି௥⃗(௔)

௱௧
 and 

𝑟ᇱሬሬሬ⃗ (𝑏) = 𝑙𝑖𝑚௱௧→଴ష
௥⃗(௕ା௱௧)ି௥⃗(௕)

௱௧
. 

Consequently, (1) implies that 
𝑟ᇱሬሬሬ⃗ (𝑡) = 𝑓ᇱ(𝑡)𝚤̂ + 𝑔ᇱ(𝑡)𝚥,̂  
and (2) implies that 
𝑟ᇱሬሬሬ⃗ (𝑡) = 𝑓ᇱ(𝑡)𝚤̂ + 𝑔ᇱ(𝑡)𝚥̂ + ℎᇱ(𝑡)𝑘෠ .  
The properties of the derivative of a vector-valued function are analogous 
to those of the derivative of a scalar-valued function. 
Let 𝑓 , 𝑔 , and ℎ  be integrable real-valued functions on [𝑎, 𝑏] . Then (1) 
implies that the indefinite integral of a vector-valued function 𝑟(𝑡) =
𝑓(𝑡)𝚤̂ + 𝑔(𝑡)𝚥̂ is 
∫[𝑓(𝑡)𝚤̂ + 𝑔(𝑡)𝚥̂] 𝑑𝑡 = [∫ 𝑓(𝑡)𝑑𝑡]𝚤̂ + [∫ 𝑔(𝑡)𝑑𝑡]𝚥̂, 
and the definite integral of a vector-valued function 𝑟(𝑡) = 𝑓(𝑡)𝚤̂ + 𝑔(𝑡)𝚥̂ 
is 

∫ [𝑓(𝑡)𝚤̂ + 𝑔(𝑡)𝚥̂]𝑑𝑡 = ቂ∫ 𝑓(𝑡)𝑑𝑡
௕

௔
ቃ

௕

௔
𝚤̂ + ቂ∫ 𝑔(𝑡)𝑑𝑡

௕

௔
ቃ 𝚥.̂ 

By analogy, (2) implies that 
∫ൣ𝑓(𝑡)𝚤̂ + 𝑔(𝑡)𝚥̂ + ℎ(𝑡)𝑘෠൧ 𝑑𝑡 = [∫ 𝑓(𝑡)𝑑𝑡]𝚤̂ + [∫ 𝑔(𝑡)𝑑𝑡]𝚥̂ + [∫ ℎ(𝑡)𝑑𝑡]𝑘෠ , 
and 

∫ ൣ𝑓(𝑡)𝚤̂ + 𝑔(𝑡)𝚥̂ + ℎ(𝑡)𝑘෠൧𝑑𝑡 = ቂ∫ 𝑓(𝑡)𝑑𝑡
௕

௔
ቃ

௕

௔
𝚤̂ + ቂ∫ 𝑔(𝑡)𝑑𝑡

௕

௔
ቃ 𝚥̂ +

ቂ∫ ℎ(𝑡)𝑑𝑡
௕

௔
ቃ 𝑘෠ . 

The properties of the integral of a vector-valued function are analogous to 
those of the integral of a scalar-valued function. 
Let us consider a function 𝑓(𝑥, 𝑦); 𝑓  depends on both 𝑥  and 𝑦 , and its 
graph is a surface in space. Then, in order to interpret and compute the rate 
of change of 𝑓(𝑥, 𝑦), we find the rate of change of 𝑓(𝑥, 𝑦) in a specific 
direction independently. If we want the rate of change in the 𝑥-direction, 
we differentiate 𝑓(𝑥, 𝑦) with respect to 𝑥 while treating 𝑦 as a constant. In 

other words, we compute the partial derivative 
డ௙(௫,௬)

డ௫
. Similarly, if we 

want the rate of change in the 𝑦-direction, we differentiate 𝑓(𝑥, 𝑦) with 
respect to 𝑦 while treating 𝑥 as a constant. In other words, we compute the 

partial derivative 
డ௙(௫,௬)

డ௬
. The “gradient” of 𝑓(𝑥, 𝑦) is denoted by ∇𝑓, and it 

is a concept that combines the two aforementioned partial derivatives; 
specifically, the gradient of 𝑓(𝑥, 𝑦) is a vector consisting of both partial 
derivatives of 𝑓 in their associated positions, symbolically: 
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𝑔𝑟𝑎𝑑𝑓 ≡ ∇𝑓 =
డ௙(௫,௬)

డ௫
𝚤̂ +

డ௙(௫,௬)

డ௬
𝚥̂, 

where 𝚤̂ is the unit vector in the 𝑥-direction, and 𝚥̂ is the unit vector in the 
𝑦 -direction. By analogy, we can define the gradient of a function 
𝑓(𝑥, 𝑦, 𝑧), etc. The gradient of a function is a vector field. A vector field 𝑉 
in ℝଷ is a rule that assigns a tangent vector 𝑉௣ to every point 𝑝 of ℝଷ; and 
tangent vector 𝑉௣ is said to be the value of the vector field 𝑉 at the point 𝑝. 
Let us consider a vector-valued function 𝑟(𝑥, 𝑦, 𝑧) = 𝑓(𝑥, 𝑦, 𝑧)𝚤̂ +

𝑔(𝑥, 𝑦, 𝑧)𝚥̂ + ℎ(𝑥, 𝑦, 𝑧)𝑘෠  such that the partial derivatives 
డ௙

డ௫
, 

డ௚

డ௬
, and 

డ௛

డ௭
 

exist and are continuous on 𝑈 ⊆ ℝଷ. Then the “divergence” of 𝑟(𝑥, 𝑦, 𝑧) is 
a vector operator that operates on a vector field, producing a scalar field 
that gives the quantity of the vector field’s source at each point; and it is 
defined as follows:  

𝑑𝑖𝑣𝑟 ≡ ∇ሬሬ⃗ 𝑟 =
డ௙

డ௫
+

డ௚

డ௬
+

డ௛

డ௭
. 

In other words, the divergence of a function tells us how the corresponding 
vector field behaves towards or away from a point. 
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Chapter 12 
Differential Equations and Mathematical Modelling 

 
The Fundamental Theorem of Infinitesimal Calculus is a rigorous 
explanation of the dialectical relationship between integration and 
differentiation, and, thus, it is a major underpinning of the theory of 
differential equations. 
By the term “ordinary differential equation,” we refer to any equation that 
contains an unknown function, some of its derivatives, and an independent 
variable. The “order” of a differential equation is the order of the highest 
ordered derivative occurring in the given differential equation. The 
fundamental problem of the theory of differential equations is to find all of 
the functions 𝑦 = 𝑓(𝑥)  that satisfy some differential equation. Every 
function 𝑦 = 𝑓(𝑥) that satisfies some differential equation is said to be a 
“solution” of the given differential equation. 
A family of functions  
𝑦 = 𝑓(𝑥, 𝑐)                                                                                                (∗) 
where 𝑐  is a constant belonging to 𝐴 ⊆ ℝ , is said to be a “general 
solution” of a differential equation 

𝑦′ ≡
ௗ௬

ௗ௫
= 𝐹(𝑥, 𝑦)                                                                                    (∗∗) 

if, for every 𝑐 ∈ 𝐴, (∗) is a solution of (∗∗). The solution that we obtain for 
each particular value of 𝑐  is said to be a “partial solution” of the 
differential equation (∗∗). 
The theory of differential equations is a branch of mathematics in which 
the study of theoretical problems can hardly be distinguished from the 
study of practical problems, and dynamicity, which is a major 
characteristic of modern mathematics, is clearly manifested. Moreover, the 
theory of differential equations has played an important role in the 
transition from the eighteenth-century infinitesimal calculus to advanced 
mathematical analysis and modern geometry. One of the major advantages 
of differential equations is that they constitute one of the major 
underpinnings and instruments of the “mathematization” (i.e., of the 
“mathematical modelling”) of many problems both in the context of the 
natural sciences and in the context of the social sciences.  
 
Example: If 𝑠(𝑡) gives the position of a moving particle as a function of 
time, then velocity, 𝑣(𝑡), is given by the formula 

𝑠′(𝑡) ≡
ௗ௦(௧)

ௗ௧
= 𝑣(𝑡), 

and acceleration, 𝑎(𝑡), is given by the formula  
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𝑣 ′(𝑡) ≡
ௗ௩(௧)

ௗ௧
= 𝑎(𝑡).  

Suppose that we wish to study the motion of an object of mass 𝑚 that is in 
free fall in vacuum (this hypothesis is a simplification of physical reality in 
order to facilitate the mathematization of this problem, which can easily 
lead to generalizations that, under certain conditions, provide satisfactory 
approximations of the actual state of affairs). Moreover, for reasons of 
simplicity, we shall assume that the orbit of the object’s fall is so small in 
comparison with the radius of the Earth that (without a significant error in 
the conclusion) we can suppose that the object’s weight (i.e., the force 
acting on it due to gravity) is constant. Then the object’s acceleration is 
constant, too, and it is denoted by 𝑔 (𝑔 is said to be the “gravitational 
acceleration,” namely, the free fall acceleration of an object in vacuum; 
𝑔 ≈ 9.80 𝑚/𝑠𝑒𝑐ଶ). In view of the foregoing, we have: 

𝑣 ′(𝑡) = −𝑔  (the negative sign indicates that the object’s motion is 
accelerating downward), and 

∫ 𝑣 ′(𝑡)𝑑𝑡 = ∫(−𝑔) 𝑑𝑡 ⇒ 𝑣(𝑡) = −𝑔𝑡 + 𝑐ଵ, where 𝑐ଵ is a constant. 
The last equation gives the value of velocity if we know the constant 𝑐ଵ. 
Furthermore, we obtain: 

𝑠′(𝑡) = 𝑣(𝑡) ⇒ ∫ 𝑠′(𝑡)𝑑𝑡 = ∫(−𝑔𝑡 + 𝑐ଵ) 𝑑𝑡 ⇒ 𝑠(𝑡) = −
ଵ

ଶ
𝑔𝑡ଶ +

𝑐ଵ𝑡 + 𝑐ଶ, where 𝑐ଶ is a constant. 
Hence, we can determine displacement, too, provided that we know 𝑐ଶ. In 
general, constants are determinable quantities. 
In physics, constants are functions of the initial conditions of the 
phenomenon under investigation. For instance, in the aforementioned 
phenomenon of free fall in vacuum, we must take into consideration 
whether the object was left to fall, in which case its initial velocity is 𝑣଴ =
0, or whether it was given a non-zero initial velocity 𝑣଴ = 𝑣(𝑡଴). In any 
case, applying the formula of velocity for 𝑡଴ = 0 , we obtain 𝑣(𝑡଴) =
−𝑔0 + 𝑐ଵ ⇒ 𝑐ଵ = 𝑣଴ , and, therefore, 𝑣(𝑡) = −𝑔𝑡 + 𝑣଴ . By analogy, 

regarding displacement, we have: 𝑠(𝑡଴) = −
ଵ

ଶ
𝑔0ଶ + 𝑐ଵ0 + 𝑐ଶ , and, 

therefore, setting 𝑠(𝑡଴) = 𝑠଴, we obtain 𝑠(𝑡) = −
ଵ

ଶ
𝑔𝑡ଶ + 𝑣଴𝑡 + 𝑠଴, which 

is the formula of “uniformly accelerated motion.”  
The aforementioned results are based on the hypothesis that we study 
motion in vacuum. If, however, we decide to take account of the resistance 
of the Earth’s atmosphere during the object’s fall, then we must modify 
the aforementioned model as follows: we assume that a force due to the 
resistance of the Earth’s atmosphere is applied on the moving object in the 
direction opposite to the object’s motion (for which reason this force has a 
negative sign), and that this force is proportional to the moving object’s 
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speed. In other words, for a suitable 𝑘 > 0, this force is equal to −𝑘𝑣(𝑡). 
Then we assume that the total force that is applied on the moving body is 
−𝑚𝑔 − 𝑘𝑣(𝑡), that is, weight and air resistance. Consequently, according 
to Newton’s Second Law of Motion (i.e., 𝐹𝑜𝑟𝑐𝑒 = 𝑀𝑎𝑠𝑠 ×
𝐴𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛), we obtain the linear differential equation 

−𝑚𝑔 − 𝑘𝑣(𝑡) = 𝑚𝑣 ′(𝑡) ⇒ 𝑣 ′(𝑡) +
௞

௠
𝑣(𝑡) + 𝑔 = 0, 

so that, in this case, we must solve the given linear differential equation in 
order to find 𝑣.  
 
Separation of Variables: If a differential equation may be written in the 
form 
ௗ௬

ௗ௫
= 𝑓(𝑥)𝑔(𝑦), 

then it is said to be solvable by “separation of variables” as follows: 

∫
ௗ௬

௚(௬)
= ∫ 𝑓(𝑥) 𝑑𝑥. 

Remark: In case we have a differential equation of the form 

𝑦(௡) = 𝑓(𝑥) ⇔
ௗ೙௬

ௗ௫೙ = 𝑓(𝑥),                                                                (1)      

then, by integrating (1), we obtain 
ௗ೙షభ௬

ௗ௫೙షభ = ∫ 𝑓(𝑥)𝑑𝑥 + 𝑐ଵ.                                                                        (2) 

By setting ∫ 𝑓(𝑥)𝑑𝑥 = 𝑓ଵ (𝑥) and then integrating (2), we obtain 
ௗ೙షమ௬

ௗ௫೙షమ = ∫ 𝑓ଵ(𝑥)𝑑𝑥 + 𝑐ଵ 𝑥 + 𝑐ଶ.  

Repeating the same process, we obtain the general solution of (1), which is 
of the form 
𝑦 = 𝑤(𝑥) +

௖భ

(௡ିଵ)!
𝑥௡ିଵ +

௖మ

(௡ିଶ)!
𝑥௡ିଶ + ⋯ + 𝑐௡, 

meaning that the general solution of 𝑦(௡) = 𝑓(𝑥) can be obtained through 
𝑛 successive integrations. 
For instance, let us find the general solution of the differential equation 
𝑥ଶ𝑑𝑦 − 𝑦𝑑𝑥 = 0 as well as its partial solution that satisfies the condition 
𝑦(2) = 4 (i.e., the integral curve that passes through the point 𝑃(2,4)). 
We shall apply the method of separation of variables: 

𝑥ଶ𝑑𝑦 − 𝑦𝑑𝑥 = 0 ⇒
ௗ௬

௬
=

ௗ௫

௫మ ⇒
ௗ௬

௬
= 𝑥ିଶ𝑑𝑥 ⇒ ∫

ௗ௬

௬
= ∫ 𝑥ିଶ𝑑𝑥 ⇒ 𝑙𝑛𝑦 =

௫షభ

ିଵ
+ 𝑐 ⇒ 𝑙𝑛𝑦 = −

ଵ

௫
+ 𝑐 ⇒ 𝑦 = 𝑒ି

భ

ೣ
ା௖ ⇒ 𝑦 = 𝑒௖𝑒ି

భ

ೣ ⇒ 𝑦 = 𝑘𝑒ି
భ

ೣ, which 

is the general solution of the given differential equation. In order to find 
the partial solution for which 𝑥 = 2 ⇒ 𝑦 = 4 (i.e., the integral curve that 
passes through the point 𝑃(2,4)), we must determine the constant 𝑘. If we 
substitute 𝑥 = 2 and 𝑦 = 4 into the general solution, then we obtain 4 =

𝑘𝑒ି
భ

మ ⇒ 𝑘 = 4𝑒
భ

మ = 4√𝑒. Hence, if we substitute this value of 𝑘 into the 
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general solution, then we shall obtain the required partial solution, namely, 

𝑦 = 4√𝑒𝑒ି
భ

ೣ. 
 
Homogeneous Differential Equations: A differential equation is said to be 
“homogeneous” if it may be written in the form 
𝑓(𝑥, 𝑦)𝑑𝑥 + 𝑔(𝑥, 𝑦)𝑑𝑦 = 0,                                                                     (1) 
where the functions 𝑓(𝑥, 𝑦) and 𝑔(𝑥, 𝑦) are homogeneous with respect to 
𝑥 and 𝑦 of the same degree of homogeneity, meaning that  

𝑓(𝑥, 𝑦) may be written in the form 𝑥௠𝐴 ቀ
௬

௫
ቁ and                                      (2) 

𝑔(𝑥, 𝑦) may be written in the form 𝑥௠𝐵 ቀ
௬

௫
ቁ.                                           (3) 

Thus, due to (2) and (3), (1) becomes (for 𝑥௠ ≠ 0): 

𝐴 ቀ
௬

௫
ቁ 𝑑𝑥 + 𝐵 ቀ

௬

௫
ቁ 𝑑𝑦 = 0 ⇒

ௗ௬

ௗ௫
= −

஺ቀ
೤

ೣ
ቁ

஻ቀ
೤

ೣ
ቁ
, 

which ultimately reduces to the form  
ௗ௬

ௗ௫
= 𝑓 ቀ

௬

௫
ቁ ⇔ 𝑦′ = 𝑓 ቀ

௬

௫
ቁ,                                                                         (4) 

where 𝑓 ቀ
௬

௫
ቁ is a homogeneous function whose degree of homogeneity is 

equal to zero. In order to find the general solution of (4), we set  
௬

௫
= 𝑤 ⇔ 𝑦 = 𝑥𝑤                                                                                      (5) 

where 𝑤 is a function of the independent variable 𝑥, that is, 𝑤 = 𝑤(𝑥).  
By differentiating (5), we obtain 
𝑑𝑦 = 𝑤𝑑𝑥 + 𝑥𝑑𝑤, 
and, after dividing by 𝑑𝑥, we obtain 
ௗ௬

ௗ௫
= 𝑤 + 𝑥

ௗ௪

ௗ௫
.                                                                                          (6) 

Therefore, due to (5) and (6), the original differential equation becomes 

𝑤 + 𝑥
ௗ௪

ௗ௫
= 𝑓(𝑤) ⇒ 𝑥

ௗ௪

ௗ௫
= 𝑓(𝑤) − 𝑤 ⇒

ௗ௪

௙(௪)ି௪
=

ௗ௫

௫
.                         (7) 

The differential equation (7), which is equivalent to (1), can be solved by 
the method of separation of variables. In particular, (7) gives 

∫
ௗ௪

௙(௪)ି௪
= 𝑙𝑛𝑥 + 𝑙𝑛𝑐, or ∫

ௗ௪

௙(௪)ି௪
= 𝑙𝑛𝑐𝑥, or 𝑐𝑥 = 𝑒

∫
೏ೢ

೑(ೢ)షೢ.                 (8) 

In (8), we have to compute the integral ∫
ௗ௪

௙(௪)ି௪
 and then to make the 

substitution 𝑤 =
௬

௫
 in order to ultimately find the general solution of (1). 

For instance, let us solve the differential equation (𝑥ଶ − 𝑦ଶ)𝑑𝑥 +
2𝑥𝑦𝑑𝑦 = 0 . This differential equation is homogeneous, because the 
expressions 𝑓(𝑥, 𝑦) = 𝑥ଶ − 𝑦ଶ  and 𝑔(𝑥, 𝑦) = 2𝑥𝑦 are homogeneous with 
respect to 𝑥 and 𝑦, and their degree of homogeneity is 2. We set 
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௬

௫
= 𝑤 ⇔ 𝑦 = 𝑥𝑤                                                                                      (∗) 

where 𝑤 = 𝑤(𝑥). By differentiating (∗) with respect to 𝑥, we obtain 
𝑦′ = 𝑤 + 𝑥𝑤 ′.                                                                                          (∗∗) 
Due to (∗) and (∗∗), the given differential equation becomes 
(𝑥ଶ − 𝑥ଶ𝑤ଶ) + 2𝑥ଶ𝑤(𝑤 + 𝑥𝑤 ′) = 0 ⇒ 𝑥ଶ(1 − 𝑤ଶ) + 2𝑥ଶ𝑤(𝑤 +
𝑥𝑤 ′) = 0, and, because, by (∗), 𝑥 ≠ 0, we divide the last expression by 𝑥ଶ 
to obtain 

(1 − 𝑤ଶ) + 2𝑤(𝑤 + 𝑥𝑤 ′) = 0 ⇒ 1 − 𝑤ଶ + 2𝑤ଶ + 2𝑥𝑤
ௗ௪

ௗ௫
= 0 ⇒

1 + 𝑤ଶ + 2𝑥𝑤
ௗ௪

ௗ௫
= 0 ⇒

ଶ௪ௗ

௪మାଵ
= −

ௗ௫

௫
⇒ ∫

ଶ௪ௗ௪

௪మାଵ
=

− ∫
ௗ௫

௫
⇒ 𝑙𝑛(𝑤ଶ + 1) = −𝑙𝑛𝑥 + 𝑙𝑛𝑐 ⇒ 𝑙𝑛(𝑤ଶ + 1) = 𝑙𝑛 ቀ

௖

௫
ቁ ⇒

𝑤ଶ + 1 =
௖

௫
. 

By the substitution 𝑤 =
௬

௫
, we realize that the general solution of the given 

differential equation is 𝑦ଶ + 𝑥ଶ = 𝑐𝑥. 
 
Differential Equations Reducible to Homogeneous Differential Equations: 
The differential equations of the form  
ௗ௬

ௗ௫
= 𝑓 ቀ

௔భ௫ା௕భ௬ା௖భ

௔మ௫ା௕మ௬ା௖మ
ቁ,                                                                                 (∗) 

where 𝑎ଵ, 𝑏ଵ, 𝑐ଵ, 𝑎ଶ, 𝑏ଶ, 𝑐ଶ are real constants, are reducible to homogeneous 
differential equations. In order to solve ( ∗ ) by reducing it to a 
homogeneous differential equation, we distinguish the following two 
cases: 
 

Case I: If 
௔భ

௔మ
≠

௕భ

௕మ
⇔ 𝑎ଵ𝑏ଶ − 𝑎ଶ𝑏ଵ ≠ 0 , then we can find the general 

solution of (∗) as follows: We solve the system of equations 

൜
𝑎ଵ𝑥 + 𝑏ଵ𝑦 + 𝑐ଵ = 0
𝑎ଶ𝑥 + 𝑏ଶ𝑦 + 𝑐ଶ = 0

ൠ.                                                                              (1) 

Let (𝑥, 𝑦) = (𝑥଴, 𝑦଴) be the solution of (1). Then we set 

ቄ
𝑥 = 𝑥଴ + 𝑤
𝑦 = 𝑦଴ + 𝑣 ቅ,                                                                                           (2) 

and, by differentiating (2), we obtain  

൜
𝑑𝑥 = 𝑑𝑤
𝑑𝑦 = 𝑑𝑣

ൠ,                                                                                                (3) 

so that, by (2) and (3), the differential equation (∗) becomes  
ௗ௩

ௗ௪
= 𝑓 ቀ

௔భ(௫బା௪)ା௕భ(௬బା௩)ା௖భ

௔మ(௫బା௪)ା௕మ(௬బା௩)ା௖మ
ቁ ⇒

ௗ௩

ௗ௪
= 𝑓 ቀ

௔భ௫బା௕భ௬బା௖భା௔భ௪ା௕భ௩

௔మ௫బା௕మ௬బା௖మା௔మ௪ା௕మ௩
ቁ. 

But 𝑎ଵ𝑥଴ + 𝑏ଵ𝑦଴ + 𝑐ଵ = 0 and 𝑎ଶ𝑥଴ + 𝑏ଶ𝑦଴ + 𝑐ଶ = 0, because (𝑥଴, 𝑦଴) is 
the solution of (1), and, therefore, 
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ௗ௩

ௗ௪
= 𝑓 ቀ

௔భ௪ା௕భ௩

௔మ௪ା௕మ௩
ቁ.                                                                                     (4) 

The differential equation (4) is homogeneous with respect to 𝑣 and 𝑤, and, 
in order to find its general solution, we set 

௩

௪
= 𝑧 ⇔ 𝑣 = 𝑤𝑧, where 𝑧 =

𝑧(𝑤) , and we work according to the method of solving homogeneous 
differential equations, which I have already explained. When we find the 
general solution of (4), we set 𝑧 =

௩

௪
, and then, by (2), 𝑤 = 𝑥 − 𝑥଴ and 

𝑣 = 𝑦 − 𝑦଴ in order to ultimately find the general solution of (∗).  
 

Case II: If 
௔భ

௔మ
=

௕భ

௕మ
= 𝜆 ⇒ 𝑎ଵ𝑏ଶ − 𝑎ଶ𝑏ଵ = 0, then we can find the general 

solution of (∗) as follows: Because 𝑎ଵ = 𝜆𝑎ଶ and 𝑏ଵ = 𝜆𝑏ଶ, (∗) becomes 
ௗ௬

ௗ௫
= 𝑓 ቀ

ఒ(௔మ௫ା௕మ௬)ା௖భ

௔మ௫ା௕మ௬ା௖మ
ቁ.                                                                             (5) 

We set 𝑎ଶ𝑥 + 𝑏ଶ𝑦 = 𝑤, where 𝑤 = 𝑤(𝑥), and, by differentiating (5) with 

respect to 𝑥, we obtain 𝑎ଶ + 𝑏ଶ𝑦′ = 𝑤 ′ ⇔ 𝑦′ =
ଵ

௕మ
(𝑤 ′ − 𝑎ଶ), so that (5) 

becomes 
ଵ

௕మ
ቀ

ௗ௪

ௗ௫
− 𝑎ଶቁ = 𝑓 ቀ

ఒ௪ା௖భ

௪ା௖భ
ቁ.                                                                        (6) 

The differential equation (6) can be solved by the method of separation of 
variables. When we find the general solution of (6), we set 𝑤 = 𝑎ଶ𝑥 +
𝑏ଶ𝑦. 
 
First-Order Linear Differential Equations: The general form of these 
equations is  
ௗ௬

ௗ௫
+ 𝐴𝑦 = 𝐵,                                                                                             (∗) 

where 𝐴 and 𝐵 are functions of 𝑥, that is, 𝐴 = 𝐴(𝑥) and 𝐵 = 𝐵(𝑥). The 
general solution of (∗) is: 
 
𝑦 = 𝑒ି ∫ ஺ௗ௫൫𝑐 + ∫ 𝐵𝑒∫ ஺ௗ௫ 𝑑𝑥൯,  
where 𝑐 is an arbitrary constant. 

Proof: If 𝐵 = 0, then (∗) becomes 
ௗ௬

ௗ௫
+ 𝐴𝑦 = 0, and it is said to be a 

homogeneous linear differential equation, which can be solved by 

separation of variables: 
ௗ௬

௬
= −𝐴𝑑𝑥 ⇒ ∫

ௗ௬

௬
= − ∫ 𝐴𝑑𝑥 ⇒ 𝑙𝑛𝑦 =

− ∫ 𝐴𝑑𝑥 + 𝑐 ⇒ 𝑦 = 𝑒ି ∫ ஺ௗ௫ା௖ = 𝑒௖𝑒ି ∫ ஺ௗ௫ = 𝑐𝑒ି ∫ ஺ௗ௫ , which is the 
general solution of the aforementioned homogeneous linear differential 
equation; and, if 𝑐 = 1, then we obtain its partial solution 𝑦ଵ = 𝑒ି ∫ ஺ௗ௫. 
In order to find the general solution of (∗), we consider a new unknown 
function 𝑧 of 𝑥 such that  
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𝑦 = 𝑦ଵ𝑧.                                                                                                     (1) 
By differentiating (1) with respect to 𝑥, we obtain 
𝑦′ = 𝑦ଵ

′ 𝑧 + 𝑦ଵ𝑧 ′.                                                                                        (2) 
Hence, by (1) and (2), the differential equation (∗) becomes 
𝑦ଵ

′ 𝑧 + 𝑦ଵ𝑧 ′ + 𝐴𝑦ଵ
′ 𝑧 = 𝐵 ⇔ (𝑦ଵ

′ + 𝐴𝑦ଵ)𝑧 + 𝑦ଵ𝑧 ′ = 𝐵.  

But 𝑦ଵ
′ + 𝐴𝑦ଵ = 0 , since 𝑦ଵ  is a partial solution of 

ௗ௬

ௗ௫
+ 𝐴𝑦 = 0 , and, 

therefore, 
𝑦ଵ𝑧 ′ = 𝐵 ⇒ 𝑒ି ∫ ஺ௗ௫𝑧 ′ = 𝐵 ⇒ 𝑧 ′ = 𝐵𝑒∫ ஺ௗ௫ ⇒ 𝑧 = ∫ 𝐵𝑒∫ ஺ௗ௫𝑑𝑥 + 𝑐. 
Because 𝑦ଵ = 𝑒ି ∫ ஺ௗ௫  and 𝑧 = ∫ 𝐵𝑒∫ ஺ௗ௫𝑑𝑥 + 𝑐 , equation (1) gives the 
general solution of (∗), which is 𝑦 = 𝑒ି ∫ ஺ௗ௫൫𝑐 + ∫ 𝐵𝑒∫ ஺ௗ௫ 𝑑𝑥൯.■  
 
Linearization of Nonlinear Differential Equations: Problems of nonlinear 
analysis started to exist ever since the creation of the universe. Some of 
them were solved by ancient Greek mathematicians, but many new 
nonlinear problems were created, both in pure mathematics and in other 
sciences, such as biology, physics, astronomy, economics, etc. The 
distinction between linear and nonlinear analysis is not quite clear, 
because a considerable part of information about a nonlinear system can 
be extracted from a linear approximation of the corresponding nonlinear 
problem. Moreover, it is often possible to extract information about the 
solution of a linear system from a relevant nonlinear one. The term 
“linearization” of a nonlinear differential equation refers to the reduction 
of a nonlinear differential equation to a linear differential equation that is 
either equivalent or almost equivalent to the given nonlinear differential 
equation, that is, the solution of the linear differential equation may give 
the solution of the nonlinear differential equation either exactly or 
approximately within an acceptable error. Two well-known examples of 
linearization of nonlinear differential equations are the following: 
 

i. The Bernoulli equation:  
ௗ௬

ௗ௫
+ 𝐴𝑦 = 𝐵𝑦௡,                                                                          (1) 

where 𝐴 and 𝐵  are functions of 𝑥, and 𝑛 ∈ ℝ − {0,1} (if 𝑛 = 0, 
then the equation is linear; if 𝑛 = 1, then the equation can be 
solved by separation of variables). Multiplying both sides of (1) 
by 𝑦ି௡, we obtain 

𝑦ି௡ ௗ௬

ௗ௫
+ 𝐴𝑦ଵି௡ = 𝐵.                                                                  (2) 

Let 𝑦ଵି௡ = 𝑤,                                                                             (3) 
where 𝑤 = 𝑤(𝑥) . By differentiating (3) with respect to 𝑥 , we 
obtain 
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(1 − 𝑛)𝑦ି௡ ௗ௬

ௗ௫
=

ௗ௪

ௗ௫
⇔ 𝑦ି௡𝑦′ =

௪′

ଵି௡
.                                        (4) 

Hence, (2), due to (3) and (4), yields 
௪′

ଵି௡
+ 𝐴𝑤 = 𝐵 ⇒

ௗ௪

ௗ௫
+ (1 − 𝑛)𝐴𝑤 = (1 − 𝑛)𝐵,                      (5) 

which is a linear differential equation (whose dependent variable 
is 𝑤 ), and it can be solved according to the aforementioned 
method of solving linear differential equations. When we find the 
general solution of (5), we set 𝑤 = 𝑦ଵି௡, according to (3), and, 
thus, we obtain the general solution of (1). 
 

ii. The Riccati equation:  
ௗ௬

ௗ௫
= 𝐴 + 𝐵𝑦 + 𝐶𝑦ଶ,                                                                   (1) 

where 𝐴, 𝐵, and 𝐶 are functions of 𝑥. We can find the general 
solution of the Riccati equation only if we know one of its partial 
solutions. Suppose that 𝑦 = 𝑦ଵ is a partial solution of (1), so that  
ௗ௬భ

ௗ௫
+ 𝐴 + 𝐵𝑦ଵ + 𝐶𝑦ଵ

ଶ = 0.                                                         (2) 

Then, using the transformation  
𝑦 = 𝑦ଵ + 𝑤,                                                                                (3) 
where 𝑤 = 𝑤(𝑥), and differentiating (3) with respect to 𝑥 , we 
obtain 
ௗ௬

ௗ௫
=

ௗ௬భ

ௗ௫భ
+

ௗ௪

ௗ௫
.                                                                             (4) 

Hence, (1), due to (3) and (4), yields 
ௗ௬భ

ௗ௫
+ 𝐴 + 𝐵𝑦ଵ + 𝐶𝑦ଵ

ଶ +
ௗ௪

ௗ௫
+ (𝐵 + 2𝐶𝑦ଵ)𝑤 + 𝐶𝑤ଶ = 0. 

But, due to (2), 
ௗ௬భ

ௗ௫
+ 𝐴 + 𝐵𝑦ଵ + 𝐶𝑦ଵ

ଶ = 0, so that we obtain 
ௗ௪

ௗ௫
+ (𝐵 + 2𝐶𝑦ଵ)𝑤 = −𝐶𝑤ଶ,                                                    (5) 

which is a Bernoulli equation (where 𝑤  is the dependent 
variable), and it can be solved according to the aforementioned 
method of solving the Bernoulli equation: multiplying both sides 
of (5) by 𝑤ିଶ, we obtain 

𝑤ିଶ ௗ௪

ௗ௫
+ (𝐵 + 2𝐶𝑦ଵ)𝑤ିଵ = −𝐶.                                              (6) 

If we set  
𝑤ିଵ = 𝑧,                                                                                     (7) 
where 𝑧 = 𝑧(𝑥), and if we differentiate (6) with respect to 𝑥, then 
we obtain  
−𝑤ିଶ𝑤 ′ = 𝑧 ′.                                                                              (8) 
Therefore, (6), due to (7) and (8), yields 
−𝑧 ′ + (𝐵 + 2𝐶𝑦ଵ)𝑧 = −𝐶 ⇔ 𝑧 ′ − (𝐵 + 2𝐶𝑦ଵ)𝑧 = −𝐶,           (9) 
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which is a linear differential equation (where 𝑧 is the dependent 
variable), and its general solution is  
 
𝑧 = 𝑒ି ∫ ି(஻ାଶ஼௬భ)ௗ௫൫𝑐 + ∫ 𝐶𝑒∫ ି(஻ାଶ஼௬భ)ௗ௫ 𝑑𝑥൯. 
By substituting this value of 𝑧  into (7), we find 𝑤 , and, by 
substituting the so found value of 𝑤 into (3), we find the general 
solution of the Riccati equation (1). 

 
An example of the application of differential equations in the discipline of 
economics: By the term “Gross Domestic Product,” we mean the total 
monetary value of all final goods and services produced (and sold on the 
market) within a country during a period of time (typically one year). The 
formula for calculating Gross Domestic Product (GDP) is the following: 

𝐺𝐷𝑃 = 𝑝𝑟𝑖𝑣𝑎𝑡𝑒 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 + 𝑔𝑟𝑜𝑠𝑠 𝑝𝑟𝑖𝑣𝑎𝑡𝑒 𝑖𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡
+ 𝑔𝑜𝑣𝑒𝑟𝑛𝑚𝑒𝑛𝑡 𝑖𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡
+ 𝑔𝑜𝑣𝑒𝑟𝑛𝑚𝑒𝑛𝑡 𝑠𝑝𝑒𝑛𝑑𝑖𝑛𝑔 + (𝑒𝑥𝑝𝑜𝑟𝑡𝑠 − 𝑖𝑚𝑝𝑜𝑟𝑡𝑠) 

and the term “gross” indicates that products are counted regardless of their 
subsequent use (a product can be used for consumption, for investment, or 
to replace an asset). Nominal GDP uses current prices in its measure. Real 
GDP is an inflation-adjusted measure of the total monetary value of all 
final goods and services produced (and sold on the market) within a 
country during a period of time (typically one year): 

𝑅𝑒𝑎𝑙 𝐺𝐷𝑃 =
𝑁𝑜𝑚𝑖𝑛𝑎𝑙 𝐺𝐷𝑃

𝐺𝐷𝑃 𝐷𝑒𝑓𝑙𝑎𝑡𝑜𝑟
 

(for instance, if an economy’s prices have increased by 1% since the base 
year that is used in order to calculate the Real GDP, then the GDP Deflator 
is equal to 1.01). 
Suppose that GDP grows at some constant rate 𝑔 over time 𝑡. Then, if 𝑦 
denotes the current level of GDP in the economy, we can express the 
relationship as the following differential equation: 
ௗ௬

ௗ௧
≡ 𝑦ᇱ = 𝑔 ∙ 𝑦(𝑡) ⇔

ௗ௬

ௗ௧
− 𝑔 ∙ 𝑦(𝑡) = 0. 

This is a first-order linear differential equation, and, therefore, as shown 
before, its solution is  
𝑦(𝑡) = 𝑐𝑒௚௧. 
The business cycle model shows how a country’s real GDP fluctuates over 
time, and the typical business cycle has four phases, which progress as 
follows: (i) expansion (when real GDP is increasing and unemployment is 
decreasing), (ii) peak (the turning point in the business cycle at which real 
GDP stops increasing and starts decreasing), (iii) recession (when real 
GDP is decreasing and unemployment is increasing), and (iv) trough (the 
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turning point in the business cycle at which real GDP stops decreasing and 
starts increasing). Obviously, these phases can be mathematically 
modelled using the method provided by differential calclulus to study the 
behavior of a function.  
Regarding price fluctuations, the cobweb model is a model that explains 
why prices may be subjected to periodic fluctuations in certain types of 
market. Let 𝑥ௗ(𝑡) denote the demand for product 𝑥 at time 𝑡, and let 𝑝(𝑡) 
denote the price of 𝑥 at time 𝑡. We assume that  
𝑥ௗ(𝑡) = 𝑓൫𝑝(𝑡)൯.                                                                                       (1) 
Let 𝑥௦(𝑡) denote the supply of product 𝑥 at time 𝑡. We assume that 
𝑥௦(𝑡) = 𝑔൫𝑝(𝑡 − 𝜃)൯ + 𝑢(𝑡)                                                                    (2) 
where 𝜃  is positive, and 𝑢(𝑡)  denotes some external force that 
independently influences 𝑥௦(𝑡) . For instance, 𝑢(𝑡)  may be be some 
influence from another economic sector that is independent of the one 
considered here, or it may be some weather or socio-political factor. For 
market clearance (equilibrium) at time 𝑡, 𝑥ௗ(𝑡) must be equal to 𝑥௦(𝑡). If 
𝑥(𝑡) is the quantity of 𝑥 at which the market clears at time 𝑡, equations (1) 
and (2) and the market-clearance (equilibrium) condition lead us to the 
following equation: 
𝑥(𝑡) = 𝐺൫𝑥(𝑡 − 𝜃)൯ + 𝑢(𝑡).                                                                     (3) 
The demand curve, depicting demand as a function of price, typically 
slopes downward from left to right, indicating that, as the price of a good 
or a service rises, the demand for it falls. The supply curve, depicting 
supply as a function of price, typically slopes upward from left to right, 
indicating that, as the price of a good or a service rises, the supply of it 
increases. The equilibrium price is where the supply of goods/services 
matches demand. Given the typical shapes of the demand curve and the 
supply curve, the first derivative of the function 𝐺  in equation (3) is 
negative. If 𝑢(𝑡) is a constant, independent of 𝑡, then equation (3) is the 
standard cobweb model, and, in this model, there could be business cycles 
of period 2𝜃. 
 
An example of the application of differential equations in the discipline of 
biology: Let us consider the spread of a disease through the population. 
Suppose that we have a number of people, say 𝑁, who are infected with a 
disease. We want to know how 𝑁  will change in time. Hence, 𝑁  is a 
function of 𝑡 , which denotes time. Each of the 𝑁  people has a certain 
probability to spread the disease to other people during some period of 
time. Let us quantify this infectiousness by using a constant 𝑘, so that the 
change in the number of infected people with respect to time equals this 
constant 𝑘  times the number of people who are already infected. In 
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general, the change of a function with respect to time is the derivative of 
that function with respect to time. Therefore, we obtain the following 
differential equation: 
ௗே(௧)

ௗ௧
= 𝑘 ∙ 𝑁(𝑡) ⇔

ௗே(௧)

ௗ௧
− 𝑘 ∙ 𝑁(𝑡) = 0, 

and, therefore, 
𝑁(𝑡) = 𝑁଴𝑒௞௧, 
where 𝑁଴ is the number of the infected people at the initial time (𝑡 = 0), 
and the probability of infecting someone appears in the exponent (𝑘𝑡). 
Thus, we understand why infectious diseases begin by speading 
exponentially (since the number of infected people is proportional to the 
number of people who are already infected). When a disease begins to 
spread, the constant 𝑘 in the aforementioned exponent is 

𝑘 =
𝑅଴ − 1

𝜏
 

where 𝜏 is the time an infected person remains infectious, and 𝑅଴ denotes 
the average number of people someone infects.  
 
An example of the application of differential equations in the study of 
species competition (the competitive Lotka–Volterra equations): The 
problem of the growth of two species competing for the same resources 
has signigant applications in biology, ecology, and economics. Consider 
two mixed populations of species that are mutually interdependent and 
compete for the same resources. Let 𝑁ଵ  and 𝑁ଶ  denote the number of 
individuals of species one and of species two, respectively. Both 𝑁ଵ and 
𝑁ଶ are functions of time 𝑡. Then we obtain the following logistic equations 
for these two species: 

𝑑𝑁ଵ

𝑑𝑡
= 𝑎ଵ𝑁ଵ ൬1 −

𝑁ଵ

𝑀ଵ

൰ 

 
𝑑𝑁ଶ

𝑑𝑡
= 𝑎ଶ𝑁ଶ ൬1 −

𝑁ଶ

𝑀ଶ

൰ 

which are uncoupled equations, and 𝑁ଵ → 𝑀ଵ and 𝑁ଶ → 𝑀ଶ. However, we 
have to model the competition between these two populations. If 𝑁ଵ  is 
much smaller than 𝑀ଵ, and if 𝑁ଶ is much smaller than 𝑀ଶ, then resources 
are plentiful, and these two populations, 𝑁ଵ and 𝑁ଶ , grow exponentially 
with growth rates 𝑎ଵ and 𝑎ଶ, respectively. If species one and species two 
compete, then the growth of species one reduces resources available to 
species two, and vice versa. Because we do not know the exact impact 
species one and species two have on each other, we introduce two 
additional parameters to model competition. In particular, let 𝑞ଵଶ and 𝑞ଶଵ 
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be dimensionless parameters (constants) that respectively model the 
consumption of species one’s resources by species two, and vice versa (for 
instance, if both species eat exactly the same food, but species two 
consumes twice as much as species one, then 𝑞ଵଶ = 2  and 𝑞ଶଵ = 0.5). 
Then we can modify and couple the two aforementioned logistic equations 
as follows: 

𝑑𝑁ଵ

𝑑𝑡
= 𝑎ଵ𝑁ଵ ൬1 −

𝑁ଵ + 𝑞ଵଶ𝑁ଶ

𝑀ଵ

൰ 

 
𝑑𝑁ଶ

𝑑𝑡
= 𝑎ଶ𝑁ଶ ൬1 −

𝑞ଶଵ𝑁ଵ + 𝑁ଶ

𝑀ଶ

൰ 

and, as time increases, the solution of this model (system of differential 
equations), which starts at (𝑁ଵ

∗, 𝑁ଶ
∗), approaches a point (𝑁ଵ

் , 𝑁ଶ
்), so that 

one of the following cases holds: (i) the point (𝑁ଵ
் , 𝑁ଶ

்) lies in the fully 
positive quadrant of the 𝑥, 𝑦-plane, so that both 𝑁ଵ

்  and 𝑁ଶ
்  are positive, 

which means that the species co-exist; (ii) the point (𝑁ଵ
் , 𝑁ଶ

்) = (0,0), 
which indicates extinction of both species; or (iii) one of 𝑁ଵ

் and 𝑁ଶ
் may 

be zero and the other positive, indicating a situation of competitive 
exclusion.  
 
An example of the application of differential equations in the discipline of 
strategic studies: In warfare problems, the calculation of a force ratio may 
be achieved by simple rules or may include complex assumptions and 
subjective judgments. For the quantitative study of a force ratio, the 
following three variables are difficult to handle: (i) the disparity in number 
and lethality of weapons between similar organizations; (ii) the variations 
in concepts of combat support; and (iii) the concentration of forces.  
Courtney S. Coleman (Department of Mathematics, Harvey Mudd 
College, Claremont, CA), following the warfare modelling approach of the 
English polymath and engineer Frederick W. Lanchester, studied some 
model problems on a mixed conventional-guerilla combat, such as 
Vietnam.   
Let 𝑥(𝑡)  and 𝑦(𝑡)  denote respective strengths of the forces at time 𝑡 , 
where 𝑡 is measured in days from the start of the combat. We shall identify 
the strengths with the numbers of combatants. We shall consider the ideal 
case where 𝑥(𝑡)  and 𝑦(𝑡)  are differentiable functions of time. Then 
Coleman states that, even though we may not have a specific formula for 
𝑥(𝑡) as a function of time, we may have sufficient information about the 
operational loss rate (OLR) of the 𝑥 -force (i.e., the loss rate due to 
inevitable diseases, desertions, and other non-combat mishaps), the 
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combat loss rate (CLR), due to encounters with the 𝑦 -force, and the 
reinforcement rate (RR). Hence, 
ௗ௫(௧)

ௗ௧
= 𝑂𝐿𝑅 + 𝐶𝐿𝑅 + 𝑅𝑅, 

and a similar equation applies to the 𝑦-force.  
Lanchester assumed that the loss rate of a force is directly proportional to 
the enemy force strength. The following three Lanchesterian models are of 
great significance; 𝑥(𝑡)  and 𝑦(𝑡)  denote the strengths of the opposing 
forces at time 𝑡, and 𝑡 denotes time from the start of the combat (you may 
add reinforcement rates 𝑃(𝑡) and 𝑄(𝑡) per day if relevant). 
 
Model I: Conventional Combat (CONCOM): 

൞

𝑑𝑥(𝑡)

𝑑𝑡
= −𝑏𝑦(𝑡)

𝑑𝑦(𝑡)

𝑑𝑡
= −𝑐𝑥(𝑡)

 

where the constants are non-negative loss rate constants, 𝑏  denotes the 
effectiveness of 𝑦  and 𝑐  denotes the effectiveness of 𝑥 . Solving these 
equations gives 

𝑑𝑦

𝑑𝑥
=

𝑑𝑦
𝑑𝑡

ൗ

𝑑𝑥
𝑑𝑡ൗ

=
𝑐𝑥(𝑡)

𝑏𝑦(𝑡)
 

so that (given that we have a separable equation, meaning that we can 
separate variables and integrate each side) we obtain Lanchester’s Square 
Law: 

𝑏 න 𝑦𝑑𝑦 = 𝑐 න 𝑥𝑑𝑥 ⇒
௫

௫బ

௬

௬బ

𝑏[𝑦(𝑡)ଶ − 𝑦଴(𝑡)ଶ] = 𝑐[𝑥(𝑡)ଶ − 𝑥଴(𝑡)ଶ]

⇒ 𝑏𝑦(𝑡)ଶ − 𝑐𝑥(𝑡)ଶ = 𝑏𝑦଴(𝑡)ଶ − 𝑐𝑥଴(𝑡)ଶ ≡ 𝐾 
where 𝐾 is a constant. Therefore, 𝑥 wins if 𝐾 < 0, 𝑦 wins if 𝐾 > 0, and a 
stalemate (equilibrium) occurs if 𝐾 = 0 ⇔ 𝑏𝑦଴(𝑡)ଶ = 𝑐𝑥଴(𝑡)ଶ ⇔

௖

௕
=

ቀ
௬బ(௧)

௫బ(௧)
ቁ

ଶ

. 

 
Model II: Guerilla Combat (GUERCOM): 
 

൞

𝑑𝑥(𝑡)

𝑑𝑡
= −𝑎𝑥(𝑡)𝑦(𝑡)

𝑑𝑦(𝑡)

𝑑𝑡
= −𝑏𝑥(𝑡)𝑦(𝑡)

 

and solving these equations gives 
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𝑑𝑦

𝑑𝑥
=

𝑑𝑦
𝑑𝑡

ൗ

𝑑𝑥
𝑑𝑡ൗ

=
𝑏𝑥(𝑡)𝑦(𝑡)

𝑐𝑥(𝑡)𝑦(𝑡)
=

𝑏

𝑎
 

so that (given that we have a separable equation, meaning that we can 
separate variables and integrate each side) we obtain the following Linear 
Law: 

𝑦(𝑡) − 𝑦(0) =
𝑏

𝑎
[𝑥(𝑡) − 𝑥(0)] ⇒ 𝑎𝑦(𝑡) − 𝑏𝑥(𝑡) = 𝑎𝑦(0) − 𝑏𝑥(0) ≡ 𝐾 

where 𝐾 is a constant. In this case, a stalemate (equilibrium) occurs if 𝐾 =

0 ⇔
௕

௔
=

௬(଴)

௫(଴)
. 

 
Model III: Mixed Guerilla-Conventional Combat (e.g., Vietnam War): 

൞

𝑑𝑥(𝑡)

𝑑𝑡
= −𝑎𝑥(𝑡)𝑦(𝑡)

𝑑𝑦(𝑡)

𝑑𝑡
= −𝑏𝑥(𝑡)

 

where 𝑦 is the conventional force (out in the open), and 𝑥 is the guerilla 

force (hard to find). Solving for 
ௗ௬(௧)

ௗ௫(௧)
, we obtain 

𝑑𝑦

𝑑𝑥
=

𝑑𝑦
𝑑𝑡

ൗ

𝑑𝑥
𝑑𝑡ൗ

=
−𝑏𝑥(𝑡)

−𝑎𝑥(𝑡)𝑦(𝑡)
=

𝑏

𝑎𝑦(𝑡)
 

which is again a separable equation, meaning that we can separate 
variables and integrate each side, obtaining the following Parabolic Law: 

𝑎 න 𝑦𝑑𝑦 = 𝑏 න 𝑑𝑥
௫

௫బ

௬

௬బ

⇒
𝑎

2
(𝑦ଶ − 𝑦଴

ଶ) = 𝑏(𝑥 − 𝑥଴) ⇒ 𝑎𝑦ଶ − 2𝑏𝑥

= 𝑎𝑦଴
ଶ − 2𝑏𝑥଴ ≡ 𝐾 

(notice that these are parabolas). Therefore, 𝑦  wins if 𝐾 > 0, 𝑥  wins if 
𝐾 < 0, and a stalemate (equilibrium) occurs if 𝐾 = 0. 
 
An example of the application of differential equations in optimal control 
and differential game models (Dagobert L. Brito’s dynamic model of an 
armaments race): Each nation chooses optimal rates of new arms 
acquisition and consumption given a specific estimate of its opponent’s 
military spending. Specifically, nation 𝑋 determines an index of security 
𝑆௑ defined as follows: 

𝑆௑ = 𝑆௑(𝑀௑ , 𝑀௒) 
where 𝑀௑ and 𝑀௒ denote the arms stocks (or military budgets) of nations 
𝑋  and 𝑌 , respectively. Hence, this model relates 𝑋 ’s perception of its 
security to the respective arms stocks of nations 𝑋 and 𝑌. We assume that 
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the index 𝑆௑ increases (resp. decreases) with 𝑀௑ (resp. 𝑀௒) at a decreasing 
rate (there are marginally diminishing returns to a nation building up its 
arms relative to another). 
The social utility to nation 𝑋 at any point in time 𝑡 is denoted by 𝑈௑௧ and 
is defined as follows: 

𝑈௑௧ = 𝑢(𝐶௑, 𝑆௑) 
where 𝐶௑ denotes 𝑋’s level of consumption, and 𝑆௑ denotes 𝑋’s index of 
security (defined as above).  Once it has been postulated that the norm 
relating means to ends is that of “intrinsic rationality,” the maximization of 
a utility index is implied. The objective for nation 𝑋  is to maximize a 
welfare function (i.e., an integral) that gives the discounted present value 
of all future utility levels, namely: 

𝑊௑ = න 𝑒ି௥௧
ஶ

଴

𝑢(𝐶௑ , 𝑆௑)𝑑𝑡 

so that the welfare of nation 𝑋, specifically, 𝑊௑ , is obtained by adding 
(integrating) the contributions to welfare at each instant of time over all 
time periods from the present (𝑡 = 0). For a scientifically rigorous study of 
the concept of social welfare, see: Kenneth Arrow, Social Choice and 
Individual Values, second edition, New York: John Wiley and Sons, 1963. 
The aforementioned welfare integral, 𝑊௑, is maximized by the choice of 
an additional investment in arms, 𝑍௑, and the level of consumption, 𝐶௑, 
under the following constraints: 
𝑀௑

ᇱ = 𝑍௑ − 𝑘௑𝑀௑                                                                                      (1) 
𝑃௑ = 𝐶௑ + 𝑍௑                                                                                            (2) 
where 𝑀௑

ᇱ  represents the rate of change in the arms stock of nation 𝑋 , 
constraint (1) implies that the increase in 𝑋’s arms stock is equal to its 
gross investment in new arms, 𝑍௑, minus the cost of operating its old ones 
(𝑘௑𝑀௑), and constraint (2) implies that 𝑋’s gross national product (𝑃௑) is 
divided between consumption (𝐶௑) and the additional investment in arms 
(𝑍௑). For a systematic study of optimal control methods, see: Michael 
Athans and P. L. Falb, Optimal Control, New York: Dover, 2007.   
 
An example of the application of differential equations in the discipline of 
psychophysics: The German physician Ernst Heinrich Weber (1795-1878) 
is considered one of the founders of experimental psychology. He asked 
people to make yes–no judgments about whether the perceived weights of 
two objects were different. In particular, he held the mass of the first 
object constant, and he gradually increased the mass of the second object 
until people said “yes” (i.e., “different”). Thus, he managed to define the 
“just noticeable difference,” namely, the smallest increase in weight 𝛥𝐼 
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that a person could detect, and he found that it was not a constant but 
instead a function of the weight 𝐼 of the first object; symbolically: 
𝛥𝐼 = 𝑘𝐼. 
Moreover, Weber found that the value of 𝑘, which determined the “just 
noticeable difference,” was a constant for most values of 𝐼 , thus 
establishing what psychologists now refer to as Weber’s law, which holds 
for a wide range of intensities 𝐼 and across different stimulus modalities.  
    The German physicist, philosopher, and experimental psychologist 
Gustav Theodor Fechner (1801-87), who is the acknowledged founder of 
the scientific field of psychophysics and the first true mathematical 
psychologist, employed Weber’s law by assuming that the psychological 
experience of a “just noticeable difference” is the same for all values of 𝐼. 
Hence, if the change in the psychological effect 𝛥𝑆 = 𝑐 is equal to the 
same constant 𝑐 for every noticeable difference 𝛥𝐼, then 

𝛥𝑆

𝛥𝐼
=

𝑐

𝑘𝐼
 

and, using differential calculus, we obtain the following differential 
equation: 

𝑑𝑆 =
𝑐

𝑘𝐼
𝑑𝐼 

(Fechner’s law). Therefore, solving the aforementioned differential 
equation, we realize that, according to Fechner’s law, psychological 
effects 𝑆 are a logarithmic fuction of physical intensity 𝐼; symbolically: 

𝑆 = 𝐾 ∙ 𝑙𝑛𝐼 
for some constant 𝐾 . In this way, Fechner pioneered the mathematical 
study of perception, stimulus discrimination, and response selection.   
 
An example of the application of differential equations in the discipline of 
neuroscience: The brain (the central nervous system) contains nerve cells 
that are highly specialized in transmitting messages. Each nerve cell, 
called a neuron, consists of the soma (i.e., the central body of the cell), the 
(neur)axon, and the dendrites. At the end of the neural tube, there is a 
special structure called a synapse, through which the neurons 
communicate with each other. When a message created in one neuron is 
about to be transmitted to the next, the first neuron releases specialized 
chemicals called neurotransmitters. The released neurotransmitters are 
taken up by specially shaped regions, called receptors, on the cell 
membrane of the next neuron involved in the particular synapse 
Neurons send signals along an axon to a dendrite through junctions called 
synapses. The standard Leaky Integrate and Fire (LIF) equation is a point 
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neuron model that helps us to represent and study the dynamics of the 
neuron, and it is given as follows: 

𝑉ᇱ(𝑡) =
1

𝐶
൤𝐼௘(𝑡) −

1

𝑅
(𝑉(𝑡) − 𝐸௅)൨ 

𝑉(𝑡) ← 𝑉௥ , 𝑖𝑓 𝑉(𝑡) > 𝛩 
where: 
𝑉(𝑡)  denotes the membrane potential (i.e., the difference in electric 
potential between the interior and the exterior of a biological cell; in other 
words, the difference in the energy required for electric charges to move 
from the internal to the exterior cellular environments and vice versa); 
𝐶  denotes membrane capacitance (parameter) and is proportional to the 
cell surface area; 
𝐸௅  denotes resting potential (parameter) and is the electrical potential 
difference across the cell membrane when the cell is in a non-excited state; 
𝐼௘  denotes the trans-membrane current (an excitatory synaptic input 
initiates a current flow across the membrane and into the neuron, and this 
current consists of an ionic flow of positive ions (e.g., 𝑁𝑎 +) in addition to 
capacitive currents, and it is by convention a negative trans-membrane 
current; this changes the membrane potential at the location of the synaptic 
input, initiating axial currents, that is, currents inside the neuron); 
𝑉௥  denotes reset membrane potential (transmission of a signal within a 
neuron (from dendrite to axon terminal) is carried by a brief reversal of the 
resting membrane potential called an “action potential,” and, when 
neurotransmitter molecules bind to receptors located on a neuron’s 
dendrites, ion channels open, so that, at excitatory synapses, this opening 
allows positive ions to enter the neuron and results in “depolarization” of 
the membrane, that is, a decrease in the difference in the voltage between 
the inside and the outside of the neurone; a stimulus from a sensory cell or 
another neuron depolarizes the target neuron to its threshold potential 
(e.g., −55𝑚𝑉 ), and 𝑁𝑎 +  channels in the axon hillock open, allowing 
positive ions to enter the cell, and, once depolarization is complete, the 
cell must now “reset” its membrane voltage back to the resting potential 
by closing the 𝑁𝑎 + channels); 
𝛩 denotes firing threshold (i.e., the level that a depolarization must reach 
for an action potential to occur, and, in most neurons, the threshold is 
around −55𝑚𝑉  to −65𝑚𝑉 ; if the neuron does not reach this critical 
threshold level, then no action potential will fire); 
𝑡 denotes time. 
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Chapter 13 
Integral Equations 

 
Differential equations typically encode the local behavior of a system, 
whereas integral equations typically encode the global behavior of a 
system. By the term “integral equation,” we mean an equation in which the 
unknown function 𝑢(𝑥) to be determined occurs under an integral sign. 
Hence, the standard form of an integral equation is the following: 

𝑢(𝑥) = 𝑓(𝑥) + න 𝑘(𝑥, 𝑡) ∙ 𝑢(𝑡)
௕(௫)

௔(௫)

𝑑𝑡 

where 𝑘(𝑥, 𝑡) is called the kernel of the integral equation. We can solve 
them using the methods of infinitesimal calculus.  
Suppose that we have to solve the equation 𝑦ᇱ = 𝑓(𝑥, 𝑦)  satisfying the 
initial condition 𝑦(𝑥଴) = 𝑦଴. This problem reduces to the solution of the 
integral equation 

𝑦(𝑥) = න 𝑓(𝑥, 𝑦)
௫

௫బ

𝑑𝑥 + 𝑦଴ 

(it is worth pointing out that the conversion of a differential equation to an 
integral equation is very useful in approximation theory; see: Richard 
Bellman, Perturbation Techniques in Mathematics, Engineering & 
Physics, New York: Dover, 2003).   
For instance, consider the following integral equation: 
𝑦(𝑥) = 2 + ∫ [𝑡 − 𝑡𝑦(𝑡)]

௫

ଶ
𝑑𝑡.                                                                   (1) 

Using the Fundamental Theorem of Infinitesimal Calculus and 
differentiating (1) with respect to 𝑥, we obtain: 
ௗ௬(௫)

ௗ௫
=

ௗଶ

ௗ௫
+

ௗ

ௗ௫
∫ [𝑡 − 𝑡𝑦(𝑡)]

௫

ଶ
𝑑𝑡 = 0 + 𝑥 − 𝑥𝑦 ⇒

ௗ௬(௫)

ௗ௫
= 𝑥 − 𝑥𝑦 ⇒

ௗ௬(௫)

ௗ௫
= 𝑥(1 − 𝑦) ⇒

ଵ

ଵି௬
𝑑𝑦 = 𝑥𝑑𝑥 ⇒ ∫

ଵ

ଵି௬
𝑑𝑦 = ∫ 𝑥𝑑𝑥 ⇒ −𝑙𝑛|1 − 𝑦| +

𝑐ଵ =
௫మ

ଶ
+ 𝑐ଶ ⇒ −𝑙𝑛|1 − 𝑦| =

௫మ

ଶ
+ 𝐶, where 𝐶 = 𝑐ଶ − 𝑐ଵ. In order to find 

𝐶, we work as follows: given that the lower limit of the integral in (1) is 2, 
let us set 𝑥 = 2, so that (1) implies that 𝑦(𝑥) = 2 (notice that, whenever 
the upper and the lower limits of an integral are the same, the integral is 

zero). Thus, −𝑙𝑛|1 − 2| =
ଶమ

ଶ
+ 𝐶 ⇒ −𝑙𝑛(1) = 2 + 𝐶 ⇒ 0 = 2 + 𝐶 ⇒

𝐶 = −2. Therefore, we obtain: 

−𝑙𝑛|1 − 𝑦| =
௫మ

ଶ
− 2 ⇒ 𝑙𝑛|1 − 𝑦| = 2 −

௫మ

ଶ
⇒ |1 − 𝑦| = 𝑒ଶି

ೣమ

మ ⇒ 1 −

𝑦 = ±𝑒ଶି
ೣమ

మ ⇒ 𝑦 = 1 ∓ 𝑒ଶି
ೣమ

మ . 
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Chapter 14 
Mathematical Physics: 

Mechanics, Relativity, Conservation of Energy, 
Thermodynamics, Electromagnetism, Light,  

and Quantum Physics 
 
The subject of physics very much depends on mathematics. Whereas 
mathematicians are concerned only with the structure of reasoning, 
physicists endow mathematical expressions with physical meanings. 
Therefore, they create mathematical models of the physical world.  
The structure and the properties of atoms, molecules and, in general, of all 
ordinary matter are due to primarily electrical interactions between 
electrically charged particles. The fundamental building blocks of ordinary 
matter are the negatively charged “electron,” the positively charged 
“proton,” and the uncharged “neutron.” In a neutral atom, the number of 
electrons equals the number of protons that exist in the nucleus, and the 
net electrical charge is zero. If one or more electrons are removed (resp. 
added), then the remaining positively (resp. negatively) charged structure 
is called a “positive ion” (resp. a “negative ion”). 
From the perspective of quantum mechanics, particles are discrete packets, 
“quanta,” of energy with wave-like properties. In other words, according 
to quantum mechanics, energy is not continuous, but it is always parceled 
up into some tiny discrete “lump” (which is what “quantum” literally 
means: a discrete thing). In essence, an electron is a circular standing 
wave. 
The term “quantum” derives from the Latin language, and it means an 
amount of something. In the context of quantum mechanics, the term 
“quantum” means the smallest amount of energy that can be measured. 
The central concept of quantum physics is that of a wave, here meaning a 
disturbance or oscillation that travels through space-time accompanied by 
a transfer of energy. The basic properties of a wave are its amplitude (i.e., 
the distance from the center line, that is, the still position, to the top of a 
crest or the bottom of a trough), its frequency (i.e., the number of cycles 
occurring per second; specifically, it can be measured by counting the 
number of crests of waves that pass a fixed point in one second), and its 
length (i.e., the distance over which the wave’s shape repeats; for instance, 
the distance between two adjacent crests). From the perspective of 
quantum mechanics, the concept of a physical system is equivalent to the 
concept of a state. This, in turn, is a vector in a multi-dimensional 
geometric space that allows length and angle to be rigorously measured, 
specifically, in a Hilbert space. 
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Continuing in the context of quantum mechanics, a molecule can be 
thought of like a mountain range (described by a wave-function) filled 
with infinitely many energy steps, where each energy step, representing a 
quantum of energy, is a quantum state. A molecule stands on one of these 
quantum states, and all the other infinitely many quantum states are empty, 
they are virtual states. Moreover, each quantum state is characterized by a 
wave form. When a system stands on one of these states, the other states 
also exist, but potentially. This means that they cannot be observed, and 
they actually look empty. Those virtual states are potential modes of 
being, by virtue of which a molecule can jump into other quantum states. 
Due to Heisenberg’s uncertainty principle, we know that molecules can 
make “quantum jumps,” because they have empty states into which they 
can jump. 
In simple terms, to construct an atom, one needs some protons and 
neutrons for the construction of the nucleus, and then one has to put some 
electrons around the nucleus until the whole system is electrically neutral 
(in fact, once you have a positively charged nucleus, it attracts electrons, 
which automatically form shells around the nucleus). However, it should 
be mentioned that the construction of an atomic nucleus is a complex 
process, because protons, being positively charged, repel each other. As a 
result, they have to come very close to each other in order for the nuclear 
force to start operating and, thus, keep them together, given that there exist 
sufficiently many neutrons. This process requires extremely high 
temperatures (hundreds of millions of degrees Kelvin). Such high 
temperatures existed briefly after the Big Bang. 
According to the “Bing-Bang” cosmological model, gravity underpinned 
and, actually, determined the transition from the “Bing-Bang” 
cosmological “soup” to the galactic structure that we observe today: 
gravity started from the initial conditions of the Big Bang and made the 
universe much more complex because, even though the density of the 
universe was almost uniform, there were density quantum-mechanical 
fluctuations. Put slightly differently, there were small differences in the 
density of the universe from one region to another. Thus, a region of the 
universe with density slightly greater than the mean density of the universe 
acted upon itself by its own gravity and, gradually, it made itself denser. 
Consequently, instead of expanding with the rest of the universe, it drew 
matter into the given region. Ultimately, this region collapsed upon itself 
and did not participate in the universal expansion. In this way, a physical 
object was made out of such a region. Gradually, the universe was filled 
with small density inhomogeneities resulting from inflation due to 
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quantum-mechanical fluctuations, which ultimately merged into the 
structures of the universe that we observe today. 
Antimatter is exactly the same as matter, except that the particles that 
make up antimatter have exactly the opposite charge to the particles that 
make up matter. We could say that antimatter is the mirror image of 
matter, except that it has an opposite charge. For example, for every 
proton, there is an antiproton; for every electron, there is an antielectron, 
etc. Let us compare the electron with the antielectron, also called the 
positron. Then we find the following: 
Electron (a negative one elementary electric charge): 𝑒ି. 
Positron or antielectron (a positive one elementary electric charge): 𝑒ା. 
The mass of the electron is the same as the mass of the positron: 𝑚௘ష =
𝑚௘శ. 
The spin of the electron is the same as the spin of the positron: 𝑆𝑝𝑖𝑛௘ష =
𝑆𝑝𝑖𝑛௘శ. 
The electron charge and the positron charge are exactly opposite to each 
other:  
𝑞௘ష = −1.6 × 10ିଵଽ𝐶 and  𝑞௘శ = +1.6 × 10ିଵଽ𝐶, 
where 𝐶 denotes coulomb (the standard unit of electric charge). 
The discovery of antimatter is due to the British theoretical physicist Paul 
Dirac. In 1928, trying to bridge quantum theory with Albert Einstein’s 
theory of relativity, he proposed the Dirac equation―namely, a relativistic 
equation of motion for the wave function of the electron, thus describing 
the behavior of an electron when it is moving at relativistic speeds. At this 
point, let us recall from mathematics that the equation 𝑥ଶ = 1 has two 
solutions―namely: +1  and −1 . Similarly, Dirac’s equation has two 
solutions: according to the first solution, the energy of the electron is a 
positive number, but, according to the second solution, the energy of the 
electron is a negative number. However, this mathematical result cannot 
hold in nature, because, according to classical physics, energy is always a 
positive number. For this reason, Dirac interpreted the results of his 
famous equation as follows: the particle that appears to carry the positive 
energy is an electron with its negative charge, whereas the particle that, 
according to the solutions of the Dirac equation, appears to carry a 
negative amount of energy is the electron with the opposite 
charge―namely, the antielectron. Therefore, mathematics suggested the 
existence of antimatter. Just as the equation 𝑥ଶ = 1  has two solutions 
(namely, +1 and −1), so the Dirac equation suggests the existence of a 
particle and an antiparticle. The observation of antimatter―that is, the 
practical confirmation of its existence―was achieved in 1932 by the 
American physicist Carl Anderson, who, for this reason, shared the 1936 
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Nobel Prize in Physics with Victor Hess. In particular, using a cloud 
chamber (that is, a particle detector used for visualizing the passage of 
ionizing radiation), Anderson observed and photographed a positron 
(specifically, he recorded a particle coming from the bottom and curving 
to the left, indicating a positive charge, and this particle had the mass of an 
electron, meaning that it was a new kind of particle, a positive electron, or 
a positron). What happens when matter comes into contact with 
antimatter? When a particle (e.g., an electron) comes into contact, 
“collides,” with its respective antiparticle (e.g., a positron), they annihilate 
each other (that is, they cancel each other out), leaving behind an amount 

of energy (according to Albert Einstein’s formula 𝑚 =
ா

஼మ , where 𝑚 

denotes the mass of the corresponding particle-antiparticle pair, 𝐸 denotes 
energy, and 𝑐ଶ denotes the speed of light squared). Hence, the creation of 
the universe was made possible due to a fundamental asymmetry between 
matter and antimatter―that is, the amount of matter exceeded the amount 
of antimatter, and, thus, the amount of matter that survived the interaction 
with antimatter continued to create the universe.  
 

Energy, Force, and Work 
By the term “energy,” we mean the impetus that underpins all motion and 
all activity―more specifically, the capacity for doing work. In physics, we 
typically look at the work that a constant force, 𝐹, does when moving an 
object over a distance of 𝑠. In these cases, the work is  
𝑊 = 𝐹𝑠; 
the force is parallel to the displacement.  
But most forces are not constant and depend upon where exactly the force 
is acting. Therefore, assuming that the force at any 𝑥 is 𝐹(𝑥), the work 
done by the force in moving an object from 𝑥 = 𝑎 to 𝑥 = 𝑏 is given by 

𝑊 = ∫ 𝐹(𝑥)𝑑𝑥
௕

௔
, 

where the force is parallel to the displacement. 
Mechanics is the branch of physics that studies the relationships between 
the following three physical concepts:   

i. Force: an agent that changes or tends to change the state of 
motion (i.e., the state of rest or of uniform motion) of an object. 
The “velocity” of an object is the rate of change of its position 
with respect to a frame of reference, and it is a function of time 
(i.e., velocity is the first derivative of displacement with respect to 
time).  
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ii. Mass: the quantity of matter that is concentrated in an object. The 
product of the mass times the velocity of an object is the 
“momentum” of that object. 

iii. Motion: a change in the position of an object with respect to time. 
The part of mechanics that is concerned with the study of motion is called 
kinematics. Due to the rigorous study of classical mechanics by Isaac 
Newton, the SI (Système International) unit of force, newton (denoted by 
N), has been named in his honor. One newton is defined as the force 
needed in order to accelerate one kilogram (kg) of mass at the rate of one 
meter (m) per second (sec) squared in the direction of the applied force.  
First Law of Motion: An object will remain at rest or in a uniform state of 
motion unless that state is changed by an external force. 
Second Law of Motion: The vector sum of the forces on an object is equal 
to the mass of that object multiplied by the acceleration of that object 
(“acceleration” is the rate of change of the velocity of an object with 
respect to time. Thus, acceleration is the first derivative of velocity with 
respect to time or, equivalently, the second derivative of displacement with 
respect to time); symbolically: 
𝐹 = 𝑚𝑎, 
where 𝐹 denotes force, 𝑚 denotes the mass of an object, and 𝑎 denotes the 
acceleration of the given object (thus, for any force you put on an object, 
an object of small mass will accelerate a lot, and an object of large mass 
will accelerate just a little). In case of circular motion (i.e., a movement of 
an object along the circumference 𝐶 = 2𝜋𝑟 of a circle of radius 𝑟), if the 
period for one rotation is 𝑇, then: 
the angular velocity (i.e., the angular rate of rotation) is 

𝜔 =
ଶగ

ఁ
=

ௗఝ(௧)

ௗ௧
, 

where 𝜑(𝑡)  denotes the angular displacement from the 𝑥 -axis and is 
measured in radians, and 𝑡 denotes time (measured in seconds); 
the speed of the object travelling the circle is  

𝑣 =
ଶగ௥

்
= 𝜔𝑟; 

the angular acceleration of the particle is 

𝛼 =
ௗఠ

ௗ௧
, 

and, in case of uniform circular motion, 𝛼 = 0; 
the acceleration due to change in the direction is 

𝛼௖ =
௩మ

௥
= 𝜔ଶ𝑟; 

and the centripetal and centrifugal force can be computed using 
acceleration as follows (the centripetal force and the centrifugal force are 
actually the same force, depending upon the frame of reference): 
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𝐹௖ = 𝑚𝛼௖ =
௠௩మ

௥
. 

Third Law of Motion: For every action in nature, there is an equal and 
opposite reaction. 
Newton’s Law of Universal Gravitation: An object attracts another object 
with a force that is directly proportional to the product of the masses of the 
objects and inversely proportional to the square of the distance between 
them, symbolically: 
𝐹௚ = 𝐺

௠భ௠మ

௥మ , 

where 𝐹௚ is the magnitude of the gravitational force on either object, 𝑚ଵ 
and 𝑚ଶ  are their masses, 𝑟  is the distance between them, and 𝐺  is the 
gravitational constant, whose value is found to be (in SI units) 6.673 ×
10ିଵ 𝑁 ∙ 𝑚ଶ ∙ 𝑘𝑔ିଶ (thus, the “weight” of a body is the total gravitational 
force exerted on the body by all other bodies in the universe).  
Coulomb’s Law: The magnitude of the force of interaction between two 
point charges (i.e., electric charges) is directly proportional to the product 
of the charges and inversely proportional to the square of the distance 
between them, symbolically: 

𝐹 = 𝑘
|௤భ௤మ|

௥మ , 

where 𝐹 denotes the magnitude of the force that each of two point charges 
𝑞ଵ and 𝑞ଶ a distance 𝑟 apart exerts on the other, and 𝑘 is a proportionality 
constant, whose value is (in SI units) approximately 8.988 × 10ଽ𝑁 ∙ 𝑚ଶ ∙
𝐶ିଶ. Due to the rigorous description of the electrostatic force of attraction 
and repulsion by the French military engineer and physicist Charles-
Augustin de Coulomb (1736–1806), the SI unit of electric charge, the 
coulomb (denoted by C), has been named in his honor; it is approximately 
equivalent to 6.24 × 10ଵ଼ electrons. “Charge” is a property of matter (just 
like mass, volume, or density), and it can come in two types: positive (+) 
or negative (−). In particular, a positive charge occurs when the number of 
protons exceeds the number of electrons, and a negative charge occurs 
when the number of electrons exceeds the number of protons. 
By the term “field,” we mean an area in which forces are exerted on things 
in its midst. The modern concept of a physical field was originally 
formulated in the nineteenth century by the English physicist Michael 
Faraday. An electric charge creates an “electric field” in the region of 
space surrounding it, in the sense that the properties of space are modified 
by the presence of an electric charge. “Electric field” (sometimes called 
“electric intensity”) is defined as the electric force per unit charge. 
Therefore (in SI unites), the unit of electric field magnitude is one newton 
per coulomb (i.e., 1𝑁 ∙ 𝐶ିଵ).  
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By the term “flux,” we mean the quantity of a substance passing through a 
given area. Thus, “electricity” is the flow of electric charge along a path 
provided by a conductor (conductors are materials with high electron 
mobility). The “electric flux” through a surface is proportional to the 
number of field lines crossing that surface. In other words, its magnitude is 
proportional to the portion of the field perpendicular to the area: 
𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐 𝐹𝑙𝑢𝑥 = 𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐 𝐹𝑖𝑒𝑙𝑑 × 𝐴𝑟𝑒𝑎 × 𝑐𝑜𝑠𝜃, 
where 𝑐𝑜𝑠𝜃 denotes the cosine of the angle 𝜃 between the electric field 
and the vector that is perpendicular to the area. A “field line” is an 
imaginary line drawn through a region of space in such a way that, at 
every point, it is tangent to the direction of the electric-field vector at that 
point. In particular, in an “electrostatic field,” every field line is a 
continuous curve with a positive charge at one end and a negative charge 
at the other. The amount of work needed in order to move a unit of electric 
charge from a reference point to a specific point in an electric field without 
producing acceleration is called an “electric potential.” In terms of SI 
units, it is represented by  

𝑉 =
௝௢௨௟௘

௖௢௨௟௢௠௕
, 

where joule is the unit for work done, and 1 𝑗𝑜𝑢𝑙𝑒 =
(1 𝑛𝑒𝑤𝑡𝑜𝑛)(1 𝑚𝑒𝑡𝑒𝑟); coulomb is the unit for the charge; and V denotes 
“volt,” the derived unit for electric potential (electromotive force), and is 
named after the Italian physicist Alessandro Volta (1745–1827). The key 
to the flow of electricity is making a continuous electric circuit: 
connecting a wire between a source of electrons and an attractor of 
electrons (for which reason, for instance, a battery has two poles: a source 
(a negative), and an attractor (a positive); similarly, an electric plug has at 
least two tongs, one for incoming electrons and one for outgoing 
electrons). Electrons do not cease to exist. Rather, being carriers of charge, 
they move from the negative (source) to the positive (attractor), and they 
are useful as they follow the path to their destination in the context of a 
continuous electric circuit. By contrast, connecting two poles of a power 
source directly can actually be very dangerous: this is what is called a 
“short circuit,” because there is no electric device between the source and 
the destination of electrons to power, such as a PC or a TV set. In case of a 
short circuit, the electron flow does not encounter any resistance, therefore 
the release of energy is instant, often paired with the involved wire heating 
dangerously.  
Total Mechanical Energy of a System: 𝐸௠ = 𝐾 + 𝑈, 
where 𝐸௠  denotes mechanical energy, 𝐾  denotes kinetic energy, and 𝑈 
denotes potential energy.  
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By the term “potential energy,” we mean the energy possessed by a body 
by virtue of its position relative to others, stresses within itself, its electric 
charge, or other factors. For instance, gravitational potential energy (e.g., 
in the case of a ball whose mass is 𝑚 and is dropped from height ℎ) can be 
computed using the following formula: 
𝑈 = 𝑚𝑔ℎ, 
where 𝑚  denotes the mass of the object, 𝑔  denotes the acceleration 
constant due to gravity ( ≈ 9.8 𝑚/𝑠𝑒𝑐ଶ ), and ℎ  denotes the height 
(displacement) of the object as a function of time. 
By the term “kinetic energy,” we mean the energy possessed by a body by 
virtue of its motion. Let us consider a body of mass 𝑚 moving along the 
𝑥 -axis under the action of a constant resultant force of magnitude 𝐹 
directed along the axis. The body’s acceleration is constant, and, according 
to Newton’s Second Law of Motion, it is given by 𝐹 = 𝑚𝑎. The kinetic 
energy of this body can be computed using the following formula: 

𝐾 =
ଵ

ଶ
𝑚𝑣ଶ, 

where 𝑣 denotes the body’s velocity (which is, by definition, a function of 
time), and 𝑚 denotes the mass of the object. Thus, the work done by the 
resultant external force on a body is equal to the change in kinetic energy 
of the body. 
 

Relativity 
Simply put, the central meaning of “relativity” is that different people may 
experience the same situation differently. The theory of relativity explains 
how to convert from the point of view of one observer to the point of view 
of another observer. For instance, Galileo theorized that, when two frames 
of reference (e.g., two drivers) are moving in uniform motion together, it is 
impossible to determine if one of the frames is moving or stationary from 
the perspective of the other frame in this system; it is only possible to 
understand an object’s movement through a different frame of reference. 
The idea works for any two frames of reference moving with respect to 
each other (by the term “frame of reference,” we mean any place where 
some physical process occurs or could occur).  
Observers moving at different speeds will disagree about the distance and 
the time between two events. The German mathematician Hermann 
Minkowski depicted time as a length by proposing the following 
definition: 
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 𝑠𝑝𝑒𝑒𝑑 𝑜𝑓 𝑙𝑖𝑔ℎ𝑡 × 𝑡𝑖𝑚𝑒 = 𝑐𝑡. 
Hence, if the speed of light in vacuum, commonly denoted by the letter 𝑐, 
is approximately 300,000,000 𝑚𝑒𝑡𝑒𝑟𝑠 𝑠𝑒𝑐𝑜𝑛𝑑⁄ (according to Rosa and 
Dorsey), then we say that 1 300,000,000⁄  of a second is one meter. In 



Nicolas Laos 186

other words, one meter is the distance travelled by light in vacuum during 
a time interval of 1 300,000,000⁄  of a second. 
Einstein’s special theory of relativity implies that our perception of “now,” 
of presence, is subjective; it does not exist in the fundamental laws of 
nature. According to Einstein’s special theory of relativity, the speed of 
light is finite, it is the same for all observers, and nothing can go faster 
than light (in vacuum). Hence, by the time an observer 𝐴 sees an object 𝐵 
standing in front of 𝐴, the object 𝐵 has already moved into the future. In 
fact, 𝐴 sees 𝐵 as 𝐵 was in the past (how much in the past depends on the 
distance between them and on their relative motion). This delay (which 
may be very tiny, but still non-zero) exists in everything we see. The main 
reason that we do not perceive relativistic effects (such as the visual delay 
and the relativity of simultaneity) in our everyday life is because life 
around us is moving very slowly compared to the speed of light.  
In the context of Einstein’s theories of special and general relativity, 
“time” is a dimension of physical reality. In particular, time is a dimension 
similar to the three dimensions of physical space, but with a very 
important difference: we can stand still in physical space, but we cannot 
stand still in time. For simplicity, consider an 𝑥𝑦-coordinate system where 
the vertical axis (i.e., the 𝑦-axis) represents time, and the horizontal axis 
(i.e., the 𝑥-axis) represents physical space. If you are standing still and 
then begin to walk, not only your position in space changes, but also your 
direction in physical space-time; since you are now moving into a 
direction that is a combination of both physical space and (physical) time. 
Such a change of velocity is called a “boost” (imparting linear momentum 
to a system), and the larger the boost the larger the angle you turn from 
time to physical space. But the speed of light is an upper limit, meaning 
that you cannot turn from a state in which you are moving through time 
and standing still in physical space to a state in which you are moving only 
in physical space and standing still in time. In the aforementioned 𝑥𝑦-
coordinate system, where the vertical axis (i.e., the 𝑦-axis) represents time, 
and the horizontal axis (i.e., the 𝑥-axis) represents physical space, there is 
a maximal angle you can turn in physical space-time by increasing your 
velocity, and that maximal angle is conventionally set to 45௢ (but it is 
definitely some angle smaller than 90௢). Given that, in the aforementioned 
model, time is a dimension, it follows that time passes more slowly when 
you are moving than when you are not moving (“time dilation”). 
 

Conservation of Energy and Thermodynamics 
The eighteenth-century French mathematician and natural philosopher 
Émilie du Châtelet proposed and tested the law of “conservation of 
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energy,” according to which the total energy of an “isolated system” (i.e., 
one that does not interact with other systems) remains constant.  
In order to clarify the meaning of the principle of the conservation of 
energy, let us consider the following example: setting fire to coal. The 
chemical bonds of the coal molecules store great amounts of energy. If we 
set fire to coal, then fire causes a chain reaction between the coal and 
oxygen in the air. In this reaction, energy from the chemical bonds is 
converted into kinetic energy of air molecules. Hence, the air becomes 
warm, and, for this reason, it will rise. This rising air can be used in order 
to drive a turbine and, for instance, move a vehicle, or in order to create 
electricity (by feeding it into the grid).  
Alternatively, we can just burn coal without doing anything with the 
produced energy. This does not change the total energy in the system, 
because the total energy in the system is conserved. The chemical energy 
of the coal is converted into kinetic energy of air molecules, which are 
distributed in the atmosphere. Even though, in this case, the energy is 
useless, the total energy in the system remains the same. The difference 
between the aforementioned cases is entropy, or the measure of the 
molecular disorder, or randomness, of the system under consideration. 
Initially, the energy was packed into the coal, and the level of entropy was 
low. By setting fire to coal, the energy was distributed in the motion of air 
molecules, and the level of entropy became high. 
When a system has energy in a state of low entropy, its energy can be used 
in order to create macroscopic change (e.g., drive a turbine), and this 
useful energy is called “free energy.” Free energy is a type of energy that 
does “work.” But, if the energy in the system is in a state of high entropy, 
then the energy is useless, and it is called “heat.” Heat is a type of energy 
that does not do “work.” Even though total energy is conserved, free 
energy is not conserved.  
The conversion of mechanical energy into heat (thermal energy) is called 
“dry friction.” Similarly, the conversion of electrical energy in a conductor 
into heat is called “resistance.” In general, by the term “friction,” we refer 
to a force that resists the relative motion between two objects; and its 
causes are molecular adhesion, surface roughness, and deformations. 
Friction converts its work into heat.  
The first law of thermodynamics is a formulation of the law of 
conservation of energy, adapted to thermodynamic processes: the energy 
of the universe remains the same, in the sense that energy can neither be 
created nor destroyed, but it can be altered in form. The second law of 
thermodynamics states that the changes in the entropy in the universe can 
never be negative. In particular, according to the second law of 
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thermodynamics, no process can have as its sole result the transfer of heat 
from a cooler to a hotter body. Intimately related to the second law of 
thermodynamics is the concept of entropy, which provides a quantitative 
measure of disorder. Entropy counts the number of different microscopic 
configurations that have the same macroscopic appearance (or, in other 
words, how much information one could stuff into a macroscopic object if 
one kept track of the microscopic details). The second law of 
thermodynamics is equivalent to the “maximum entropy principle” and the 
“minimum energy principle”: the maximum entropy principle states that, 
for a closed system with fixed internal energy (an isolated system), the 
entropy is maximized at stable equilibrium. The minimum energy 
principle states that, for a closed system with fixed entropy, the total 
energy is minimized at stable equilibrium. Hence, the second law of 
thermodynamics states that the quality of the energy of the entire universe, 
as an isolated system, is degraded irreversibly. In fact, physical, chemical, 
and electrical energy can be changed into heat, but the reverse (e.g., the 
transformation of heat into physical energy) cannot be fully accomplished 
without outside help or without an inevitable loss of energy in the form of 
irretrievable heat. This does not mean that the energy is destroyed, but it 
means that it becomes unavailable for producing work. This very 
degradation of energy is entropy. William James Sidis, in his book The 
Animate and the Inanimate (published in 1920), argues that life, which 
demonstrates perseverance and is characterized by evolution (according to 
Darwin’s theory), implies a reversal of the second law of thermodynamics. 
Hence, the argument of classical mechanism (mechanical philosophy), 
according to which any living organism is merely a set of physical-
chemical phenomena, contradicts the second law of thermodynamics. 
 

Electromagnetism and Light 
The electric field at a point can be calculated by using Coulomb’s law in 
order to find the total force 𝐹 on a test charge 𝑞ᇱ placed at the point, and 
then we divide 𝐹 by 𝑞ᇱ to obtain the electric field 𝐸. If 𝑞ᇱ is positive, then 
the direction of 𝐸 is the direction of 𝐹. The force on a negative charge, 
such as an electron, is opposite to the direction of 𝐸.  
In order to analyze the motion of a particle with charge 𝑞 in an electric 
field, we need to use Newton’s Second Law of Motion, 𝐹 = 𝑚𝑎, with 𝐹 
caused by the electric field 𝐸, so that the magnitude of the electric force 𝐹 
is given by 

𝐹 = 𝑞𝐸. 
If the field is uniform, then the acceleration is constant.  
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In simple terms, electrical interactions can be described as follows: a 
charge distribution sets up an electric field 𝐸, and the field exerts a force 
𝐹 = 𝑞𝐸 on any charge 𝑞 that is present. The same pattern can be followed 
in order to describe magnetic interactions (phenomena of attraction or 
repulsion that arise between electrically charged particles because of their 
motion). A moving charge, or a current, sets up a magnetic field in the 
space around it, and this field exerts a force 𝐹 on a moving charge. Like 
electric field, magnetic field is a vector field (a vector quantity associated 
with each point in space). The symbol for magnetic field is 𝐵.  
Whereas the electric-field force is the same whether the charge is moving 
or not, the magnetic force is proportional to the particle’s speed. Thus, a 
particle at rest experiences no magnetic force at all. Furthermore, the 
magnetic force 𝐹  acting on a charge 𝑞 moving with velocity 𝑣  does not 
have the same direction as the corresponding magnetic field 𝐵, but it is 
perpendicular to both the magnetic field 𝐵 and 𝑣. Hence, the magnitude of 
the magnetic force 𝐹 is given by 
𝐹 = |𝑞|𝑣𝐵𝑠𝑖𝑛𝜑, 
where |𝑞| is the magnitude of the charge, and 𝜑  is the angle measured 
from the direction of 𝑣 to the direction of 𝐵. The SI unit of 𝐵 is 1𝑁 ∙ 𝑠 ∙
𝐶ିଵ ∙ 𝑚ିଵ, where 𝑁 stands for newton, 𝑠 stands for second, 𝐶 stands for 
coulomb, and 𝑚 stands for meter. This unit is called 1 tesla (1𝑇), in honor 
of the prominent Serbian-American scientist and inventor Nikola Tesla 
(1857–1943). 
Using vector notation, the force that a magnetic field 𝐵ሬ⃗  exerts on a charge 
𝑞 with velocity 𝑣⃗ is given by 
𝐹⃗ = 𝑞𝑣⃗ × 𝐵ሬ⃗ , 
where 𝑣⃗ × 𝐵ሬ⃗  denotes the cross product of the velocity and the magnetic 
field.  
In 1831, the English scientist Michael Faraday discovered electromagnetic 
induction: he placed a stationary magnet inside or outside a coil, and he 
observed no deflection in the galvanometer. However, at the moment that 
he moved the magnet towards (into/above/below) the coil, he saw the 
pointer deflecting in one direction, and, at the moment that he moved the 
magnet way from the coil, he saw the pointer deflecting in the opposite 
direction. Using the aforementioned notation, the entire electromagnetic 
force 𝐹 on the charged particle is called the Lorentz force (after the Dutch 
physicist H. A. Lorentz), and its magnitude is given by 

𝐹 = 𝐹௘௟௘௖௧௥௜௖ + 𝐹௠௔௚௡௘௧௜௖ . 
Faraday’s discovery was really amazing, because one could make 
something move without ever touching it, only by using the field. Indeed, 
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we can affect things far away and develop telecommunications using 
electromagnetic fields. Moreover, Faraday was the first to understand that 
waves of the electromagnetic field are what we call light. In simple terms, 
electromagnetic radiation consists of electric and magnetic fields 
oscillating around each other, creating a freely propagating wave that can 
travel from one place to another. This event explains light, the operation of 
radio stations, the operation of microwave ovens, etc. These are 
electromagnetic phenomena, and they differ from each other only with 
respect to the wavelength of the corresponding oscillation, so that we use 
different names for electromagnetic radiation depending on the 
corresponding wavelength; for instance, if we can see electromagnetic 
radiation, then we call it light, light with large wavelengths is red, light 
with larger wavelengths that is invisible is called infrared, while, at even 
larger wavelengths, electromagnetic radiations are called microwaves, and, 
if the wavelengths are even larger, then electromagnetic radiations are 
called radio-waves.  
By the term “radiation,” we generally mean energy transferred by waves 
or particles. For instance, radiation may take the form of electromagnetic 
waves―which, however, are made of particles, photons specifically. A 
photon is a type of elementary particle that serves as the quantum of the 
electromagnetic field and the force carrier for the electromagnetic force. In 
particular, quantum electrodynamics describes the manner in which 
electrically charged particles interact by shooting photons back and forth 
between each other. Electrons, being zero-dimensional, lack spatial 
extension (that is, they have practically zero volume). Therefore, they 
interact with each other by exchanging photons. As two electrons move 
towards each other, a photon is passed from one to another, and it changes 
the momentum of both of them, thus pushing them off.  
Gravitational radiation is transferred in gravitational waves, which are 
actually periodic deformations (“wiggles”) of space-time. According to 
rigorous physical hypotheses, gravitational waves are made of a peculiar 
kind of particles called gravitons. A graviton is assumed to be a quantum 
of gravity (an elementary particle mediating the force of gravity). The term 
“graviton” was coined in the 1930s by the Soviet physicists Dmitrii 
Blokhintsev and F. M. Galperin. 
 

The four fundamental forces 
The laws of nature can be distilled into the following four fundamental 
forces:  
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i. gravity: a natural phenomenon by which all things with mass or 
energy are brought towards each other (it helps us to calculate the 
motions of celestial bodies); 

ii. electromagnetism: a type of physical interaction that occurs 
between electrically charged particles (it has given us the wonders 
of the electric age); 

iii. weak nuclear force: the mechanism of interaction between 
subatomic particles (it is responsible for the radioactive decay of 
the subatomic particles, and thus plays an essential role in nuclear 
fission, which is a form of nuclear transmutation);  

iv. strong nuclear force: the mechanism that binds the component 
particles of an atom’s nucleus (in 1911, the New Zealand 
physicist Ernest Rutherford discovered the basic structure of the 
atom: it consists of a small and dense core of positive electric 
charge called the nucleus, surrounded by a cloud of negatively 
charged electrons). An energy field that permeates the entire 
universe is known as the “Higgs field” (the smallest bit of which 
is called the “Higgs boson”), and it explains why some subatomic 
particles have a great deal of mass, while others have little, and 
others have none at all: the Higgs field interacts with the 
subatomic particles and determines their mass (very massive 
particles interact a lot with the Higgs field, while massless 
particles do not interact at all). 

It is worth noticing that mass is a type of energy, but not all energy is 
mass. For instance, photons do not have any mass, but they have energy. 
The formula 𝐸 = 𝑚𝑐ଶ (meaning that the relativistic/effective mass 𝑚 of a 
particle times the speed of light squared, 𝑐ଶ, is equal to the kinetic energy 
𝐸 of that particle) refers to the energy of a particle when it is sitting still 
with respect to some inertial observer (the same particle is seen by another 
observer moving at a speed 𝑣). The more general formula is 

𝐸ଶ = 𝑚ଶ𝑐ସ + 𝑝ଶ𝑐ଶ 
where 𝑝 is the momentum of the particle.  
 

Quantum Physics 
In quantum physics, everything is described in terms of wave functions, a 
wave function is a vector in a complex Hilbert space, and the vector 
coefficients are complex numbers. According to Paul Dirac’s notation, in 
quantum physics, vectors are symbolized in the following way, known as 
the bra-ket notation:  

|𝛹〉 = 𝑎ଵ ൭
1
0
0

൱ + 𝑎ଶ ൭
0
1
0

൱ +𝑎ଷ ൭
0
0
1

൱, where 𝑎ଵ, 𝑎ଶ, 𝑎ଷ ∈ ℂ. 
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The aforementioned type of brackets helps us to keep track of whether a 
vector is a row vector or a column vector: |𝛹〉 is a column vector, whereas 
〈𝛹| is a row vector. In quantum mechanics, if we convert a row vector to a 
column vector, then we have to take the complex conjugate of each 
coefficient. In other words, for instance,  

|𝛹〉 = ൭

𝑎ଵ

𝑎ଶ

𝑎ଷ

൱ and 〈𝛹| = (𝑎ଵ
∗, 𝑎ଶ

∗ , 𝑎ଷ
∗ ), where 𝑎ଵ

∗, 𝑎ଶ
∗ , 𝑎ଷ

∗  are, respectively, the 

complex conjugates of 𝑎ଵ, 𝑎ଶ, 𝑎ଷ. 
In quantum mechanics, all vectors describe probabilities. Usually, we 
choose the basis of the space under consideration in such a way that the 
basis vectors correspond to possible measurement outcomes; for instance: 

|𝛹〉 = 𝑎ଵ ൭
1
0
0

൱ + 𝑎ଶ ൭
0
1
0

൱ +𝑎ଷ ൭
0
0
1

൱ corresponds to  

|𝛹〉 = 𝑎ଵ|𝑋〉 + 𝑎ଶ|𝑌〉 + 𝑎ଷ|𝑍〉.  
Hence, the probability of a particular measurement outcome is the absolute 
square of the scalar product with the basis vector that corresponds to the 
outcome; so that, for instance, the probability of measuring 𝑋 is   
|〈𝑋|𝛹〉|ଶ = 𝑎ଵ𝑎ଵ

∗, 
and this is known as Born’s Rule. In other words, the probability density 
of finding a particle at a given point, when measured, is proportional to the 
square of the amplitude of the particle’s wave function at that point. In 
quantum physics, the gradient of a wave function is denoted as follows: 

∇|𝛹〉 =
డ

డ௫
|𝛹〉𝚤̂ +

డ

డ௬
|𝛹〉𝚥̂ +

డ

డ௭
|𝛹〉𝑘෠ . 

In order to understand quantum physics, we must understand the 
difference between the potential mode of being and the actual mode of 
being. Hence, we must never confuse the realm of potentiality with the 
realm of actuality―that is, we must never attribute actuality to probability. 
As the famous quantum physicists Alain Aspect, John Clauser, and Anton 
Zeilinger have experimentally shown, particles do not have definite values 
before they are measured, but they have definite values after they are 
measured.   
As already mentioned, in quantum physics, every system is described by a 
wave function, usually denoted by the Greek letter 𝛹 , from which 
physicists calculate the probability of obtaining a specific measurement 
outcome. In other words, this wave function is a way of studying the realm 
of potentiality in a scientifically rigorous way. For instance, from this 
wave function, one can calculate that a particle that enters a beam-splitter 
has a 50% chance of going left and a 50% chance of going right. This is a 
way of analyzing that particle’s potential mode of being. On the other 
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hand, we can analyze that particle’s actual mode of being by measuring 
the given particle. 
After measuring the particle, we know with 100% probability where it is. 
Therefore, we must update our probabilistic study of the particle under 
consideration accordingly and with it the wave function. This update is 
known as the “wave function collapse,” and it is an observational 
requirement that stems from the fact that, by measuring the particle, we 
have achieved a transition from potentiality to actuality. At the level of 
potentiality, or when we study the potential mode of being of a particle, 
that particle may be 50% at point 𝐴 and 50% at point 𝐵; at the level of 
actuality, or when we study the actual mode of being of a particle by 
managing to measure it, that particle is 100% in a particular position, and 
we never observe a particle that is 50% at point 𝐴 and 50% at point 𝐵. If 
we observe a particle at all, then we find that it is either in a particular 
position or not.  
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