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Noopolitics 

The conduct of politics on the earth (geographical space) is called geopolitics, whereas 

the conduct of politics in the information field that is created by the communication between 

conscious entities is called noopolitics. The levels at which noopolitics can be conducted are 

the following: 

- Cyberspace: this is the global system of the Internet-connected computers, 

communications, infrastructures, online conferencing entities, databases, and information 

utilities. However, the most important characteristic of the cyberspace is the communication 

between conscious entities and the social interactions involved rather than its technical 

implementation (i.e., the computational medium).  

- Infosphere: it encompasses the cyberspace and information systems that may not be part 

of the Internet, such as the “mediasphere” (broadcast, print, and other media), libraries, 

military information infrastructures (Command, Control, Computer, Communications, 

Intelligence, Surveillance, and Reconnaissance Systems), etc. Intimately related to the 

conduct of noopolitics at the level of the infosphere are operations whose objective is the 

exercise of control over the mass media and the movies industry.  

- Noosphere: this term, from the Greek word nous (mind), was coined by the Jesuit priest 

and philosopher Pierre Teilhard de Chardin in 1925, and, according to Teilhard de Chardin, it 

describes a globe-circling realm of the mind, or a “thinking circuit.” Hence, at the level of the 

noosphere, noopolitics can be defined and practised as the systematic study and management 

of personal and social life in the context of the information field that is created by the 

communication between conscious entities, spanning philosophy of anthropology, of 

psychology, of sociology, of politics, and of economics. 

 

Cybernetics 

Cybernetics is a transdisciplinary (and, indeed, “antidisciplinary”) systematic study of 

regulatory and purposive systems (their structures, constraints, and possibilities). Hence, 

cybernetics has been defined as “the art of governing or the science of government” (André-

Marie Ampère), “the art of steersmanship” (Ross Ashby), “the study of systems of any nature 

which are capable of receiving, storing, and processing information so as to use it for control” 

(Andrey Kolmogorov), “the science and art of the understanding of understanding” (Rodney 

E. Donaldson), as well as “a branch of mathematics dealing with problems of control, 

recursiveness, and information, focuses on forms and the patterns that connect” (Gregory 

Bateson). Cybernetics includes noopolitics, and its most notable applications are the 

following: 

1. Autopoiesis (it refers to a system capable of reproducing and maintaining itself by 

creating its own parts and further components), 

2. Biological cybernetics, 

3. Conversation theory (it explains how interactions lead to “construction of 

knowledge,” or “knowing,” and it is intimately related to noopolitics),  



4. Engineering cybernetics, 

5. Management cybernetics, 

6. Medical cybernetics, 

7. Perceptual control theory, 

8. Second-order cybernetics (i.e., cybernetics of cybernetics: the recursive application 

of cybernetics to itself), and 

9. Sociocybernetics (it includes noopolitics).  

 

The purpose of this project 

This project is a thorough and systematic study of the (philosophical, logical, and 

mathematical) foundations of noopolitics and cybernetics, and it proposes the “dialectic of 

rational dynamicity” as a method for the operation of consciousness and as a model of the 

operation of reality in general. 
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Dedicated to the memory of 

the Russian-Soviet philosopher and scientist Alexander Bogdanov (1873–1928) 

and to the illuminating legacy of the Soviet Cybernetics. 

 

“A little learning is a dangerous thing; 

Drink deep, or taste not the Pierian spring: 

There shallow draughts intoxicate the brain, 

And drinking largely sobers us again.” 

Alexander Pope (1688–1744), poem A Little Learning. 
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Chapter 1 

 

 

 

REALITY, KNOWLEDGE, AND ACTION 
 

 

1.1. THE MEANING OF PHILOSOPHY AND PRELIMINARY CONCEPTS 
 

The word “philosophy” derives from the Greek word “philosophīa” (“φιλοσοφία”). The 

ancient Greek word “philosophīa” is composed of two other ancient Greek words, namely: 

“phileīn” (“φιλεῖν”) and “sophīa” (“σοφία”). The word “phileīn” means “to love,” “to 

endorse,” and “to be wont to do (something),” and the word “sophīa” means “wisdom.” Thus, 

according to the etymology of the ancient Greek word “philosophīa,” philosophy means love 

for, pursuit of, and devotion to wisdom. By the term “wisdom,” we may mean a set of 

dispositions, skills, and policies on the basis of which one can deliberate about the 

relationship between consciousness and the objects to which consciousness refers as well as 

about what matters and has value in life, and act accordingly.  

The verb “philosopheīn” (“φιλοσοφεῖν”), which means “to philosophize,” was used by 

the ancient Greek historian Herodotus, who, in his Histories, 1:30:9–12, writes that Croesus, 

the King of Libya, entertained the Athenian philosopher, lawmaker, and poet Solon in the 

palace, and he addressed Solon as follows: “My Athenian guest, we have heard a lot about 

you because of your wisdom and of your wanderings, how as one who philosophizes [loves 

learning] you have travelled much of the world for the sake of understanding it.”  

The sixth-century B.C. Ionian Greek philosopher and mathematician Pythagoras was, 

arguably, the first person who invented the term “philosophy,” and who called himself a 

“philosopher.” In particular, Diogenes Laertius, in his Lives of Eminent Philosophers (Book 

VIII, Chapter 1: Pythagoras, 8) writes the following: 
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Sosicrates in his Successions of Philosophers says that, when Leon the tyrant of Phlius 

asked him [namely, Pythagoras] who he was, he said, “A philosopher,” and that he compared 

life to the Great Games, where some went to compete for the prize and others went with wares 

to sell, but the best as spectators; for similarly, in life, some grow up with servile natures, 

greedy for fame and gain, but the philosopher seeks truth. 

 

Moreover, Diogenes Laertius, in his Lives of Eminent Philosophers (Book V, Chapter 1: 

Aristotle, 20) writes that, when Aristotle was asked what advantage he had ever gained from 

philosophy, Aristotle’s response was the following: “This, that I do without being ordered 

what some are constrained to do by their fear of the law.” From Aristotle’s perspective, 

philosophy—expressing a continuous quest for knowledge, which is dialectically directed 

toward the ultimate knowledge—enables one to understand the underlying order and harmony 

of the world and, thus, to act rationally without coercion.  

Plato, in his Symposium, 203e–204a, argues as follows: 

 

[…] no gods ensue wisdom or desire to be made wise; such they are already; nor does 

anyone else that is wise ensue it. Neither do the ignorant ensue wisdom, nor desire to be made 

wise: in this very point is ignorance distressing, when a person who is not comely or worthy 

or intelligent is satisfied with himself. The man who does not feel himself defective has no 

desire for that whereof he feels no defect. 

 

From the aforementioned Platonic perspective, philosophy is the pursuit of that part of 

wisdom which one has not yet acquired. Therefore, according to Plato, humanity’s progress in 

philosophy is equivalent to humanity’s progress toward its ontological integration and 

completion. Those who do not philosophize are either totally accomplished divine beings, 

already possessing the entire wisdom, or ignorant persons, who are characterized by either 

unconscious ignorance (that is, they are unaware of what they do not know) or complacent 

ignorance (that is, they are intellectually idle). 

In general, philosophers are preoccupied with methodic and systematic investigations of 

the problems that originate from the reference of consciousness to the world and to itself. In 

other words, philosophers are preoccupied with the problems that originate from humanity’s 

attempt to articulate a qualitative interpretation of the integration of the consciousness of 

existence into the reality of the world. The aforementioned problems pertain to the world 

itself, to consciousness, and to the relation between consciousness and the world.  

It goes without saying that scientists are also preoccupied with similar problems. 

However, there are two important differences between philosophy and science. First, from the 

perspective of science, it suffices to find and formulate relations and laws (generalizations) 

that—under certain conditions and to some extent—can interpret the objects of scientific 

research, whereas philosophy moves beyond these findings and formulations in order to 

evaluate the objects of philosophical research, and, thus, ultimately, to articulate a general 

method and a general criterion for the explanation of every object of philosophical research. 

Whereas sciences consist of images and explanations of these images, philosophies are 

formulated by referring to wholes and by inducing wholes from parts. Hence, for instance, a 

philosopher will ask what is “scientific” about science, namely, what is the true meaning of 

science? Therefore, philosophy and science differ from each other with regard to the level of 

generality that characterizes their endeavors. Second, as the French philosopher Pierre Hadot 

has pointed out, philosophy—unlike the various scientific disciplines—is not merely a 
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science, but it is a “way of life,” and, specifically, philosophy signifies a conscious being’s 

free and deliberate decision to seek truth for the sake of knowledge itself, since a philosopher 

is aware that knowledge is inextricably linked to the existential freedom and the ontological 

integration and completion of the human being.1 

As the great Prussian philosopher and educationalist Wilhelm von Humboldt (1767–

1835) has pointedly argued, the core principle and requirement of a fulfilled human being is 

the ability to inquire and create in a free and rational way. Thus, Humboldt promoted the 

concept of “holistic” academic education (“Bildung”), he identified knowledge with power, 

and he identified education with liberty.2 

Beyond the similarities between philosophy and science, philosophy is an impetus for the 

creation of a world of meanings (in Greek, “noēmata”) that express human creativity. Moving 

beyond those approaches that understand “meaning” as a constituent element of language, 

Edmund Husserl used the Greek term “nōema” (plural: “noēmata”) to designate the 

intentional object, namely, that element due to which an intention of the human being—such 

as one’s intention to say something, to move one’s hand, etc.—acquires content and becomes 

significant. In particular, in his book Ideas: General Introduction to Pure Phenomenology, 

where he introduced the Greek term “nōema” (meaning “thought,” or “what is thought 

about”), Husserl argued that any conscious experience is directed toward an object, and that, 

corresponding to all points in “the manifold data of the real (reelle) noetic content, there is a 

variety of data displayable in really pure (wirklicher reiner) intuition, and in a correlative 

‘noematic content,’ or briefly ‘noema.’”3 Every intentional act has noematic content, or 

briefly “nōema,” which is a mental act-process (such as an act of judging, meaning, liking, 

etc.) that is directed toward the intentionally held object (such as, the judged as judged, the 

meant as meant, the liked as liked, etc.).4 In other words, every intentional act has, as part of 

its formation, a correlative “nōema,” which is the object of the act.5 

In view of the foregoing analysis of philosophy, the human mind is the foundation and 

the major focal point of philosophy. In the present book, by the term “mind,” I mean a system 

of faculties or powers that constitutes an ontological attribute of a living organism. In 

particular, the major mental faculties (i.e., functional aspects of the mind) are the following6: 

 

i. Perception: it is a process whereby a living organism organizes and interprets 

sensory-sensuous data by relating them to the results of previous experiences. In 

other words, perception is not a static, but a developing attribute of living organisms; 

it is active, in the sense that it affects the raw material of scattered and crude sensory-

sensuous data in order to organize and interpret them; and it is completed with the 

reconstruction of the present (i.e., of present sensory-sensuous data) by means of the 

past (i.e., by means of data originating from previous experiences). Therefore, 

perception is intimately related to memory and judgment. Furthermore, there are two 

 
1 Hadot, Philosophy as a Way of Life. 
2 See: Günther, “Profiles of Educators: Wilhelm von Humboldt.”  
3 Husserl, Ideas, p. 238. 
4 Moran, Edmund Husserl, p. 133.  
5 Husserl, Ideas, p. 229.  
6 See: Bateman and Holmes, Introduction to Psychoanalysis; Coon, Mitterer, and Martini, Introduction to 

Psychology; Freud, A General Introduction to Psychoanalysis; Gelder, Gath, and Mayou, Oxford Textbook of 

Psychiatry; B. J. Sadock and V. A. Sadock, Kaplan and Sadock’s Synopsis of Psychiatry; Yalom, The Gift of 

Therapy. 
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kinds of perception: “external perception,” which is caused as a result of external 

(physical/social) stimuli, and “internal perception,” which is caused as a result of 

internal stimuli related to the awareness of one’s ideas, thoughts, and desires. 

ii. Memory: it is one’s ability to preserve the past within oneself, or, equivalently, the 

function whereby one retains and accordingly mobilizes preexisting impressions.  

iii. Consciousness: from a rather elementary perspective, it can be construed as an 

existential state that allows one to develop the functions that are necessary in order to 

know both one’s existential environment as well as the events that take place around 

oneself and within oneself. Furthermore, as I maintain in this book, consciousness 

has all the attributes of a being itself, and it can be considered as the synopsis of the 

human being and the core of the mind. Therefore, in this book, I use the term 

“consciousness” instead of the term “conscious mind” and often in order to refer to 

the mind in general (since an integral mind is identified with consciousness). 

iv. Orientation: it is a specific sense that helps one to verify one’s position in space and 

time.  

v. Attention: it is a mental faculty that focuses conscious functions on particular stimuli 

in a selective way, and it operates as a link between perception and consciousness.  

vi. Emotion or affect: it is the mental faculty that determines one’s mood. In general, 

one’s capability to feel joy or sorrow as well as the intensity, the duration, and the 

stability of one’s feelings depend on the proper functioning of emotion. When an 

emotion is endowed with a judgment, namely, when consciousness judges emotions, 

then an emotion becomes a “sentiment.”  

vii. Thinking: it is a complex mental faculty characterized by the creation and the 

manipulation of symbols (which represent various objects and events), their 

meanings, and their mutual relations. In the context of the communication between 

conscious entities, symbols are forms that express commonly accepted intentions and 

actions, and they can be organized into particular systems that are called codes. 

These codes underpin the activity and the behavior of conscious entities, and, 

therefore, a society of conscious entities reduces to an inter-subjective and conscious 

“continuum.” The elements of such a code are called signs. Each sign is associated 

with a meaning in relation to the entire code to which it belongs as well as in relation 

to its acceptance by each and every conscious entity that uses the corresponding 

code. 

viii. Volition or will: it is one’s ability to make decisions and implement them kinetically. 

Conscious free will, in particular, may not initiate human action (e.g., due to 

physical-biological factors, or due to unconscious factors, etc.), but it can decide 

whether to allow a voluntary process to reach its conclusion, since it determines 

motor actions.  

ix. Association: it refers to a phenomenon in which an idea that is present in 

consciousness attracts other relevant ideas to it in a way that is automatic and 

independent of one’s will.  

x. Judgment: one’s ability to compare and contrast ideas or events, to perceive their 

relations with other ideas or events, and to extract correct conclusions through 

comparison and contrast.  

xi. Imagination: it is a mental faculty that enables one to form mental images 

(representations) that do not—at least directly—derive from the senses. Imagination 
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is not subject to the principle of reality as the latter is formed by the established 

institutions, and it develops because consciousness cannot conceive the absolute in 

an objective way. Therefore, imagination endows the things that it conceives with 

new significances, and it reorganizes them into new historical forms, utilizing 

elements of its external existential conditions (e.g., latent social trends and changes) 

that have not already crystallized into formally established institutions. From the 

aforementioned perspective, imagination can be considered as a kind of visionary 

perception.  

 

The “organs” associated with mental homeostasis (namely, the ability to maintain a 

relatively stable mental state that persists despite changes in the external world), the 

communication between conscious entities, and humanity’s adaptation to environment are the 

following7: 

 

i. Personality: it is the set of all psychosomatic properties and functions by means of 

which a human being interacts with oneself and with one’s environment. Intimately 

related to the term “personality” is the term “soul,” because soul is the personal way 

in which one manifests the force of life.  

ii. Character: it is the expressive organ of personality. 

iii. Behavior: it is the executive organ of personality, and it consists of impulses and 

learning. By the term “impulse,” we mean a sudden and compelling urge or desire to 

act. By the term “learning,” we mean a function that enables a person to utilize 

experience and training and to acquire new types of behavior in order to ultimately 

supplement and expand one’s innate capacity for adaptation and creativity. 

 

The characteristics of the personality of a “normal person” can be summarized as 

follows8: 

 

i. A normal relation between optimism and pessimism: A normal person is 

fundamentally optimistic. However, a normal person’s optimism is rational, it is not 

in conflict with the principle of reality, and it does not give rise to irrational 

expectations. 

ii. A normal relation between a sense of dependence and a sense of independence: 

Depending on the conditions and the needs that prevail in one’s environment, a 

normal person can adapt to both the role of a leader (independent actor) and the role 

of a subordinate (dependent actor). Furthermore, a normal person does not spurn the 

others’ offers of help, and willingly undertakes to help others. 

iii. Normal levels of organization and systematicness: Normal persons have the tendency 

to be organized and neat and to tackle problems in a systematic way without, 

however, being “fixated” on (i.e., “obsessed” with) these properties, and, therefore, 

they do not allow these properties to clash with other desires, especially with those 

which underpin creativity.  

 
7 Ibid. 
8 Ibid. 
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iv. A normal sense of curiosity: A normal person utilizes curiosity to facilitate creative 

adaptation without harming others. 

v. Normal sexual identity: Normal persons are reconciled and satisfied with their sexual 

identity, and they are free from fears and complexes pertaining to sex. 

vi. A normal relation between competitiveness and cooperation: Normal persons can act 

autonomously and self-reliantly in order to achieve one’s goals, but they are also 

capable of willingly and creatively cooperating with others. 

vii. A normal attitude toward authority: Normal persons do not make a priori 

assumptions about authority, and, therefore, they neither a priori reject authority, nor 

do they a priori submit themselves to the governing authorities, being aware of the 

consequences of their choices.  

viii. Normal ways of expressing and controlling emotions: Normal persons do not repress 

their emotions, but they control their behavior. 

ix. Ability to make close and stable relationships. 

x. Ability to establish a viable equilibrium between the pursuit of satisfaction and the 

pursuit of safety. 

xi. Self-esteem combined with the awareness of one’s own constraints and weaknesses 

and the ability to appreciate, admire, and trust others. 

xii. Capacity for responsible decision-making. 

 

In the 1900s, the Austrian psychiatrist Sigmund Freud, who is the acknowledged founder 

of psychoanalysis, articulated a structural model of the mind, according to which the elements 

that structure the “mental apparatus” are ordered in the “mental space” and constitute three 

vertically superimposed apartments that he called the “id,” the “ego,” and the “superego,” and 

he defined them as follows9: 

 

i. “Id”: it consists of impulses, instinctive urges, and everything connected with the 

major biological needs of the human being. Instinct is a highly formalized behavioral 

code that reflects the logic of organic nature. The “id” does not have discretion, 

namely, the capacity to distinguish between “right” and “wrong,” and, instead, it is 

motivated by the pleasure principle, which wants to immediately gratify all impulses. 

It is innate, and it remains unaffected by experience, for which reason it is not subject 

to any moral or sociogenic constraint. 

ii. “Ego”: it is the administrative center of personality, and it is created and gradually 

develops under the influence of accumulated experience. It contains all functions of 

consciousness as well as unconscious functions, such as the defense mechanisms of 

the ego. In particular, the ego’s consideration of reality is conscious, but the ego may 

also keep censored or forbidden desires hidden by unconsciously repressing them by 

means of the defense mechanisms of the ego. The ego is motivated by the principle 

of reality, it has discretion, and it develops rational thinking in order to weigh 

pleasure against its consequences.  

iii. “Superego”: It consists of two components: (i) the ego ideal, or ideal self, namely, 

the rules and standards one should adhere to, and (ii) moral consciousness, which is 

the consciousness of existence itself when it operates as a judge. The “superego” is 

 
9 Ibid. 
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the moral compass of personality, and it develops under influences exerted on the 

human being by the parents, persons of authority, and one’s microsocial 

environment.  

 

A normal person has a strong “ego” and, thus, great resistance to (psychologically) 

stressful situations. When reality refuses to satisfy a normal person’s needs and desires, that 

person finds substitutes through consciously controlled mechanisms. However, normal 

persons do not repress their original needs and desires, nor do they hasten to satisfy them in 

ways that are socially demeaning or biologically harmful, but they try to satisfy them within 

particularly suitable spatio-temporal settings.  

When normal persons are faced with severe stress, they initially try to modify the 

conditions that cause it. If they are unsuccessful in their attempt to modify the conditions that 

cause severe stress, then normal persons try to modify their own attitude toward these 

conditions, or they try to escape from them. If they are also unsuccessful in this stage of 

defense, and they start realizing the possibility of developing symptoms of a mental disorder, 

or of incurring a major social failure, then they look for ways of obviating them (for instance, 

they seek advice from experts).  

With regard to the defense mechanisms of the ego, it is important to mention that, in 

contrast to persons who are not normal, normal persons do not easily resort to the mechanism 

of repression in order to tackle reality’s challenges and their non-conformist desires. 

Repression is the major defense mechanism of the ego, and it consists in the unaware 

exclusion of distressing thoughts, desires, impulses (especially aggressive and sexual ones), 

and unacceptable experiences from the field of consciousness. Repression can protect the ego 

only for a relatively short period of time, but, in the long run, it causes the accumulation of 

unconscious material that has a detrimental effect on behavior and the decision-making 

process.10 In fact, repression plays the major role in the pathogenesis of neurosis, which is 

characterized by severe and chronic feelings of anxiety and fear. According to Freud, there 

are three kinds of anxiety: “real anxiety” derives from a real, external threat; “cultural 

anxiety” is a peculiar kind of anxiety manipulated by certain social regimes; and “neurotic 

anxiety” is either (i) superegotic, in which case the superego punishes the ego, or (ii) 

instinctive, in which case impulses explosively manifest themselves in an unsuitable 

environment.11 In addition, according to Freud, each neurotic phobia has a symbolic character 

(for instance, cleistophobia is a symbolic manifestation of one’s fear of being trapped; 

acrophobia is a symbolic manifestation of one’s fear of falling morally, etc.).12 

When normal persons are faced with a situation in which their (positive or negative) 

emotional charge affects their handling of a given situation, they do not easily decide to use 

the following defense mechanisms either13: (i) denial, which involves the refusal to accept 

traumatic experiences, and, thus, it may contribute to the development of psychosis; (ii) 

isolation, which involves the separation of the emotional charge from the corresponding 

underlying thought, and it may contribute to the development of obsessive–compulsive 

disorder (for instance, in the Nazi concentration camps, physicians were committing crimes 

while believing that they were conducting scientific research); (iii) introjection, which 

 
10 Ibid.  
11 Ibid.  
12 Ibid.  
13 Ibid. 
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involves the internalization of the object of love (such as the parents, persons of authority, 

etc.) in a way that the properties of that object are integrated into the ego of the person who 

resorts to introjection, so that this mechanism eliminates the awareness of the differences 

between one’s ego and the object of one’s love, in order to protect the ego from the anxiety of 

separation and the fear of loss, and, thus, introjection may ultimately contribute to the 

development of depression; and (iv) projection, which involves projecting undesirable 

impulses, urges, and emotions onto someone else, and, thus, it indicates a weak ego trying to 

trick itself, and it may contribute to the development of psychosis (for instance, Freud has 

mentioned the case of a woman who had been unfaithful to her husband but who accused her 

husband of cheating on her). Instead of tricking themselves with defense mechanisms, normal 

persons use mechanisms that are directly controlled by their consciousness. Hence, as I have 

already mentioned, consciousness can be considered as the synopsis of the human being. 

Conclusively, even though, in the context of the modern “academia,” philosophy and 

scientific psychology, as academic disciplines, differ from each other, they are characterized 

by important interconnections between them.14In particular, philosophical psychology, which 

is an integral part of classical philosophy, and scientific psychology are intertwined with one 

another through the concept of “normality.” Scientific psychology aims to elevate a person 

from a sub-normal existential state to the normal existential state, thus restoring the rule of 

consciousness over the unconscious, by analyzing the secondary, unconscious mind, which is 

formed by wishes and desires that are repressed by social norms and by reason and common 

sense, which are adaptation mechanisms to reality. Philosophical psychology inquires into the 

meaning of consciousness, reason, reality, truth, and morality themselves, on which the 

concept of “normality” is based; and more spiritually “exalted” philosophies aim to elevate 

the human being from the normal existential state to a super-normal existential state, usually 

summed up by the concept of the wonderful. In the context of modern psychology, the 

significant interplay between scientific psychology and philosophical psychology was 

originally addressed by “existential psychotherapy.” In particular, the American psychiatrist 

and psychoanalyst Irvin D. Yalom has emphasized and systematically studied the interplay 

between psychotherapy and what he has called the four ultimate existential concerns, namely, 

death, freedom, isolation, and meaninglessness.15 

 

 

1.2. THE ABSTRACT STUDY OF A BEING 
 

Logic may be defined as a theory of true propositions, or, equivalently, as a theory of 

correct reasoning. Any relation between concepts is formulated by means of propositions. 

 
14 “Scientific psychology” emerged in the nineteenth century as an autonomous scientific discipline under the 

influence of the German physician Wilhelm Wundt (1832–1920), who was the founder of “experimental 

psychology.” In 1893, Eduard Titchener, an English student of Wilhelm Wundt’s, founded his own formal 

laboratory for psychological research at Cornell University, after Oxford University had rejected the creation 

of a distinct department of psychology. Titchener placed psychological structuralism in a more scientifically 

rigorous setting than that of Wundt’s theory. Titchener’s psychological structuralism consists in analyzing 

consciousness into its constitutive elements (particularly, its experiences) in order to ascertain its structure. In 

the twentieth century, “scientific psychology” was further developed by several great modern psychologists, 

such as Pierre Janet, William James, John B. Watson, Sigmund Freud, Carl Jung, Alfred Adler, Jean Piaget, 

Max Wertheimer, Abraham Maslow, etc. See: Hothersall, History of Psychology.  
15 Yalom, Existential Psychotherapy. 
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According to Aristotle’s Organon, the backbone of any science is a set of propositions, so 

that, starting from the very primitive principles and causes, one can proceed to learn the rest. 

Aristotle’s logic is focused on the notion of deduction (syllogism), which was defined by 

Aristotle, in his Prior Analytics, I:2:24b18–20, as follows: “A deduction is speech (logos) in 

which, certain things having been supposed, something different from those supposed results 

of necessity because of their being so”; each of the things “supposed” is a premise of the 

argument, and what “results of necessity” is the conclusion.  

By the term “concept,” we mean the set of all predicates of a thing (or of a set of 

conspecific things) that express the substance of the given thing (or of the given set of 

conspecific things). In the scholarly discipline of logic, the “intension” of a concept is the set 

of all predicates of the given concept, namely, the set of all those elements due to which and 

by means of which the given concept can be known and distinguished from every other 

concept; in other words, the intension of a concept is its formal definition. For instance, the 

properties of the three angles and the three sides of a geometric figure constitute the intension 

of the concept of a triangle. Moreover, in the scholarly discipline of logic, “extension” 

indicates a concept’s range of applicability by naming the particular objects that it denotes; in 

other words, the extension of a concept encompasses all those things to which the given 

concept refers. For instance, the extension of the concept of a tree consists of all particular 

trees; the extension of the concept of a human being consists of all particular humans, etc.  

By the term “genus” (plural: “genera”), we mean a concept whose extension includes 

other concepts, known as “species,” or “kinds,” which fall within it. In other words, “genera” 

are concepts whose extension is bigger than that of other concepts, whereas “species,” or 

“kinds,” are concepts whose extension is smaller than that of other concepts. For instance, the 

concept of a geometric figure is a genus with regard to the concept of a triangle, whereas the 

concept of a triangle, which appertains to the concept of a geometric figure, is a kind with 

regard to the concept of a geometric figure.  

Through the process of “abstraction,” we decrease the intension of concepts and increase 

their extension. Thus, due to abstraction, the concept of a human being can be gradually 

generalized into the following concepts: “vertebrate,” “mammal,” “animal,” “living being,” 

and “being”; “being” is the most general concept, in the sense that its intension is minimum 

and its extension is maximum. “Being,” to which every other concept is reducible, cannot be 

further analyzed into other concepts. Concepts of such general type, which are not susceptible 

of further analysis into simpler concepts, and to which other concepts are reducible, are called 

“categories.” Aristotle, in his book Categories, attempted to enumerate the most general 

species, or kinds, into which entities in the world divide. In particular, in Categories, 1b25, 

Aristotle lists the following as the ten highest categories of things “said without any 

combination”: “substance” (e.g., man, horse), “quantity” (e.g., four-foot, five-foot), “quality” 

(e.g., white, grammatical), “relation” (e.g., double, half), “place” (e.g., in the Lyceum, in the 

market-place), “date” (e.g., yesterday, last year), “posture” (e.g., is lying, is sitting), “state” 

(e.g., has shoes on, has armor on), “action” (e.g., cutting, burning), and “passion” (e.g., being 

cut, being burned).  

 

 

1.2.1. Epistemological Presuppositions 
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Consciousness aims to maintain and develop itself, that is, it aims to preserve and 

reinforce existence. In particular, consciousness aims to preserve existence on the best 

possible terms in order to ultimately shift from the act of “being” to the act of “being better.” 

In this way, the intentionality of consciousness concretizes its identity both as a tendency to 

participate in the world by assimilating the world and as self-knowledge. The levels at which 

the aforementioned activities take place are the levels of instinct, experience, and rational 

under7standing (intellect). 

At the level of instinct, conscious activity is minimized, and every instinctive action of 

existence overlays or ignores every conscious activity. Instinct is a condensed logical 

manifestation whose correctness has been confirmed by the application of the problem-

solving method that is known as “trial and error” by an unlimited number of generations, and 

it reflects the logic of organic nature. Thus, instinctive action has the character of an a priori 

integrated process. No obstacle to the affirmation of instinctive behavior can change the 

intrinsic logic of instinct itself. However, an obstacle to the affirmation of instinctive behavior 

can modify the manner in which existence adapts to each situation. In fact, adaptation is 

based on the method of “trial and error,” and this term was coined by the British psychologist 

Conwy Lloyd Morgan (1852–1936), who also used the terms “trial and failure” and “trial and 

practice.”  

At the level of experience, the intentionality of consciousness is expressed through the 

activity of the senses, which are oriented toward the world, with which they connect 

existence. Experience is a conscious state, which is part of the receptive aspects of existence. 

However, at the level of experience, consciousness is passive.  

At the level of rational understanding (corresponding to the mental process used in 

thinking and perceiving), consciousness plays an active role, whose manifestation is reason. 

According to the German philosopher Immanuel Kant (1724–1804), who was arguably the 

most important representative of the European Enlightenment, “reason” is an a priori (pre-

experiential) structure in the context of which various categories are interrelated, and, 

whenever they are adequately activated, they can connect isolated empirical data with each 

other, thus making possible the formulation of synthetic judgments, though which one can 

creatively transcend the level of experience and ascend to the level of rational 

understanding.16 

Intimately related to the different levels at which the intentionality of consciousness is 

expressed are the different degrees and forms of knowledge. By the term “knowledge,” we 

mean: (i) the mental action through which an object is recognized as an object of 

consciousness; (ii) the mental action through which consciousness conceives the substance of 

its object; (iii) the object whose image or idea is contained in consciousness; and (iv) that 

conscious content which is identified with the substance of the object of knowledge. 

Therefore, the term “knowledge” can be construed as a firm consideration of an object as 

something that corresponds to reality.  

The four basic forms of knowledge, namely, the four basic relations between 

consciousness and any object of consciousness, are the following:  

 

i. Belief: The term “belief” has two meanings: first, it means that one accepts 

something as real, even though the claim about its reality is not based on experience 

 
16 See: Guyer, ed., The Cambridge Companion to Kant. 
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or on logical proofs; second, it means that one has merely formed an opinion by 

remaining focused on the appearance of things. In the latter case, the term “belief” is 

synonymous with the term “dōxa,” which, according to Plato, means the 

acquaintance with an object that can be provided by an unstable appearance, and it is 

contrasted with “epistēme,” which, according to Plato, means a firm and stable 

intellectual grasp.17 

ii. Empirical knowledge: Empirical knowledge is a form of knowledge that is provided 

by the senses. Its object may be inside or outside us, so that, depending on the 

position of its object, empirical knowledge is distinguished into internal experience 

and external experience. Experience is a form of conscious knowledge that is 

superior to belief and inferior to logical knowledge. 

iii. Logical knowledge: Logical knowledge is a form of knowledge that derives from the 

rational faculty of consciousness, and it is characterized by indisputable and logically 

grounded truths, namely, judgments about the reality of things. There are two groups 

of logical knowledge: the group of philosophical truths and the group of 

mathematical truths, which, exactly because they are both groups of logical 

knowledge, give rise to a homomorphism between mathematics and philosophy (see 

also section 1.3.3). Philosophy and mathematics are structurally similar to each other. 

In general, a “homomorphism” is a concept used in abstract algebra in order to 

compare two groups for structural similarities, specifically, it is a function between 

two groups that preserves the group structure in each group (for a more rigorous 

explanation of these concepts, see Chapter 2).  

iv. Intuition: Intuition, like instinct, manifests itself as a direct and condensed logical 

conception of objects, and, simultaneously, as a system of accumulated experiences 

whose origin tends to become unconscious. By the term “intuition,” we mean that 

consciousness conceives a truth (that is, it formulates a judgment about the reality of 

an object) according to a process of conscious processing that begins with a 

minimum empirical or logical datum and goes up to a whole abstract system with 

which consciousness realizes that it is connected or of which consciousness realizes 

that is an integral part. Moreover, according to Donald J. Puchala, the purpose of 

intuition as a metaphysics is to “properly deal with the nature of unobservable 

reality.”18 There are three different varieties of intuition: (i) sensuous or 

psychological intuition, (ii) logical intuition, and (iii) metaphysical intuition. As I 

shall explain later in this chapter, a characteristic type of sensuous or psychological 

intuition is Bergson’s conception of intuition, a characteristic type of logical intuition 

is Husserl’s conception of intuition, and a characteristic type of metaphysical 

intuition is the Neoplatonic concept of ecstasy.  

 

Intuition, experience, and reason are different from each other, but, in practice, they do 

not contradict each other, since they cooperate with each other both in the context of everyday 

life and in the context of philosophical and scientific inquiries. However, knowledge 

presupposes what the Italian Dominican priest, scholastic philosopher, and theologian 

Thomas Aquinas (1225–74) has called “the correspondence between the intellect [of the 

 
17 Plato, Republic, 479c and 534a. 
18 Puchala, “Woe to the Orphans of the Scientific Revolution,” p. 70. 
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knower] and the thing [the known]” (“adaequatio rei et intellectus”), naming this 

correspondence “truth.”19 This truth may be either “formal,” when it refers to the agreement 

between different logical terms, or “substantial,” when it refers to the agreement between 

sensory-sensuous or conceptual objects and their meanings, which represent them within 

consciousness. In Chapter 3, I shall propose a refined version of the correspondence theory of 

truth. 

 

 

1.2.2. The Significance and the Presence of a Being  

 

The concept of a being is the central concept of philosophical inquiry. The reality of a 

being is the reality par excellence. The study of the history of philosophy leads to the 

conclusion that a “being” is a self-sufficient reality that is maintained either by being a closed 

system or by being an open system. When a being is a closed system, not only does it 

maintain its structure but also includes its boundary conditions, and, therefore, it is 

existentially buttressed by its frontiers. When a being is an open system, it maintains its 

structure, but it tends to transcend its nature and expand itself beyond its normal frontiers. In 

Chapter 2, I shall clarify the concepts of closedness and openness in a more rigorous way 

through set theory. At this point, it suffices to make the following two remarks: First, when 

one considers the essence of being as a closed system, one gives priority to and emphasizes 

the distinction between “inside” and “outside,” specifically, those elements that are counted 

as belonging to the system (“being”) under consideration in contradistinction to those that are 

not; whereas, when one considers the essence of being as an open system, one gives priority 

to and emphasizes the dynamicity and the activity of being as well as the way in which a 

being is related to other beings. Second, if a being is a closed system, then it exists in a static 

way; whereas, if a being is an open system, then it exists in a dynamic way. 

The primitive formation of the basic image (mental representation) of a being by 

philosophizing consciousness is due to the presence of the human reality in the world, and, 

therefore, it is based on experience. However, gradually, the basic image of a being undergoes 

further processing by consciousness. As a result of its processing by consciousness, the basic 

image of a being discards its most specific traits and its accidental properties, and it is 

projected onto a conscious construct, so that it is replaced by the most abstract representation 

of the given being (for instance, the fundamental problem of perspective (in both art and 

mathematics) consists in correctly representing a three-dimensional picture or situation in a 

two-dimensional picture of it). In this way, consciousness facilitates the conception and the 

functional interconnection of the most abstract aspect of a being and the world, into whose 

functional presence the given being is integrated. In fact, as the American historian of 

sciences and mathematician Carl B. Boyer has pointedly written, ancient Greece discovered 

science and philosophy because it realized that human consciousness “is something different 

from the surrounding body of nature, and it is capable of discerning similarities in a 

multiplicity of events, of abstracting these from their settings, generalizing them, and 

deducing therefrorm other relationships consistent with further experience,” and, in particular, 

“the establishment of mathematics as a deductive science” is ascribed to Thales.20 

 
19 Aquinas, Summa Theologiae, Q. 16. 
20 Boyer, The History of Calculus and Its Conceptual Development, p. 16–17.  
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Ontology, known also as “metaphysics,”21 like it or not, has a long history, and it is 

inextricably linked to the history of science and to the very essence of science. According to 

the terminology of modern philosophy, all ontological theories can be divided into two 

categories: “philosophical realism” and “idealism.” In other words, according to modern 

philosophical terminology, there are two general models whereby philosophers interpret the 

world: one gives primacy to the reality of the world, and it is known as philosophical realism, 

whereas the other gives primacy to the reality of consciousness, and it is known as 

philosophical idealism. Another important way of categorizing philosophical theories is based 

on the distinction between “monism” and “dualism.” Monism attributes “oneness” or 

“singleness” to a fundamental kind, category of things, or principle; for instance, “substance 

monism” asserts the unique reality of only one kind of stuff, such as spirit (according to the 

spiritualist type of monism) or matter (according to the materialist type of monism), and it 

maintains that many different things may be made up of this stuff. As the British philosophers 

James Opie Urmson and Jonathan Rée have put it, substance monism is “the view that the 

apparent plurality of substances is due to different states or appearances of a single 

substance.”22 Contrasting with monism, dualism maintains that, at least in some domains, 

there are two fundamental kinds, or categories of things, or principles. According to Urmson 

and Rée, dualism “is the name for any system of thought which divides everything in some 

way into two categories or elements, or else derives everything from two principles, or else 

refuses to admit more or less than two substances or two kinds of substance.”23 

As I shall argue later in this chapter and in Chapter 3, in each of the aforementioned 

“schools” of ontology, one can find important problems, which have been thoroughly 

analyzed by, among others, the Soviet-Russian philosopher and psychologist Alexander 

Spirkin24: The monist varieties of philosophical realism are prone to oversimplifications, 

because they fail to identify and analyze important elements and aspects of reality. The 

dualist varieties of philosophical realism give rise to contradictions and logical gaps. On the 

other hand, idealism is highly malleable, since—expressing and highlighting the complexity 

and the diversity of the output of the functions of consciousness—it gives rise to a 

philosophical framework in which various philosophical differentiations can take place. 

However, as I shall argue later in this chapter and in Chapter 3, in line with Spirkin, idealism 

tends to underestimate the ontological autonomy of the world, and it is rather oblivious of 

what Spirkin has called the “dialogical nature of consciousness.”25 Therefore, I propose a 

synthesis between realism and idealism.  

Every philosophical activity is fundamentally concerned with the study of being, and, in 

the context of philosophy, the term “being” is almost always construed according to the 

aforementioned definition, namely, as “a self-sufficient reality that is maintained either by 

being a closed system or by being an open system.” The study of the history of philosophy 

indicates that, on several occasions, philosophers are overwhelmed by the wonders of the 

 
21 The concept of “metaphysics” originates from the Greek words “after” (“metā”) and “the physical [treatises]” (“tā 

physikā”). In fact, when the Greek philologist Andronicus of Rhodes (first century B.C.) published the 

complete works of Aristotle, he placed the book in which Aristotle studies the reality of being (namely, 

ontology) after Aristotle’s physical treatises. Hence, gradually, the term “metaphysics” (literally meaning 

“after the physical [treatises]”) became a synonym (or rather a sobriquet) of “ontology.” 
22 Rée and Urmson, eds., The Concise Encyclopedia of Western Philosophy and Philosophers, p. 297. 
23 Ibid, p. 115. 
24 Spirkin, Dialectical Materialism. 
25 Ibid, Chapter 3. 
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physical world, and they methodically try to investigate and interpret them. However, even in 

these cases, in which philosophizing consciousness is oriented toward the world, 

philosophical activity is indirectly preoccupied with the human being, because it refers to the 

world in order to ultimately explain the “exceptional” presence of the human being in the 

world. 

It goes without saying that the manner in which and the extent to which humanity is 

related to the world (of which everything seems to be an outgrowth) vary, and they are 

understood and evaluated in different ways by different cultural communities and different 

researchers. Furthermore, the study of the history of civilization indicates that humanity 

persistently tries to become autonomous from the world and to be reintegrated into the world 

in terms of a new equilibrium underpinned and controlled by humanity itself. In any case, 

irrespective of whether humanity is considered as a being extended in and related to the word 

or as a separate reality, the human being tries to impose itself as the most magnificent 

manifestation of being, and it does so through philosophy, science, art, technology, politics, 

and even religion. Thus, the very first attempts to articulate realist philosophies both of the 

materialist type, such as Democritus’s and Epicurus’s atomism, and of the spiritualist type, 

such as Plato’s theory of ideas and Gottfried Wilhelm von Leibniz’s monadology, are 

founded on the argument that the human being is an independent and mostly free whole and 

an indivisible structural actuality. 

The ancient Ionian school of philosophy—whose members (namely, such Greek 

philosophers as Thales, Anaximander, Anaximenes, Heraclitus, Anaxagoras, and Archelaus) 

were called “physiologoi” (meaning those who discoursed on nature) by Aristotle26—sought 

to find the primary material substance from which hypothetically both the cosmic reality, 

which surrounds the human presence, and the human being as a reflection of this reality 

originate.27 According to Thales, this substance is the element of water; according to 

Anaximenes, this substance is the element of air; according to Heraclitus, this substance is the 

element of fire, and it is intimately related to the continuous change of reality; according to 

Anaximander, this substance is the principle of infinity; according to Archelaus, the primary 

cosmological principle is the principle of motion, and it is intimately related to the separation 

of hot from cold. According to Empedocles, a distinguished Greek pre-Socratic philosopher 

who lived in Sicily, the primary cosmological principle consists of the attractive and the 

repulsive forces by which the classical elements (namely, earth, water, air, and fire) are 

interrelated. However, the first philosopher who conceived being as a unique and dynamic 

whole was Parmenides of Elea, a Greek pre-Socratic philosopher from Elea in southern Italy. 

Parmenides was the founder of ontology as the branch of philosophy that inquires into reality 

itself.28 

Parmenides studies being as a “whole,” specifically, as a unique set that imposes itself by 

being and opposes everything that is not. According to Parmenides’s poem On Nature, being 

and non-being are two totally distinct ontological categories, and they cannot be reduced to 

each other. This dualist argument underpins the original formulation of the classical Platonic 

perception of ideas as “beingly beings.” However, in his dialogue Sophist, Plato maintains 

that “being” and “non-being” are the extreme terms of an ontological series whose 

 
26 Aristotle, Metaphysics, 986b. 
27 See: Fried and Hademenos, Biology. 
28 See: Curd, The Legacy of Parmenides; Palmer, Parmenides and Presocratic Philosophy. 
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intermediate terms are the non-being of being and the being of non-being, and that these 

intermediate terms underpin the explanation of the presence of the world. The four 

aforementioned Platonic ideas were utilized by Plotinus, the greatest Greek Neoplatonic 

philosopher, who, in his Enneads, identified four primary hypostases (i.e., underlying 

substances, or fundamental realities that underpin all else), namely: (i) the One: it is the 

source of all existence, and, hence, it is totally transcendent (beyond the categories of being 

and non-being), it encompasses thinker and object, and it is identified with the ideas of 

“good” and “beauty”; (ii) the Nous (Mind, or Intelligence): it is the highest being, and it is 

directly emanated by the One; this second hypostasis, in which the ideas (namely, archetypal 

forms, which are the energies of the One) reside, emanates a third hypostasis, which is called 

the World Soul; (iii) the World Soul: it is an intrinsic connection between all living beings, 

and, according to Plotinus, it is composed of a higher and a lower part (the higher part is 

unchangeable and divine, and it provides the lower part with life), so that the World Soul 

contemplates both the intelligible realm and Nature as it previews what it produces, and, 

therefore, time and the physical world proceed from the World Soul; (iv) Matter: the process 

of emanation ends when being tends to non-being so much that a limit is finally reached, and 

this lowest stage of emanation is matter, which exists only potentially.29 Matter is not 

substantially evil, since it ultimately (even though indirectly) emanates from the One (and, 

thus, it is linked to goodness), and evil resides in matter’s state of privation, or in matter’s 

ontological weakness. Plotinus’s metaphysical type of intuition, known as ecstasy, refers to a 

conscious state in which consciousness leaves the material body and seeks to be absorbed into 

the absolute, the “One” (this is the type of intuition that underpins mysticism, in general).  

In his Metaphysics, where he expounded his ontology, Aristotle articulated a 

philosophically rigorous interpretation of reality. In particular, in his Metaphysics (Books 7 

and 9), Aristotle studied the distinction between potentiality (being potentially) and actuality 

(being actually). According to Aristotle, the matter of a being, namely, the stuff of which it is 

composed, is linked to potentiality, whereas the form of a being, namely, the way that stuff is 

put together so that the whole it constitutes can perform its characteristic functions, is linked 

to actuality. For instance, consider a piece of wood that can be carved or shaped into a bowl. 

In Aristotle’s terminology, the wood has at least one potentiality, since it is potentially a 

bowl. The piece of raw wood in the carpenter’s workshop can be considered a potential bowl 

(since it can be transformed into one), and the wood composing the completed bowl is also, in 

a sense, a potential bowl, but, when the bowl is used for the purpose intended, it exists 

actually, it is an actuality.  

Aristotle’s distinction between potentiality and actuality presupposes a state of becoming 

in which a being is increasingly actualized and imposed according to an existential model that 

is originally contained in the given being. According to Aristotle, the aforementioned 

existential model is the “entelechy,” that is, the program of actualization, of a being, and it 

remains immutable regardless of the changes that a being may undergo. Moreover, according 

to Aristotle, a being is the simplest mental presence, but it is not absolutely simple, since it 

can be conceived as a resultant of categories (systems of general concepts); these categories, 

which correspond to the fundamental modes of being, can be summarized as follows: 

substance, form, structure (namely, the cohesive bond between substance and form), time, 

and space. The aforementioned five categories (specifically, modes of being) are qualities that 

 
29 See: Gerson, ed., The Cambridge Companion to Plotinus.  
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can be identified in and attributed to a being. Through his distinction between actuality and 

potentiality and through his study of the mode of being, Aristotle managed to transcend the 

antithesis between being and non-being, which was originally addressed by Parmenides in his 

poem On Nature. 

Aristotle maintains that both the matter and the form of a being must pre-exist,30 but the 

source of motion in both cases (what Aristotle calls the “moving cause” of the coming to be) 

is the form. In artistic production, the form is found in the soul of the artisan (“the art of 

building is the form of the house,”31 and “the form is in the soul”32). For instance, the builder 

has in mind the plan for a house, he knows how to build, and, ultimately, he “enmatters” that 

plan by putting it into the materials out of which he builds the house. In natural production, 

the form is found in the parent (“the begetter is of the same species as the begotten, not one in 

number but one in form—for man begets man”33). 

Plato’s way of resolving the Parmenidean contradiction between being and non-being 

consists in his theory of ideas, according to which the degree to which a particular being 

participates and progresses in the corresponding idea, namely, in the corresponding beingly 

being (archetypal form), determines its degree of being. Platonic “ideas” are transcendent vis-

à-vis the sensory, material world, but they are innate in consciousness, and they can come to 

the foreground of awareness through an epistemological and psychological method that Plato 

calls “anamnesis.”34 However, according to Aristotle, Plato’s ideas are abstractions 

(concepts), and Aristotle’s way of resolving the Parmenidean contradiction between being 

and non-being consists in his study of the entelechy of being, namely, in the study of the 

intrinsic program of ontological actualization of each being, which underpins the transition 

from being potentially to being actually. The history of medieval ontology is, in essence, a 

history of debates about Plato’s and Aristotle’s ways of resolving the Parmenidean 

contradiction between being and non-being.  

A variety of “exaggerated” Platonic realism inspired and underpinned medieval 

philosophical realism, which was represented by such scholars as John Scottus Eriugena, 

Anselm of Canterbury, and Walter Burley, whereas a variety of Aristotelianism inspired and 

underpinned medieval nominalism, which was represented by such scholars as Roscelinus 

(Roscelin of Compiègne), Peter Abelard, and William of Ockham.35 In particular, nominalism 

was a peculiar anti-realist interpretation of Aristotle’s philosophy. According to medieval 

nominalists, “universals” (i.e., a class of mind-independent entities, which are the 

characteristics or qualities that particular things have in common, and therefore, they are 

contrasted with individuals) are just names, or words (hence, the term “nominalism”). 

However, there are two varieties of nominalism: “soft nominalism” rejects universals, but it 

affirms the existence of abstract objects (such as properties, propositions, numbers, and 

possible worlds), arguing that abstract objects are particular or concrete objects (mainly in the 

context of propositional discourse logic); whereas “hard nominalism” rejects both universals 

and abstract objects, and it maintains that only individuals exist (thus gradually giving rise to 

“anti-foundationalism,” whose most radical representatives are Friedrich Nietzsche and the 

 
30 Aristotle, Categories, 1034b12. 
31 Ibid, 1034a24.  
32 Ibid, 1032b23.  
33 Ibid, 1033b30–32. 
34 Plato, Meno; Phaedo; Republic (Book 7); and Symposium.  
35 See: McGrade, ed., The Cambridge Companion to Medieval Philosophy. 
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post-modernists, such as Michel Foucault, Jacques Derrida, and Richard Rorty). In the 

thirteenth century, Thomas Aquinas managed to articulate a robust system of philosophical 

theology based on a variety of “moderate” Aristotelian realism, without being trapped in 

disoriented and philosophically debasing controversies between Platonism and 

Aristotelianism, and, simultaneously, he managed to recognize and highlight the importance 

of consciousness.36 

Transcendentalism and dualist realism underpin both Platonism and Aristotelianism: the 

basis, or the seat, of Plato’s transcendentalism is the world of ideas itself, in which, according 

to Plato, the human mind participates (at least potentially), whereas the basis, or the seat, of 

Aristotle’s transcendentalism is the human mind itself, which, according to Aristotle, 

conceives ideas as species and, hence, as abstractions; thus, Aristotle substitutes the notion of 

“entelechy” for Plato’s notion of “methexis” (participation), without, however, negating 

Plato’s metaphysical teleology (and, thus, internalizing Plato’s transcendentalism). From the 

perspective of structuralism, Platonic realism corresponds to the ante rem structuralism 

(“before the thing”), in the sense that, according to Platonism, the ideational structure of 

mental life is a real but transcendent principle vis-à-vis the mind itself and the sensible world, 

and philosophical consciousness tries to partake of and progress in the world of ideas, while 

Aristotelian realism corresponds to the in re structuralism (“in the thing”), in the sense that, 

according to Aristotelianism, structures are held to exist inasmuch as they are exemplified by 

some concrete system, and the mind itself, not the world of ideas, is a real and transcendent 

principle vis-à-vis the sensible world, and it conceives ideas as abstractions. Despite the 

particular differences between Plato’s and Aristotle’s philosophies regarding forms, the 

ancient Greek philosophical community was aware that Platonism and Aristotelianism were 

not opposite to each other, since both Platonism and Aristotelianism are dualist realisms. 

Thus, as we read in Diogenes Laertius’s Lives of Eminent Philosophers, IV, 67, Aristotle was 

the pioneer of the “peripatetic Platonists.” However, in the Middle Ages, particular socio-

cultural reasons gave rise to new interpretations of Platonism and Aristotelianism that 

highlighted the differences between them in a radical way.  

The medieval social actors who adhered to the vertical (authoritarian) hierarchical system 

of feudal societies (at the top of which was the bishop (as a type and in place of Christ), and, 

below him, there were the sovereign, the nobility, the monks, the clergy, the knights, the so-

called “boni hominess” (i.e., the bourgeoisie37), and the simple people (“popolo”)) endorsed 

philosophical realism, and they interpreted Platonism as their major philosophical 

underpinning, emphasizing Plato’s argument that ideas-as-beingly-beings are transcendent 

and govern the beings and the things of the sensible world “from above.” In particular, the 

medieval adherents of the vertical hierarchical system of feudalism identified the term 

“generality” (signifying the highest level of abstraction and logical necessity) with the term 

“universality” (signifying a mind-independent “whole”), and then they equated the degree of 

reality with the degree of generality, and they instituted a system of social hierarchy founded 

on their notion of generality. Therefore, it is clear that the “exaggerated” medieval realism 

and, in general, the medieval social actors who endorsed realism as the major philosophical 

 
36 See: Conti, “Realism in the Later Middle Ages.”  
37 The bourgeois are those who are neither plebeians (or “simple people”) nor members of the nobility. Thus, the 

term bourgeoisie has often been identified with the term “middle class,” and, in this case, the “bourgeoisie” 

has been subdivided into “petite (or small) bourgeoisie,” “middle bourgeoisie,” and “haute (or high) 

bourgeoisie.”  
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underpinning of the vertical hierarchical system of feudal societies ignored or silenced the 

fact that, when Plato argued that ideas (i.e., “universals”) are transcendent to the sensible, 

material world, he added that human beings can participate and progress in the world of ideas 

(i.e., in “universals”) according to each person’s degree of mental purification and 

development, thus pursuing humanity’s experiential access to beingly beings, namely, to the 

energies of the good-in-itself.  

According to Plato, the soul, like the body, is characterized by “that sensation which we 

know term ‘seeing,’”38 so that the knowledge of the good-in-itself depends on an internal, 

mental sensation (spiritual vision). Therefore, Plato emphasizes that the knowledge of the 

absolute good (the good-in-itself) presupposes not only the ability to give an account (i.e., 

discursive reasoning) but also a psychic cleansing or cure. In his Republic, 443d–e, Plato 

argues that one has cured his soul if he has “attained to self-mastery and beautiful order 

within himself, and . . . harmonized these three principles [the three parts of the soul: reason, 

the emotions, and the appetites] . . . linked and bound all three together and made himself a 

unit, one man instead of many, self-controlled and in unison.” Since, as we read in Plato’s 

Republic, 585b, the purpose of our existence is our experiential participation in the pure being 

(the good-in-itself) and our unification with the good-in-itself, psychic cleansing (spiritual 

psychotherapy) is a prerequisite to our transformation into the corresponding absolute 

principle; for, as Plato argues in Phaedo, 67b, “it cannot be that the impure attain the pure.” 

In fact, even though Plato’s philosophy clearly belongs to the “school” of realism, his 

aforementioned arguments regarding the experiential participation of the human soul in the 

transcendent world of ideas disclose an idealist aspect of Plato’s philosophy.  

On the other hand, the rising medieval bourgeoisie sought to replace the vertical 

hierarchical system of feudal societies with a horizontal model of social organization based 

on individualism, and, therefore, it realized that it had to fight against the philosophical 

underpinnings of the feudal establishment, namely, against medieval philosophical realism.39 

Hence, the intellectual elite of the medieval bourgeoisie endorsed nominalism, and it claimed 

that the fundamental arguments of nominalism were philosophically underpinned by 

 
38 Plato, Timaeus, 45d (emphasis mine). 
39 By the fourth century A.D., the major towns of the Western Roman Empire had been destroyed by the invasions 

of barbaric―primarily, Germanic―tribes. However, in the tenth century A.D., towns began to grow in 

Western Europe, and, within a short period of time, they gained autonomy. Autonomous towns were founded 

in the West as a reaction against the feudal regime. The townspeople started acting collectively. Initially, their 

communities were organized around a belfry: at the sound of the bell, all had to gather together since bells 

were ringing not only for religious purposes but also in order to announce a state of emergency or an imminent 

danger. Gradually, towns established a popular judicial system, their own system of policing, and their own 

treasury. Later, towns gained their independence, either by purchasing it or by using violent means. Thus, 

towns became free republics, and the growth of private property and commerce increased significantly. The 

townspeople―namely, liberated serfs, tradesmen, Jews seeking higher levels of safety and better economic 

opportunities, impoverished aristocrats, and various other opportunists and fugitives from the feudal 

system―built their own walls around their towns, and, thus, they became permanent residents of those towns 

and were called “bourgeois” or “burgenses,” which literally means “of a walled town.” Towns were attracting 

more and more people, not so much for the pursuit of financial gain as for the pursuit of freedom. Serfs could 

earn their living by cultivating the land, but they could not enjoy enough freedom. The quest for freedom was 

the strongest motive of the people who were leaving their agricultural jobs in order to live in a town (see: 

Pirenne, Medieval Cities). For instance, in the Middle Ages, many Germans used to say “Stadtluft macht frei” 

(i.e., “urban air makes you free”). Carlo M. Cipolla argues that, like the first European immigrants to America, 

the liberated serfs were moving to towns in order to have more opportunities for social and economic success 

than those supplied by the traditional and closed agricultural societies (Cipolla, Before the Industrial 

Revolution). 
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Aristotelianism. However, as I have already mentioned, nominalism articulated a peculiar 

anti-realist interpretation of Aristotle’s philosophy, in the sense that nominalism ultimately 

shifted away from the aforementioned in re structuralism toward the post rem structuralism 

(“after the being”), according to which “to exist” merely means to be placed in a rational 

structure. In particular, the intellectual elite of the medieval bourgeoisie emphasized 

Aristotle’s argument that “entelechy” (as a program of ontological actualization) is intrinsic to 

being, thus affirming the ontology of particularity as a philosophical underpinning of 

individualism, ignoring or silencing the fact that Aristotle, in line with Plato’s 

transcendentalism, maintains that knowledge is a mental function, and that the mind proper 

(as the entelechy of the body) is transcendent to the body, and arises from the outside.40 

Indeed, by dismissing the aforementioned realist aspect of Aristotelianism, the nominalists’ 

variety of “Aristotelianism” marks their shift from the in re structuralism to the post rem 

structuralism. Furthermore, the intellectual elite of the medieval bourgeoisie interpreted 

Aristotle’s logic as a means of individual power (in terms of oratorical skills and exhibitions 

of macho intellectuality), whereas, for Aristotle, logic was a means of clear and accurate 

communication between conscious entities and, hence, an underpinning of correct social life 

in its broadest sense. Therefore, in the realm of theology, the realist scholastics, in one way or 

another (and irrespective of the mistakes that they perpetrated in the context of the feudal 

system and its underlying authoritarian mentalities), emphasize and seek to approach the 

wisdom and the harmony of the deity, whereas the nominalists, such as Ockham, discard such 

quests and highlight only the freedom of God’s will and humanity’s faith, and, in this way, 

they involuntarily sow the seeds of nihilism.41 

In the seventeenth century, the Dutch-French philosopher and mathematician René 

Descartes (Latinized: Renatus Cartesius), initiating modern philosophy in a systematic way, 

sought to resolve medieval ontological controversies by highlighting the significance of 

consciousness.42 In his Meditations on First Philosophy (which was originally published in 

Latin in 1641 under the title Meditationes de Prima Philosophia, and, in 1647, it was 

published in French under the title Méditations Métaphysiques), Descartes argued as follows: 

 

We say, for example, that we see the same wax when it is before us, and not that we 

judge it to be the same from its retaining the same color and figure: whence I should forthwith 

be disposed to conclude that the wax is known by the act of sight, and not by the intuition of 

the mind alone, were it not for the analogous instance of human beings passing on in the street 

below, as observed from a window. In this case I do not fail to say that I see the men 

themselves, just as I say that I see the wax; and yet what do I see from the window beyond 

hats and cloaks that might cover artificial machines, whose motions might be determined by 

springs? But I judge that there are human beings from these appearances, and thus I 

comprehend, by the faculty of judgment alone which is in the mind, what I believed I saw 

with my eyes.43 

 

Thus, in his Meditations on First Philosophy, Descartes argued that a being is present 

both in itself, that is, independently of consciousness, and within consciousness, and that, in 

the latter case, consciousness is consciousness of a being, that is, it refers to a being, and it 

 
40 Aristotle, On the Generation of Animals, II, 3.  
41 Cunningham, Genealogy of Nihilism. 
42 See: Cottingham, ed., The Cambridge Companion to Descartes.  
43 Descartes, Meditations on First Philosophy, Meditation II, paragraph 13. 
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underpins the given being’s presence. It is exactly on this thesis that Descartes and 

subsequent members of his philosophical “school,” known as Cartesianism, such as Nicolas 

Malebranche (1638–1715), Baruch de Spinoza (1632–77), and Gottfried Wilhelm von 

Leibniz (1646–1716), founded modern ontology.  

Based on the aforementioned fundamental thesis of Cartesianism, the Serbian-German 

philosopher and mathematician Leibniz, in his Monadology, argued that the activity of the 

human mind corresponds to “monads,” which are immaterial, unextended, self-determining, 

and purposive substances (forces).44 According to Leibniz, every monad is a process of 

evolution, it animates matter, it has perception and appetition, and it realizes its nature with an 

internal necessity. In his theological essays, Leibniz argues that God created the monads, and 

He transcends all monads, but the human being, even though it is a limited monad, can 

maximize the qualities that are processed by each and every monad to a certain degree, and, 

in this way, the human being can achieve a partial knowledge of God, since God, Leibniz 

contends, is supra-rational but not contra-rational. 

In Leibniz’s philosophy, monads are united with regard to their existential end (i.e., in 

terms of their “teleology”), and, in this way, Leibniz sought to synthesize Descartes’s 

ontology and biblical theology, but, according to Leibniz, monads are natural, distinct, and 

separate “infinitesimals,” and, therefore, they are entities-in-themselves. An infinitesimal can 

be considered as the inverse of infinity, the smallest number possible (i.e., close to zero as 

possible) yet bigger than zero. However, the conception of an infinitesimal as an entity-in-

itself is, first, mathematically uncomfortable, because, given any two numbers 𝑎 < 𝑏, there is 

always a number 𝑐 that can fit between (𝑎 < 𝑐 < 𝑏), which, indeed, can be defined as 
𝑎+𝑏

2
, 

and, if such a number 𝑐 is an entity-in-itself, then the concept of a number that is the smallest 

number possible but bigger than zero (namely, a number 𝑘 such that 0 < 𝑘 < 𝑟 for any other 

number 𝑟) is logically alarming. If infinitesimal monads are entities-in-themselves, then no 

computation of lengths, areas, and volumes is perfectly exact, in the sense that every 

computation of lengths, areas, and volumes contains a small, “infinitesimal,” error. Therefore, 

as I shall explain in Chapter 2, in mathematics, the concept of the infinitesimal was ultimately 

replaced by the concept of the limit, which is a rule for reducing a quantity and making it get 

infinitely close to zero, and it underpins the rigorousness and the consistency of modern 

mathematical analysis. Furthermore, Leibniz’s monadology is theologically uncomfortable, 

too, because, according to Leibniz’s monadology, the knowledge of the “whole,” or God, 

concerns each monad individually as a conscious entity, and, therefore, it tends to give rise to 

absolute particulars, or absolute “egos.”  

The German philosopher and mathematician Christian Wolff (1679–1754) redefined 

philosophy as the science of the possible, and, in a sense, his philosophical work is a 

common-sense adaptation of Leibniz’s monadology.45 According to Wolff’s Ontologia, the 

task of the philosopher is to provide “the manner and reason” of every possible thing, since, 

according to Wolff, everything, whether possible or actual, has a “sufficient reason” for why 

it is rather than not. In section 56 of his Ontologia, Wolff defines “sufficient reason” as that 

from which it is understood why something is or can be.  

In the eighteenth century, Immanuel Kant expressed his opposition to the ontological 

excesses of Leibniz and especially of Wolff by recognizing the necessity of the thing-in-itself 

 
44 See: Jolley, ed., The Cambridge Companion to Leibniz. 
45 Ibid.  
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(namely, the object as it is independent of observation) while refusing to accept that the thing-

in-itself is knowable and arguing that the thing-in-itself is transcendent.46 Even though Kant’s 

philosophy avoids and aptly criticizes the ontological excesses and the consequent rigid 

rationalism of Leibniz and Wolff, it entails a risk of confining consciousness to the logical 

form of experience, denying consciousness access to the real content of experience and, thus, 

giving rise to a superficial type of consciousness. Whereas Plato, like Kant after him, 

maintains that the thing-in-itself (in his case, the “idea”) is transcendent, he specifies that the 

thing-in-itself can be participated, that is, experienced, by philosophizing consciousness in the 

context of a peculiar spiritual sense, which requires both the development of the power of the 

mind to think, understand, and form judgments logically and the completion of a process of 

psychic cleansing (what, in modern terms, we could call existential psychotherapy).  

On the other hand, the German philosopher Georg Wilhelm Friedrich Hegel (1770–

1831), the major representative of German romantic idealism, proposed an alternative 

solution to the persistent, Parmenidean-like, ontological controversy.47 According to Hegel, 

the thing-in-itself, namely, being, is the idea, which, by giving rise to a contradiction to itself, 

moves away from itself in order to, ultimately, return to itself enriched by its adventure. 

Hegel’s dialectical model—namely, the transition of the idea (“thesis”) to an upgraded 

version of itself (“synthesis”) through its contradiction (“antithesis”)—synthesizes the 

perception of being and the perception of becoming. However, whereas Aristotle’s 

conception of the transition from being potentially to being actually indicates a state of 

becoming that consists in the actualization of an ontological program, Hegel’s conception of 

the transition from the “in-itself” to the “for-itself” through the “outside-itself” indicates a 

state of becoming that consists in a process of mutation and alteration, since Hegel argues that 

all life and movement are founded on contradiction, which rules the entire world, and it 

encompasses Hegel’s secular theology. Thus, ultimately, in Hegel’s philosophy, being is 

identified with the logic of historical becoming, which is independent of the human person, 

and history takes the place of God. In other words, according to Hegel, even though the world 

constitutes a historical creation of humanity, the world has become independent from human 

consciousness. Hence, the German philosopher Arthur Schopenhauer (1788–1860) has argued 

that Hegelianism paralyzes mental power and stifles real thinking, and the Austrian-British 

philosopher Karl R. Popper (1902–94) has argued that Hegelianism provides justifications for 

absolutist regimes, such as that of Friedrich Wilhelm III (king of Prussia from 1797 to 1840), 

and, in general, for statism.  

The key point here is just this, that the essence of being (in Greek, “to on”: “τό ὄν”; in 

Latin, “ens”) and the act of being (in Greek: “to einai”: “τό εἶναι”; in Latin, “esse”) represent 

two different yet complementary aspects of the same reality. The distinction between the 

essence of being and the act of being has been emphasized and systematically studied by a 

philosophical “school” that is known as existentialism. The origins of existentialism can be 

traced to the theologian and philosopher Augustine of Hippo (who became the bishop of 

Hippo Regius in 395 A.D.) and to the philosopher and mathematician Blaise Pascal (1623–

62). However, the most important representatives of existentialism are the Danish philosopher 

and theologian Søren Kierkegaard (1813–55) and the German philosopher Martin Heidegger 

 
46 See: Guyer, ed., The Cambridge Companion to Kant. 
47 See: Beiser, ed., The Cambridge Companion to Hegel.  
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(1889–1976).48 Whereas Aristotelian ontology emphasizes the essence of being (namely, that 

of which a thing consists), the existentialists maintain that the most important ontological 

question is not the essence of being, but the presence of being, namely, the “existence” of a 

being. By the term “existence,” existentialists refer to the event that a being is present before 

oneself, or independently of oneself, or united with oneself. In other words, from the 

perspective of existentialism, the most important ontological issue is that one is conscious of 

one’s own existence and of that which exists outside one’s consciousness. Moreover, 

according to existentialism, if one is conscious of one’s own existence, then objects, including 

one’s self, exist not only “in themselves” but also “for oneself” (thus, giving rise to 

“reflective cogito”). This distinction, which has been highlighted by the French philosopher 

and political activist Jean-Paul Sartre (1905–80), reflects the influence that Hegel’s dialectic 

exerted on existentialism, since Hegel’s principle of contradiction(s) underpins the 

methodology of existentialism. Thus, Sartre maintains that the deeper purpose of an 

ideological program, irrespective of its external appearance, is to change one’s basic 

condition through the awareness of the antitheses to the given condition. 

The existentialist thesis that essence and presence are not necessarily identical to each 

other follows from the fact that one can think of essence independently of its reality. For 

instance, let us consider the concept of infinity, which most of us encounter the first time 

when we learn to count, realizing that we can go on counting forever, since we can always 

add one and, thus, obtain an even larger number. Moreover, in Chapter 2, I shall explain that, 

odd as it may sound, there are different types of infinity, and I shall study rigorous definitions 

of each type of infinity. However, in the context of physics, an element of a theory of nature 

is said to exist only if it is necessary in order to describe observations, and, because infinity 

cannot be practically measured, natural scientists do not actually need it in order to describe 

what they observe. Thus, in the natural sciences, infinity can always be replaced by a suitably 

large but finite number. When natural scientists have to measure something practically 

infinite, they usually mean that it is indeterminately much larger than something finite that 

they have already measured. In other words, the difference between “practical infinity” and 

“mathematical infinity” is the following: something is practically infinite if it is 

indeterminately much larger than something finite that one has already measured, whereas 

something is mathematically infinite if it is larger than anything that one could possibly have 

measured, and there is no experiment that can verify such a claim. We can analyze infinity 

and talk about its properties in the context of mathematics, but infinity does not practically 

exist in nature. By defining infinity in the mathematical sense, we declare its essence without, 

however, imposing its existence in practice. Similarly, by defining the mythical creature 

chimaera (which, according to Greek mythology, was a monstrous fire-breathing hybrid 

creature usually depicted as a lion with the head of a goat arising from its back, and a tail that 

might end with a snake’s head), we declare its essence, but we do not impose its existence in 

the natural world.  

In general, for human consciousness, essence and presence are not necessarily identical to 

each other. Human consciousness may differentiate essence and presence from each other, 

and it may judge each of them differently from the other. However, in the Bible, precisely, in 

the book of Exodus 3:14, we read that one of God’s names is “I am that I am,” which implies 

the union between God’s presence and God’s essence. This is an exceptional case in which 

 
48 See: Crowell, ed., The Cambridge Companion to Existentialism; Earnshaw, Existentialism.  



Dr. Nicolas Laos, The Dialectic of Rational Dynamicity 33 

God, who is absolute, reveals Himself, and, therefore, philosophy cannot consider this case as 

a typical one. From the perspective of philosophy, the aforementioned narrative about God’s 

self-revelation can be approached as a case of metaphysical intuition, which is often referred 

to as an experience of divine illumination.  

According to existentialism, existence precedes essence, not so much in the temporal 

sense as in the sense of importance. The first priority of the philosophers of existence consists 

in the following dual task: first, they have to explain the manner in which human existence 

and human knowledge progress from one level of being and knowledge to another; second, 

they have to explain the manner in which consciousness evolves gradually by confronting its 

own antinomies, thus progressing from an immediate and unformed state to a condition of 

internal unity and integral self-experience. In particular, the German-Swiss psychiatrist and 

philosopher Karl Jaspers (1883–1969) ascribed central status to “limit situations” 

(Grenzsituationen), which are moments, usually accompanied by experiences of dread, guilt, 

and/or acute anxiety, in which the human mind confronts the restrictions and pathological 

narrowness of its existing forms, and it allows itself to abandon the security of its limitedness 

and so to enter a new realm of self-consciousness.49 Additionally, Jaspers developed a theory 

of the “unconditioned”(das Unbedingte), arguing that human limitations are neither absolute 

nor fixed, and that, in general, human life is basically about growing and outgrowing our old, 

immature and less perfect ways. 

Existentialism inquires into the event of the emergence of existence out of non-existence. 

In particular, existentialism assigns primary importance both to the process according to 

which existence emerges out of non-existence and to the reality of non-existence out of which 

existence emerges. Thus, existentialists are ultimately preoccupied with the “archeology” of 

existence (i.e., of the presence of being), and, more specifically, they seek to find the reason 

for the emergence of existence out of non-existence and to determine whether existent reality 

emerges of itself for the sake of existence, or if, as Jaspers has argued, it is thrown out of its 

original “encompassing” (Umgreifende), which is a transcendent and obscure reality (the 

absolute being) within which existence is formed and maintained before being “thrown into 

the world.”50 However, even after Jaspers’s contribution to existentialism, the philosophical 

“school” of existentialism is not complete, because—apart from inquiring into the process 

according to which existence emerges out of non-existence and into the reality of non-

existence out of which existence emerges—one must also study the process of the creation of 

existence in relation to the exact moment at which the transition from non-existence to 

existence takes place and to clarify the relation between that moment and the event of 

existence (for instance, as I shall explain later in this chapter, modern physics assigns primary 

importance to the inquiry into the initial conditions of the universe and especially to the 

moment of the “Bing Bang”).  

Finally, it should be mentioned that, even though Martin Heidegger played a key role in 

the development of existentialism, he lapsed into false and exaggerated assertions, especially 

regarding the extent to which his existentialist philosophy marks a radical departure from 

modern Western ontology (of which two of the most important representatives are Descartes 

and Kant) and could provide a complete substitute for the thinking subject of modern Western 

ontology. In fact, in his philosophy, Heidegger replaced the “ego” (specifically, the subject as 

 
49 See: Schilpp, ed., The Philosophy of Karl Jaspers. 
50 Jaspers, Reason and Existenz.  
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a syllogistic, or representational, certainty) with the act of being per se, specifically, in the 

statement “I am,” he separated the “I” from the “am” (in Latin, “sum”), and he discarded the 

“I” while keeping only the “am.” Thus, Heidegger attempted to remove every element 

associated with the consciousness of the external world from the ego, because, even 

indirectly, such elements connect the ego with a transcendent reality (a transcendental 

signified). According to Heidegger, “Dasein” (i.e., “being there” or “presence”) should be 

understood as the structure of existence, and not as the consciousness of existence, and, 

furthermore, for him, Dasein is the event that underpins the understanding of the act of being. 

Heidegger claimed that, in the aforementioned way, he achieved to totally dismiss the 

thinking subject of modern Western ontology as a redundant and problematic element, but, 

contrary to Heidegger’s expectations and assertions, the modern subject is, at least indirectly 

or subconsciously, still present in Heidegger’s philosophy, due to the fact that the ego is, at 

least indirectly or subconsciously, present within the “am,” and due to the fact that the ego as 

“otherness” underpins the manifestation of Heidegger’s concept of Dasein. 

 

 

1.2.3. The Knowledge of a Being 

 

Based on the Aristotelian distinction between actuality and potentiality, I term 

“ontological situation” the degree to which a being has actualized its entelechy, or, in other 

words, the degree to which a being is. Hence, an “ontological situation” is a stage, or a 

particular moment, of a being’s ontological development. The act of being is a situational 

reality, while the essence of being is a specific reality. The degree to which consciousness 

knows the act of being and the essence of being depends on one’s way of experiencing them. 

The most traditional way of knowing a being is related to “methexis,” or “methexiological 

perception,” which is an ancient Greek term meaning “participation” and “group sharing.” 

The Swiss psychiatrist and psychoanalyst Carl Jung (1875–1961) has pointed out that the 

so-called “archaic mentality”—as exemplified by ancient mystery cults51 (such as the Isis and 

Osiris Mysteries, the Orphic Mysteries, the Eleusinian Mysteries, Zoroastrianism, Moses’s 

religious and legal system, etc.) and by ancient Greek tragic poetry—is inextricably related to 

the “relation of identity” with the object of consciousness (“participation mystique”) and to 

the “fusion of psychological functions” (e.g., thinking is fused with feeling, feeling is fused 

with sensation and intuition, etc., and a part of a psychological function may be fused with its 

counterpart).52 Therefore, in the context of the archaic mentality, the interpretation of 

ontological activity is based on methexis (i.e., the idea of an analogical participatory view of 

reality), which is based on the hypothesis that there is continuity between beings, ontological 

states, and conscious experiences. Moreover, in the context of the archaic mentality, methexis 

is underpinned and secured by a series of transcendent “first causes,” that is, supernatural 

forces, which act according to a complex system of choices known only to a few “initiates,” 

“magi,” or “prophets” whose consciousness can, arguably, intervene in the functioning of the 

world by activating or de-activating the hidden underlying forces of the world at will. This 

mentality discloses an intention and an attempt to subjugate the world to the intentionality of 

consciousness, and it is expressed by taking a specific form in the context of myth, which 

 
51 See: Burkert, Ancient Mystery Cults. 
52 Jung, Civilization in Transition. 
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corresponds to the spiritual core of things and operates as a magic formula.53 In principle, 

magic is the traditional science of the secrets of nature and of the human being. It is the 

old name of the subject matter of the ancient occult initiates and intellectuals of India, 

Chaldea, Persia, Egypt, and Homeric Greece. The French occultist and alchemist François 

Jollivet-Castelot (1874–1937) has explained the meaning of magic as follows: 

 

Magic is by no means, as most outsiders imagine, the negation of Science. Quite on the 

contrary Magic is Science, but Science with syntheses, almost integral Science, its horizons 

being the Absolute, the Infinite in Unity . . . In truth Magic is the knowledge of the action and 

the combination of the forces of the Universe . . . the study of their conduct, their involution, 

their evolution.54 

 

However, methexis may hold not only in the context of the archaic mentality but also in 

the context of the philosophical mentality. Plato’s philosophy and Neoplatonism are the major 

representatives of methexis in the realm of philosophy. Intimately related to the philosophical 

concept of methexis is a dynamic perception of reality. From the perspective of methexis, a 

being is not a closed, inviolable, and self-centered system. In contrast to any static ontological 

consideration, the philosophical concept of methexis is based on the hypothesis that there is a 

continuous dynamic communication between beings, in general, as well as between conscious 

minds that undertake ontological endeavors, in particular. Hence, from the perspective of 

methexis, all beings and all situations are connected with each other and continuously open to 

each other, so that they participate in each other, and, through these relationships, they 

ultimately participate in the unique cosmic reality out of which they have emerged as 

particular manifestations of being.  

The passive variety of methexis is focused on heredity, specifically, on those features that 

a being or a situation has inherited and continues to preserve, as it is mentioned, for instance, 

in Aristophanes’s speech in Plato’s Symposium (189c–193e).55With regard to philosophical 

anthropology, the major concept that is subject to the passive variety of methexiological 

perception is that humans are all sprung from the same stock, partake of the same nature, and 

share the same hope. On the other hand, the active variety of methexis is focused on an 

attempt to create a new situation by means of which a conscious community (whose members 

share common goals) seeks to transcend an already existing situation. Thus, the passive 

variety of methexis highlights the interdependence of beings as well as their dependence on 

their common nature, whereas the active variety of methexis highlights the manner in which 

beings indentify with each other in the context of a collective activity.  

Apart from the event and the awareness of methexis, the knowledge of a being in the 

context of philosophy is necessarily dependent on the use of a specific method. Hence, we 

talk about methodology. In general, philosophical methods can be distinguished into two 

categories: a priori (“from the earlier”) methods and a posteriori (“from the later”) methods.  

 
53 See: Lévi, The Doctrine and Ritual of High Magic. 
54 Quoted in Poinsot, The Encyclopedia of Occult Sciences, p. 305. Moreover, see: Versluis, Magic and Mysticism. 
55 Aristophanes’s speech focuses on human nature, and it provides a mythical account of the ontological 

significance of love. He explains that the present form of human beings originated from ancient gods’ decision 

to cut the primeval, powerful androgynous type of human being in half in order to control humanity more 

effectively, and, thus, through love, the two sexes of the human species tend to recompose their previous 

common form of existence.  
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The major attribute of the a priori methods is that they are based on primitive hypotheses 

usually intuitively conceived and axiomatically accepted,56 which deductively give rise to 

series of syllogisms, which, in turn, lead to ultimate conclusions, which are related to the 

preceding propositions in a logically rigorous way, even though it is often the case that big 

hypothetico-deductive systems have flaws. As I shall explain in Chapter 3, logical paradoxes 

have played an important role in the development of mathematics. In summary, in a 

“hypothetico-deductive” (or “axiomatic”) system, there are two requirements that must be 

met in order that we agree that a proof is correct: (i) acceptance of certain statements, called 

“axioms,” without further justification; and (ii) agreement on how and when one statement 

“follows logically” from another, that is, agreement on certain rules of reasoning. Inextricably 

linked to the aforementioned two requirements is the requirement that every person who 

applies hypothetico-deductive reasoning to a particular discourse understands the meaning of 

the words and the symbols that are used in that discourse. The more consistent and the more 

complete a hypothetico-deductive system is, the more its imposition is safeguarded. By the 

term “consistency,” we mean that the axioms of a hypothetico-deductive system neither 

contain nor produce contradictions. By the term “completeness,” we mean that the truth value 

of any proposition that belongs to a hypothetico-deductive system can be determined within 

the given hypothetico-deductive system (that is, according to the terms and the rules of the 

given hypothetico-deductive system).  

During Antiquity, the first a priori philosophical methods were developed by the pre-

Socratic philosophers, whose model (as mentioned in section 1.2.2) focuses on the 

determination of a principle that was assumed to be the origin of the world and to give rise to 

every particular reality. Inherent in pre-Socratic philosophy is a form of dogmatic scientism, 

which was successfully refuted by Socrates and the sophists. The sophists (namely, such 

orators and professional educators as Protagoras, Gorgias, Antiphon, Hippias, Prodicus, and 

Thrasymachus) argued that it is reasonable to question the absolute validity of previous 

philosophical achievements.57 Socrates—through the “maieutic method,” which he himself 

developed—sought to find a reliable method for obtaining truth.58Indeed, in the context of 

carefully structured conversations or dialogues, Socrates would ask probing questions that 

cumulatively revealed his interlocutors’ unsupported assumptions and misconceptions, and, 

thus, his method would “give birth” to truth by eliciting a clear and consistent formulation of 

a thesis that was supposedly implicitly known by all rational beings. Despite the 

philosophical controversies between Socrates and the sophists, the philosophies of both 

Socrates and the sophists mark a major shift away from philosophies focused on the world 

toward philosophies focused on the human being.  

In his early dialogues, Plato delineated Socrates’s maieutic method combined with the 

practice of “Socratic irony,” which is often condensed into the paradoxical statement “I know 

that I know nothing,” which is attributed to Socrates, paraphrasing Socrates’s statements in 

Apology, 29b–c, and Meno, 80d1–3. In particular, “Socratic irony” is a method of 

argumentation according to which one pretends to be ignorant in order to expose the 

ignorance or the inconsistency of someone else through adequately posed questions. 

However, in his middle dialogues (for instance, in Phaedo, Symposium, Republic, and 

 
56 By being “axiomatically accepted,” we mean that certain hypotheses are accepted, without proof, on the basis of 

their intrinsic merit, or because they are regarded as self-evident.  
57 See: Kerferd, The Sophistic Movement.  
58 “Maieutic” is a Greek word literally meaning “of midwifery.”  
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Phaedro), Plato developed his own method, which is known as Plato’s “dialectic.” Plato’s 

dialectic consists of two mutually complementary, particular processes of inquiry: the 

“ascending” process of inquiry and the “descending” process of inquiry. According to the 

ascending process of inquiry, consciousness starts from sensible objects (where the source of 

belief is sense perception) and ascends to higher levels of conceptual knowledge, which is 

conversant with the ultimate realities. According to the descending process of inquiry, 

consciousness starts from the knowledge of the ultimate realities and descends to the different 

levels of application, or manifestation, of those ultimate realities in the sensible world. In 

other words, through the ascending process of inquiry, the philosopher’s consciousness 

proceeds from the phenomena to the ideas, which are participated by the phenomena and of 

which the phenomena are imitations, whereas, according to the descending process of inquiry, 

the philosopher’s consciousness proceeds from the knowledge of ideas to the interpretation of 

phenomena.  

Aristotle’s methodology is similar to Plato’s dialectic, and it also belongs to the category 

of a priori methods. In particular, Aristotle’s philosophical methodology consists in 

determining a science of the “whole” being and in using this science in order to interpret 

every particular reality. There is a significant similarity between Aristotle’s method and the 

geometric method, which is a style of proof that was used by Euclid in order to prove 

geometric theorems. In the sixteenth century, the Italian Aristotelian philosopher and logician 

Giacomo (or Jacopo) Zabarella described the geometric method as involving two aspects: (i) 

the resolutive aspect, known also as the analytic side of the geometric method, and (ii) the 

compositive aspect, known also as the synthetic side of the geometric method.59 In his 

Posterior Analytics, Aristotle combines rational primitivism and empirical primitivism: (i) 

Aristotle’s rational primitivism (reflecting the mentality of the a priori methods) is expressed 

by his thesis that demonstrative understanding (namely, understanding based on the geometric 

method) necessarily proceeds from elements that are true, primitive, immediate, and more 

familiar than, prior to, and explanatory of the conclusions; (ii) Aristotle’s empirical 

primitivism (reflecting the mentality of the a posteriori methods) is expressed by his thesis 

that we must know the primitives (namely, axioms) by induction, since, according to 

Aristotle, induction is the way in which perception instills universals, and definitions are 

some of the most important elements of an axiomatic system that will be grasped by 

consciousness as a result of induction. In modern science, Leibniz used the geometric method 

emphasizing rational primitivism, while Isaac Newton used the geometric method 

emphasizing empirical primitivism. 

The ascending and the descending processes of inquiry that constitute Plato’s dialectic 

were reversed by Plotinus and, generally, by Neoplatonism: when the human soul descends 

from the World Soul into a particular (material) body, ascent, namely, the reversal of descent, 

necessitates that the descended soul generate love of the World Soul and of the higher 

dimensions of Nous and the One; and the generation of love by the descended soul gives rise 

to and underpins philosophy, namely, the love of wisdom. In this way, Plotinus and, 

generally, Neoplatonism articulated an apophatic approach to a totally transcendent One, 

which accounts for the unity and the existence of both formal reality and the material 

instantiation of that reality.  

 
59 Zabarella, On Methods.  
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Plotinus utilized Plato’s method of inserting two intermediate ontological terms into the 

initial Parmenidean perception of the antithesis between being and non-being, and he argued 

that we can successively contemplate both the emanation and the dialectical return of the four 

primary hypostases (the One, the Nous, the World Soul, and Matter). According to Plotinus, it 

is only the One—which is the origin of every other hypostasis—that is not susceptible of any 

methodical approach. However, Plotinus maintains that even the One is susceptible of 

knowledge, yet in an apophatic way (that is, through negating concepts that might be applied 

to it). In fact, Plotinus’s method underpins apophatic theology.  

During the Middle Ages, both the Platonic-Neoplatonic methodology and the Aristotelian 

methodology were used, and the Aristotelian methodology was endorsed and adjusted to the 

intellectual needs of medieval Christendom by Thomas Aquinas, the major representative of 

scholastic philosophy. Moreover, in the context of modern philosophy, Neoplatonism 

continues to play an important role, both due to the fact that Neoplatonism is based on a 

robust Platonic ontology, which can be discarded only if one is ready to totally negate the 

reality of the world, and due to the fact that Neoplatonism has given rise to several methods 

of overcoming the antitheses that characterize Platonic ontology (e.g., the antithesis between 

beingly beings and beingly non-beings). Thus, Neoplatonism has played an important yet 

implicit role in the development of modern dialectical philosophies, which, in turn, underpin 

the development of infinitesimal calculus by Newton and Leibniz.  

In the seventeenth century, the British philosopher and statesman Francis Bacon 

systematized the empirical method (induction), which was originally developed by Italian 

scientists during the Renaissance. Bacon’s method is based on a double empirical and rational 

standpoint. In his Novum Organum Scientiarum, induction implies ascending to axioms as 

well as a descending to works, so that, from axioms, new particulars are inferred, and, from 

these, new axioms. In fact, induction starts from sensory-sensuous data and moves, through 

natural history (providing sensory-sensuous data as guarantees), to lower axioms or 

propositions, which derive from the tables of presentation or from the abstraction of notions. 

By the term “experience,” Bacon does not refer to everyday experience, but he presupposes 

that his empirical method corrects and extends sensory-sensuous data into facts, which go 

together with his setting up of tables (tables of presence and of absence as well as tables of 

comparison or of degrees, namely, degrees of absence or presence).60 However, Bacon’s 

empirical method does not end here, since Bacon assumes that, from lower axioms, more 

general ones can be inferred by induction. Moreover, from the more general axioms, Bacon 

strives to reach more fundamental laws of nature, which lead to practical deductions as new 

experiments or works.  

Descartes understood the significance of Bacon’s new scientific method, and he used it in 

order to criticize and overcome scholasticism, even though Descartes was, to a large extent, 

intellectually molded by scholasticism, and, thus, his intellectual weapons were mainly of 

Aristotelian origin. Descartes formulated the analytical geometric method, which I shall 

systematically explain in Chapter 2. In a famous passage in his replies to Marin Mersenne’s 

objections to the Meditations, in discussing the distinction between analysis and synthesis, 

Descartes remarks that analysis is the best and truest method of instruction, and it was this 

method alone that he employed in his Meditations. In his Discourse, Descartes showed how 

the arithmetic operations of addition, subtraction, multiplication, division, and the extraction 

 
60 See: Malherbe, “Bacon’s Method of Science,” p. 85.  
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of roots can be represented geometrically. In general, within the framework of analytic 

geometry, problems can be broken down into simpler problems involving the construction of 

individual straight lines, thus leading to an analytical approach to geometry. Hence, 

Descartes’s Geometry is based on the use of algebra, which was called an “art of analysis.” 

The core of the study of structures in mathematics consists in taking numbers and putting 

them into equations in the form of “variables”; and the rules for manipulating these equations 

are contained in algebra. By reducing geometric problems (namely, problems about shapes 

and the manner in which they behave in spaces) to equivalent algebraic ones, Descartes made 

a major contribution to mathematics. Furthermore, Descartes’s analytic geometry is of great 

philosophical significance, too, because, by reducing geometric problems to algebraic ones, 

Descartes managed to formulate a type of an a priori geometric philosophical method whose 

primary principle is not an object of the external world, but it is conscious experience itself. 

Descartes, intellectually, moves away from objects that are external to consciousness and 

turns his attention to conscious experience itself, and, through the algebraic representation of 

geometric problems, he throws light on the structure of problem-solving in general.61 

However, the Dutch philosopher Baruch de Spinoza, who was one of the most important 

representatives of Cartesianism, attempted to apply the geometric method in a way that gives 

rise to an extreme variety of logical formalism and to a suffocating rationalist worldview. In 

Spinoza’s totally rationally organized universe, the only ways in which the human being can 

manifest humanity’s freedom are murder, suicide, and madness. Descartes was much more 

careful than Spinoza, because, in contrast to Spinoza’s formalist excesses, Descartes 

highlighted the importance of internal experience (intuition). 

Kant’s philosophy was the major underpinning of the second, in turn, great philosophical 

shift away from the world (philosophical cosmology) toward the human being (philosophical 

anthropology). In his Prolegomena to Any Future Metaphysics that Could Come Forth as 

Science, 4:260, Kant famously admitted that he was influenced by the Scottish philosopher 

David Hume’s empiricism, which was inextricably linked to skepticism (through which 

Hume attempted to deconstruct ordinary claims to knowledge), and, in general, it was 

formulated within a cultural milieu determined by British philosophers’ elaborations of 

Bacon’s method.62 Kant adopted a “critical,” yet, in reality, ambivalent, attitude toward an a 

priori method of philosophical research and an a posteriori one, and, thus, his philosophy 

gives rise to two different philosophical methods, both of which have played important roles 

in modern philosophy, namely: (i) an “idealist” method, which, according to the modern 

interpretation of the term “idealism,” is founded on the principle that research can be proved 

only by internal experience (i.e., by the empirical cognition of mental states, such as sensory 

perception, thinking, memory, imagination, feeling will, and desire), which was exalted by 

Descartes, who did not, however, negate the objective extension of consciousness; and (ii) a 

“positivist” method, according to which research can be proved only by empirical means (not 

argumentations), research should be mostly deductive (i.e., deduction is used to develop 

statements that can be empirically tested), and knowledge should be judged by logic and 

ideally should be true for every segment of space-time, whereas every object that is directly 

related to a transcendent reality should be discarded, since Kant argues that humans cannot 

have theoretical knowledge of things-in-themselves (however, Kant maintains that humans 
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can have practical knowledge of things-in-themselves). As the British philosopher Peter 

Strawson has explained, Kant “distinguishes between the receptive faculty of sensibility, 

through which we have intuitions, and the active faculty of understanding, which is the 

source of concepts.”63 Through the receptive faculty of sensibility, the objects are “given,” 

whereas, through the active faculty of understanding, the objects become objects of 

“thought.”64 

In the second edition of his Critique of Pure Reason (B, ix–x), Kant maintains that, “so 

far as reason is to be in these sciences,” something within them must be a kind of a priori 

knowledge, and this a priori knowledge must be related to its object in two ways: either 

merely to determine its object and its concept (which must be given from elsewhere), or also 

to make it actual; the former is “theoretical knowledge of reason,” and the latter is “practical 

knowledge of reason.” According to Kant, the goal of theoretical reason is to assess how 

things are, whereas practical reason decides how things ought to be and what persons should 

do. However, while practical reason decides what to do, it cannot remake reality in an 

arbitrary manner; instead, the successful practical agent must take account of truths about the 

world. 

In his Transcendental Aesthetic, Kant refers to the followers of Newton’s position as the 

“mathematical investigators” of nature, who contend that space and time “subsist” on their 

own, and to the followers of Leibniz’s position as the “metaphysicians of nature,” who think 

that space and time “inhere” in objects and their relations. At the ontological level, Kant’s 

position is that space and time do not exist independently of human experience, but they are 

“forms of intuition” (i.e., conditions of perception imposed by human consciousness). In this 

way, he managed to reconcile Newton’s and Leibniz’s arguments: he agrees with Newton that 

space is an irrefutable reality for objects in experience (i.e., for the elements of the 

phenomenal world, which are the objects of scientific inquiry), but also he agrees with 

Leibniz that space is not an irrefutable reality in terms of things-in-themselves. At the 

epistemological level, unlike David Hume, Kant argues that the axioms of Euclidean 

geometry are not self-evident or true in any logically necessary way. For Kant, the axioms of 

Euclidean geometry are logically synthetic, that is, they may be denied without contradiction, 

and, therefore, consistent non-Euclidean geometries are possible (as Nikolai Ivanovich 

Lobachevski and Bertrand Riemann actually accomplished). However, Kant argues that the 

axioms of Euclidean geometry are known a priori, specifically, they depend on our intuition 

of space, that is, space as we can imaginatively visualize it. After the publication of Kant’s 

philosophical works, numerous attempts have been made to articulate methods of 

philosophical research that synthesize idealism and positivism, or that at least combine 

aspects of idealism and positivism with each other.  

Hegel’s dialectic is both a method of philosophical research and a model of the process 

according to which reality develops and tends to its ontological integration. This dual nature 

of the term “dialectic” undermines the accuracy of the given term, and it induces ambiguity, 

which characterizes both Hegelianism itself and those philosophies which are inspired by 

Hegelianism and, under the influence of Hegelian prophetism, tend to understand dialectic as 

an oracle. For instance, let us consider the case of Karl Marx’s political and economic theory. 

Influenced by Hegel’s dialectical thought and by Wilhelm Weitling’s theory of revolutionary 
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communism, Marx based his conception of communism on a contrast between alienation of 

labor under capitalism and a communist society in which human beings could freely develop 

their nature by controlling the sum total of the relations of production in a way that expresses 

human freedom and creativity as well as social justice. However, Marx has not clarified 

whether “scientific materialism” (both as “dialectical materialism” and as “historical 

materialism”65) is a general method or a model of particular objective processes that he seeks 

to interpret and evaluate, and, therefore, from a rigorous philosophical perspective, scientific 

materialism is inherently ambiguous. 

Dialectical materialism is the world outlook of Marxism–Leninism, and historical 

materialism is the extension of the principles of dialectical materialism to the study of social 

life. In fact, Karl Marx (1818–1883) articulated the reversal of Hegel’s dialectic in where 

Marx argues that, with Hegel, the dialectic “is standing on its head,” and that “it must be 

inverted, in order to discover the rational kernel within the mystical shell.”66 In addition, 

Marx argues that his dialectic is the direct opposite of Hegel’s dialectic, in the sense that 

Hegel transformed the process of thinking, called “the Idea,” into an independent subject, to 

which he attributed the creation of the real world, whereas, according to Marx, the ideal is an 

intellectual reflection of the material world “translated into forms of thought.”67 Moreover, 

Vladimir Lenin read Hegel through Marx’s Capital, and, therefore, like Marx, he read Hegel 

by reversing Hegel’s dialectic.68 According to Lenin, “matter is a philosophical category” that 

denotes “the objective reality which is given to man by his sensations, and which is copied, 

photographed and reflected by our sensations, while existing independently of them.”69 

The strength of Marx’s account of history and politics is his analysis of capitalism and of 

the conditioning of social, political, and intellectual life by the way in which people produce 

their means of subsistence and, particularly, by the classes yielded by the different 

relationships of social groups to the factors of production, but the predictive and prescriptive 

aspects of Marx’s theoretical works are less satisfactory, since he has not articulated a clear 

and consistent analysis of the relationship between the objective and the subjective forces of 

history. The Italian communist philosopher, journalist, and politician Antonio Gramsci 

(1891–1937) identified the aforementioned ambiguity of scientific materialism, and he 

attempted to overcome it through his theory of “cultural hegemony” and by articulating a 

humanistic interpretation of Marx’s thought in the context of a “philosophy of praxis” that 

transcends both traditional materialism and traditional idealism.70 From the perspective of the 

philosophy of rational dynamicity, which I propose in this book, unless humans attain a high 

level of rationality (such as that envisaged by Immanuel Kant), and unless Marx’s 

prescriptive arguments and ideas are interpreted according to Gramsci’s humanism, Marxism 

degrades into an intellectual shelter for people who are imbued with class envy, and, 

simultaneously, they are unable to achieve their selfish goals through capitalism, for which 

reason they ostensibly resort to socialism. Hence, the aforementioned ambiguities that 

characterize the revolutionary theories of Karl Marx and of other social theorists inspired by 

Hegelianism pose a serious risk of political teratogeneses, specifically, fanatical and extremist 
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movements, whether social, national, or religious, in the context of which, as the philosopher 

Eric Hoffer has pointed out, frustrated people are attracted to revolutionary visions not 

because they genuinely seek their “self-advancement,” but because they express their 

“passion for self-renunciation,” namely, a desire for an escape from the self and one’s 

personal responsibility, and, therefore, they ultimately give rise to totalitarian regimes.71 

Furthermore, various positivist philosophies and especially the French philosopher 

Auguste Comte’s positivism are also characterized by an inherent ambiguity, because, on the 

one hand, they seek to follow exclusively an a posteriori method, but, on the other hand, their 

philosophical activity depends on an a priori (axiomatically accepted) model of human 

progress in accordance with Comte’s “law of the three stages,”72 whose origins can be traced 

to the beliefs of the thirteenth-century Italian scholar Gerardo di Borgo San Donnino. 

Comte’s positivism has managed to influence epistemology, but it has failed to stand as a 

general method of philosophical research (arguably, being able to offer only a general method 

of mystical scientism). 

Auguste Comte (1798–1857) is one of the acknowledged founders of sociology, but he is 

also the father of the “Religion of Humanity.” According to Comte’s law of the three stages, 

in its development, humanity passes through three successive stages, namely: (i) the 

theological stage (during this phase, people believed whatever they were taught by tradition, 

and fetishism played a significant role); (ii) the metaphysical stage (it was a transitory phase 

that involved the justification of universal rights on the basis of the sacred, and, during this 

phase, people started reasoning and questioning, although no solid evidence was laid); and 

(iii) the positive stage (the phase of questioning authority and religion and of following 

science). In fact, Comte attempted to transform “positive science” into a form of “positive 

religion,” a non-theistic religion of humanity and society, with its own calendar of saints 

(such as Adam Smith, Frederick the Great, Dante, Shakespeare, etc.). 

In the twentieth century, positivism gave rise to neo-positivism, which was expounded 

and systematically promoted by a group of early twentieth-century philosophers (chaired by 

the German philosopher and physicist Moritz Schlick) who became collectively known as the 

“Vienna Circle.”73 In the context of neo-positivism, a “scientific theory” is defined to be any 

consistent set of sentences of a logic (formal language) 𝐿 closed with respect to logical 

deductions (i.e., deductive inferences can be established), and theories may be articulated 

either as pure deductive systems or as applied (empirical) deductive systems. Pure sciences 

consist in pure deductive systems, and, therefore, they are tautological in character, that is, 

theorems derive from postulates through entailment or logical implication (see also Chapter 

3). Hence, in pure sciences, theorems merely reassert what was already implied in the 

postulates. Yet, these theorems bring to light truths that, although they were implicitly 

contained in the adopted set of postulates, were not explicitly known to the scientists who 

have adopted the given set of postulates. In particular, the German philosopher Carl Gustav 

Hempel, who was also associated with the Vienna Circle, argues that a theorem’s “content 

may well be psychologically know in the sense that we were not aware of its being implicitly 

contained in the postulates.”74 However, one should not get the impression that pure sciences 

cannot be transformed into empirical ones. There are certain conditions under which a pure 
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science can be transformed into an empirical one (the transformation of Riemannian geometry 

into physical geometry by Albert Einstein is a case in point). According to neo-positivism, the 

transformation of a pure science into an empirical one entails two steps that must be taken: (i) 

The first step consists in the epistemological correlation of the primitives (i.e., the concepts 

that are not defined in the given axiomatic system) to operationally defined concepts with 

empirical content, so that the postulates take on a truth value. (ii) Once the first step has been 

taken, the second step consists in the confirmation of the postulates: in fact, what one has to 

do in this step is to derive operationally meaningful theorems from the postulates and test 

them against the facts. In case the observations do not contradict the operationally meaningful 

hypotheses, the theory is provisionally acceptable. Otherwise, the theory is disconfirmed; if 

this is the case, then one has to look for different postulates that will give rise to a theory 

consistent with the observations. 

During an important part of his life, the Austrian-British philosopher Ludwig 

Wittgenstein (1889–1951) was in close contact with the Vienna Circle. Wittgenstein was one 

of the founders of analytic philosophy, which has played a decisive role in the development of 

particular methods of identifying and investigating linguistic forms that express mental 

processes.75 Nevertheless, analytic philosophy may lead to an impasse, because it urges one to 

repeat the distinction between cognition and the object of cognition ad infinitum (forever). 

Inherent in analytic philosophy is a more technical restatement of Kant’s abortive attempt to 

define the presuppositions of the presuppositions of philosophy, which can continue ad 

infinitum. 

It should be clear by now that the articulation of a posteriori methods is an arduous task, 

always undertaken at the risk of failure as a result of a single contradictory instance or an 

intrinsic inconsistency. However, as I shall explain in Chapter 3, a philosopher or a scientist 

should not discard one’s theoretical construction for the sake of such a contradictory instance 

or an inconsistency, but one should test one’s model in a particular context where its 

constituent statements are confirmed and will claim that the given model was meant for that 

context and not for the one in which it has been disconfirmed. Thus, as I shall explain in 

Chapter 3, it is necessary to introduce the concept of a “context” in which a theory is 

applicable, and, in particular, in order to avoid tautologies, the context in which a model is 

applicable must be characterized independently of the information contained in the postulates 

of the given model. Two other philosophies that were confronted with important ontological 

and/or epistemological obstacles in their own attempts to articulate a posteriori methods are 

pragmatism and Bergsonism.  

Pragmatism—whose major representative is the American philosopher and psychologist 

William James (1842–1910)—maintains that truth—namely, the agreement between reality 

and its image within consciousness—is not a given, but it is “made”76 in the course of human 

experience due to the activity of consciousness, so that consciousness can induce change in 

reality due to the reference of consciousness to reality. This perception is shared by every 

philosophy of action. For instance, let us recall Marx’s eleventh thesis on Feuerbach: 

“Philosophers have hitherto only interpreted the world in various ways; the point is to change 

it.”77 Pragmatism has thrown light on particular psychological aspects of the philosophical 

 
75 See: Martinich and Sosa, eds., A Companion to Analytic Philosophy. 
76James, Pragmatism, p. 104.  
77 See: Liangjian, “It’s Time to Change the World, So Interpret It!,” p. 153. 
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work, but it cannot stand as a general a posteriori method. As a consequence of William 

James’s argument that truth should be defined in terms of utility, philosophy ceases to be a 

scientific activity and a purpose itself, and it becomes self-contradictory and self-defeating, 

since, according to pragmatism, the adoption of the conclusions of philosophy lacks logical 

and scientific justification, and, therefore, the conclusions of philosophy become meaningless. 

Furthermore, just as relativism leads to a contradiction by adhering to at least one absolute 

proposition (that all propositions are relative), so too pragmatism is pragmatically self-

defeating, because, by viewing truth merely as a function of the practices in which people 

engage, and, thus, by depending on and embracing the established cultural practices and 

mentalities in each segment of space-time, pragmatism cannot operate as a genuinely 

progressive force.  

The philosophical work of the French philosopher Henri-Louis Bergson (1859–1941), 

which exerted a significant influence on the final formation of pragmatism, has faced 

important challenges, too. According to Bergson, the only reality is duration, in which there is 

no juxtaposition of events, and, hence, there is no mechanical causality.78 Thus, for Bergson, 

duration offers the experience of freedom. Bergson argues that duration can be conceived 

through intuition. Intuition, in Bergson’s sense, is an a posteriori method, but it has only one 

difference from the a priori methods: its object, namely, internal experience, is identified with 

consciousness itself. At this point, we can see that Bergson’s method of intuition is a form of 

reversed Cartesianism: Bergson formulates his anti-rationalist and anti-Cartesian theses in a 

rationalist and Cartesian manner. This is the primal contradiction of Bergsonism. 

Moreover, in Chapter 3 of his Creative Evolution, Bergson argues that “physics is simply 

reversed psychology,” but Maurice Merleau-Ponty has pointedly observed the following: in 

the first two chapters of Creative Evolution, Bergson adopted a monist attitude, and he 

endorsed a dialectical view of the relation between life and matter, but, in Chapter 3, he 

adopted a dualist attitude, and he endorsed emanationism (i.e., a cosmological theory 

asserting that all things emanate from an underlying principle or reality), even though 

emanationism is in principle the negation of pure dualism.79 For Bergson, matter is issued 

from the primal cause by the slackening of the latter, and life is that which dynamizes, within 

and beyond itself, matter by suffusing actuality, specifically, the material present, with the 

virtuality of memory.  

Bergson’s most important contribution to philosophy is his argument that the real object 

of philosophy transcends comprehensive analytic knowledge and that—in contrast to Kant’s 

argument that the noumena (i.e., the posited objects or events that exist independently of 

human sense and/or perception) are unknowable—the real object of philosophy is accessible 

to consciousness. In his book The Creative Mind, Bergson argues that philosophy does not 

consist in choosing between concepts and in taking sides, since these antinomies of concepts 

and positions result from the habitual way in which our intelligence works.80 Endorsing a 

pragmatic approach to human intelligence, Bergson argues that the habitual way in which our 

intelligence works is guided by needs, and, therefore, the knowledge that it gathers is relative, 

since it is not disinterested. In his book Matter and Memory, Bergson contrasts his method of 

intuition with habitual intelligence.81 Habitual intelligence gathers knowledge through what 

 
78 See: Pearson and Mullarkey, eds., Henri Bergson; Bachelard, The Dialectic of Duration. 
79 Hamrick and van der Veken, Nature and Logos, p. 157. 
80 Bergson, The Creative Mind, Chapter 6.  
81 Bergson, Matter and Memory, Chapter 4. 
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Bergson calls “analysis,” that is, the dividing of things according to perspectives taken, and, 

thus, comprehensive analytic knowledge consists in the re-composition of a thing through the 

synthesis of various perspectives of it. But, even though this synthesis helps us to satisfy 

needs, it never gives us the thing itself; it only gives us concepts of things. In other words, 

according to the habitual working of intelligence, synthesis is merely a development of 

analysis. On the other hand, Bergson’s method of intuition reverses the habitual working of 

intelligence. In his book The Creative Mind, Bergson calls intuition “sympathy,”82 and, in his 

book Time and Free Will, Bergson explains that sympathy consists in putting ourselves in the 

place of others.83Furthermore, sympathy signifies the breaking down of the gap between 

subject and object, leaving a field of internal experiential content.84In other words, 

Bergsonian intuition consists in entering into the being rather than going around it from the 

outside. It is exactly this “entering into” which, according to Bergson, gives us absolute 

knowledge.  

There are significant similarities between Bergson’s intuitive a posteriori method and 

Edmund Husserl’s phenomenological a posteriori method. The concept of phenomenology 

was coined by Hegel, and, in that case, it consisted in a method of conceiving the itinerary of 

spirit. According to the German philosopher Edmund Husserl (1859–1938),85 whose 

philosophical underpinnings consist in a form of Cartesianism combined with scholastic 

views, phenomenology is a method according to which the researcher focuses on the essential 

structures that allow the objects that are taken for granted in the “natural attitude” (which is 

characteristic of both our everyday life and ordinary science) to “constitute themselves” in 

consciousness. Husserl’s logical type of intuition consists in what he has described as the 

process of “seeing essences,” which refers to a gradually formed conscious state that is due to 

the methodic, successive ascent of consciousness from phenomenality to substantiality. 

Phenomenology is characterized by subjectivism, in the sense that phenomenological 

inquiries are initially directed, in Cartesian fashion, toward consciousness and its 

presentations. On the other hand, phenomenology is not characterized by any psychological 

forms of subjectivism, since the object of phenomenology is not the realm of psychological 

ideas affirmed by empiricism but rather the ideal meanings and universal relations with which 

consciousness is confronted in its experience. Husserl explicitly opposed the attempts made 

by Carl Stumpf and Theodor Lipps to reduce logic to psychology. Husserl’s phenomenology 

does not preclude legitimate psychological investigation, and its opposition to 

“psychologism” is a polemic only against the presumptuous claims of psychology to 

supersede logic and phenomenology. 

The phenomenological method comes from a position prior to reflexive thought, called 

pre-reflexive thought, which consists of a turn to the very things. At that moment, the 

phenomenologist holds a phenomenological stance that enables one to keep oneself open 

 
82 Bergson, The Creative Mind, Chapter 6. 
83Bergson, Time and Free Will, Chapter 1.  
84 According to Bergson, our experience of sympathy begins with our putting ourselves in the place of others. 

Moreover, Bergson argues that intuition enables us to transcend the divisions of the different “schools” of 

philosophy like rationalism and empiricism or idealism and realism. Bergsonism and pragmatism maintain that 

the antinomies of philosophical concepts and positions result from the habitual way in which human 

intelligence works. According to Bergson, intuition reverses the habitual working of intelligence, which is 

analytic (synthesis being only a development of analysis), and this reversal of habitual intelligence is called 

“the turn of experience”; Bergson, Matter and Memory, pp. 184–85. 
85See: Spiegelberg, The Phenomenological Movement; Ströker, Husserl’s Transcendental Phenomenology.  
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enough to live that experience in its wholeness, preventing any judgment from interfering 

with one’s openness to the description. The phenomenologist is not concerned with the 

particular elements of the object under investigation, but with the given object’s ideal 

essence, which is hidden by and shines through the particulars. Husserl used the Greek term 

“epoché” (i.e., suspension of judgment) in order to refer to the purification of experience of 

its factuality. The phenomenological method involves an initial suspension of judgment 

regarding the factuality (whether physical or psychical) of the mind’s representations of 

phenomena. Epoché, namely, the phenomenological bracketing of the factual aspects of our 

experiences, is a methodological attitude that allows consciousness to investigate the essential 

constitution of experience. For instance, pure mathematics systematically brackets the factual 

aspects of our experience of space and quantity and focuses attention on ideal relations.86 In 

his preface to Ideas Pertaining to a Pure Phenomenology, Husserl argues that 

phenomenology, like mathematics, is “the science of pure possibilities,” which “must 

everywhere precede the science of real facts.” By bracketing factuality, phenomenology 

exerted an important influence on existentialism, and, in fact, it became the method of 

existentialism.  

The phenomenologist is focused on the ideal entities with which one is confronted after 

one has bracketed factuality. Husserl argues that these ideal objects are not Platonic 

universals, and he refuses to assign to them any ontological status beyond the mere fact that 

they are envisaged. Like the Austrian philosopher and psychologist Alexius Meinong (1853–

1920), Husserl invokes the theory of intentionality in his interpretation of the objects of 

phenomenological inquiry. Moreover, Husserl distinguishes between intentional and non-

intentional units of consciousness: the former have intentional content (i.e., they always 

represent something as something), whereas the latter have not (e.g., pain). Thus, according to 

phenomenology, intentionality is an intrinsic trait of the subjective processes of 

consciousness, and the subjective processes of consciousness refer to objects by means of 

intentionality. The objects of phenomenology are intentional objects. The important thing for 

phenomenology is not the ontological status of ideal objects but the fact that such objects may 

be investigated in their interrelations and that the conclusions of such descriptive analysis are 

coercive and communicable. Then ideal objects possess the only kind of objectivity that is 

necessary or desirable in order for the phenomenologist to gather genuine knowledge.  

It should be clear by now that the original purpose of the phenomenological method was 

to explain the mind’s representations of phenomena. The next major step in the development 

of the phenomenological method took place when this method was applied to the elements 

that constitute the structure of reality, since these elements are the most abstract and most 

basic elements of reality, and their knowledge precedes the knowledge of the essence of 

reality. By the term “structure,” we mean an internal reality that is governed by each own 

order, which it creates and recreates by itself. In other words, a structure consists of the 

fundamental rules that govern the behavior and the relations of the members of a system (a 

“system” being a set endowed with a structure).  

The first social theorists who applied structuralism to sociology and social anthropology 

in a rigorous way were the French sociologists Émile Durkheim (1858–1917) and Marcel 

Mauss (1872–1950). In particular, Mauss has argued that “social anthropology” means, first, 

positing the unity of the human species and, second, constructing a scientific table by 

 
86See: Centrone, Logic and Philosophy of Mathematics in the Early Husserl.  
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examining the differences between human communities and, hence, by articulating a 

sociological method.87 Moreover, according to the French social-anthropologist and 

ethnologist Claude Lévi-Strauss (1908–2009), a structure consists of a model that must 

conform to the following four basic requirements: 

 

First, the structure exhibits the characteristics of a system. It is made up of several 

elements, none of which can undergo a change without effecting changes in all the other 

elements.  

Second, for any given model there should be a possibility of ordering a series of 

transformations resulting in a group of models of the same type. 

Third, the above properties make it possible to predict how the model will react if one or 

more of its elements are submitted to certain modifications.  

Finally, the model should be constituted so as to make immediately intelligible all the 

observed facts.88 

 

Structuralism provides a conceptual and analytical setting within which one can study the 

three fundamental principles of Orphic cosmology—namely, “Chaos,” “Gaia,” and “Eros”—

in a synthetic and creative way. One of the scientists who have proposed such an approach is 

the distinguished American mathematician Ralph H. Abraham (founder of the Visual Math 

Institute at Santa Cruz in 1975), who has pointed out that “Chaos” does not mean disorder, 

but it means the “creative void” that is the “source of all form,” “Gaia” means “the physical 

existence and the living spirit of the created world,” and “Eros” means “the spiritual medium 

connecting Chaos and Gaia; the creative impulse.”89Before the development of structuralism 

in the context of modern philosophy, the term “structure” was originally used in physics, 

biology, and linguistics.  

 

Structuralism in Physics 

If we summarize the history of physics from the pre-Socratic philosophers until the 

beginning of the twenty-first century, then we shall realize that the laws of nature can be 

distilled into the following four fundamental forces90:  

 

i. gravity: a natural phenomenon by which all things with mass or energy are brought 

toward each other (it helps us to calculate the motions of celestial bodies); 

ii. electromagnetism: a type of physical interaction that occurs between electrically 

charged particles (it has given us the wonders of the electric age); 

iii. weak nuclear force: the mechanism of interaction between subatomic particles (it is 

responsible for the radioactive decay of the subatomic particles, and, thus, it plays an 

essential role in nuclear fission, which is a form of nuclear transmutation); and  

iv. strong nuclear force: the mechanism that binds the component particles of an atom’s 

nucleus. An energy field that permeates the entire universe is known as the “Higgs 

field” (the smallest bit of which is called the “Higgs boson”), and it explains why 

some subatomic particles have a great deal of mass, while others have little, and 

 
87 See: Dumont, Essays on Individualism. 
88 Lévi-Strauss, Structural Anthropology, pp. 279–80.  
89 Abraham, Chaos, Gaia, Eros, chapters 11 and 12.  
90 See: Clegg, Dark Matter and Dark Energy; Gamow, Thirty Years that Shook Physics; Gubser, The Little Book of 

String Theory; Heilbron, ed., The Oxford Guide to the History of Physics and Astronomy.  
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others have none at all: the Higgs field interacts with the subatomic particles and 

determines their mass (very massive particles interact a lot with the Higgs field, 

while massless particles do not interact at all). 

 

Physical structuralism is expressed in terms of natural laws. This methodology is based 

on the following fundamental laws and definitions91: 

 

Newton’s Three Laws of Kinematics 

Mechanics is the branch of physics that studies the relationships between the following 

three physical concepts:  

 

i. Force: an agent that changes or tends to change the state of motion (i.e., the state of 

rest or of uniform motion) of an object. The “velocity” of an object is the rate of 

change of its position with respect to a frame of reference, and it is a function of 

time. 

ii. Mass: the quantity of matter that is concentrated in an object. The product of the 

mass times the velocity of an object is the “momentum” of that object. 

iii. Motion: a change in the position of an object with respect to time. 

 

The part of mechanics that is concerned with the study of motion is called kinematics. 

Due to the rigorous study of classical mechanics by the English physicist and mathematician 

Sir Isaac Newton (1643–1727), the SI (Système International) unit of force, newton (denoted 

by N), has been named in his honor. One newton is defined as the force needed in order to 

accelerate one kilogram (kg) of mass at the rate of one meter (m) per second (sec) squared in 

the direction of the applied force.  

 

First Law of Motion: An object will remain at rest or in a uniform state of motion unless 

that state is changed by an external force. 

 

Second Law of Motion: The vector sum of the forces on an object is equal to the mass of 

that object multiplied by the acceleration of that object (“acceleration” is the rate of change of 

the velocity of an object with respect to time); symbolically: 

 

𝐹 = 𝑚𝑎, 

 

where 𝐹 denotes force, 𝑚 denotes the mass of an object, and 𝑎 denotes the acceleration of the 

given object.  

 

Third Law of Motion: For every action in nature, there is an equal and opposite reaction. 

When a physical body undergoes a displacement with magnitude 𝑠 along a straight line as 

a consequence of the fact that a constant force with magnitude 𝐹, directed along the same 

line, acts on it, the “work” 𝑊 done by the force is defined as follows: 

 

 
91 See: Sears, Zemansky, and Young, College Physics, pp. 77–86, 130–31, 147–49, 186, 406–53, 535–74, and 923–

45.  
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𝑊 = 𝐹𝑠. 

 

In general, when the force 𝐹 is constant, and the angle between the force and the 

displacement is 𝜃, the work done is given by 

𝑊 = 𝐹𝑠𝑐𝑜𝑠𝜃, 

 

where 𝑐𝑜𝑠𝜃 denotes the cosine of the corresponding angle (for the study of trigonometric 

concepts, see Chapter 2). The SI unit of work is the joule (denoted by J), which is named after 

the nineteenth-century English physicist James Prescott Joule, and it is defined as the work 

required in order to exert a force of one newton through a displacement of one meter.  

The rotational equivalent of a linear force is “torque.” In other words, “torque” is the 

measure of the force that can cause an object to rotate about an axis. The point where the 

object rotates is called the “axis of rotation.” In order to find a linear force, we need to know a 

mass and an acceleration, but, in order to find a torque, we need to know not only a mass and 

an acceleration, but also how far that force is from the axis of rotation. Therefore, 

 

𝑇 = 𝐹𝑟𝑠𝑖𝑛𝜃, 

 

where 𝑇 denotes torque, 𝐹 denotes the linear force, 𝑟 denotes the distance measured from the 

axis of rotation to where 𝐹 is applied, and 𝑠𝑖𝑛𝜃 denotes the sine of the angle 𝜃 between 𝐹 and 

𝑟 (obviously, the unit of torque is a newton-meter, denoted by Nm).  

 

Newton’s Law of Universal Gravitation 

An object attracts another object with a force that is directly proportional to the product 

of the masses of the objects and inversely proportional to the square of the distance between 

them, symbolically: 

 

𝐹𝑔 = 𝐺
𝑚1𝑚2

𝑟2
, 

 

where 𝐹𝑔 is the magnitude of the gravitational force on either object, 𝑚1 and 𝑚2 are their 

masses, 𝑟 is the distance between them, and 𝐺 is the gravitational constant, whose value is 

found to be (in SI units) 6.673 × 10−11𝑁 ∙ 𝑚2 ∙ 𝑘𝑔−2.  

Around 1907, Albert Einstein set himself the goal of understanding the force of gravity. 

Until 1907, most physicists believed that gravity was pretty much understood from the work 

of Isaac Newton. However, Einstein asked the following very simple and basic question: how 

does gravity really work? In other words, how is it possible that one object in the universe, 

like the Sun, can somehow exert a pull on another object, like the Earth, even though there is 

nothing connecting them since there is effectively empty space between them? How does 

gravity operate? In fact, when Einstein read Newton’s seminal book Philosophiae Naturalis 

Principia Mathematica, in which Newton had written down the law of gravity, he noticed that 

Newton had also written that he leaves the question of the mechanism by which gravity 

operates to the consideration of the reader. Thus, Newton formulated the equation that 

governs the influence of the force of gravity, but he could not actually explain how gravity 

works. Einstein spent about ten years trying to explain how gravity actually works, and, 

finally, he articulated an answer with his general theory of relativity: “The general theory of 
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relativity is the theory of the gravitational field; the description of its language and 

concepts.”92 

Einstein’s general theory of relativity set the stage for the development of the idea that 

there are possibly more than three dimensions in space. A very simple way in which one can 

present Einstein’s general theory of relativity is the following metaphor: Imagine a big rubber 

sheet stretched nice and taut before your eyes. If you watch a little marble as it rolls across the 

surface of this rubber sheet, then you will realize that it follows a simple straight-line 

trajectory. But if you watch the movement of a heavy rock on this rubber sheet, then you will 

realize that now the rubber sheet is deformed, warped, curved. In contrast to the previous 

marble, this rock does not follow a straight-line trajectory, but it follows a curved trajectory 

along the curved surface of the rubber sheet. Einstein took this idea and applied it to the study 

of the universe, the fabric of space. Thus, originally, the fabric of space may look nice and 

flat, like the rubber sheet in the previous example, but, if the Sun appears, the fabric of space 

curves. Similarly, in the vicinity of the Earth, the fabric of space curves, and the Moon is kept 

in orbit around the Earth because it rolls along a valley in the curved environment that is 

created by the Earth’s mass. This is the manner in which, according to Einstein, gravity is 

communicated from place to place, namely, through warps and curves in the fabric of the 

space, specifically, through warps and curves in space-time; for instance, the Earth is kept in 

orbit around the Sun because it rolls along a valley in the curved environment that is created 

by the Sun’s mass, and, similarly, as I mentioned before, the Moon is kept in orbit around the 

Earth because it rolls along a valley in the curved environment that is created by the Earth’s 

mass. 

According to the “Bing-Bang” cosmological model, gravity underpinned and, actually, 

determined the transition from the “Bing-Bang” cosmological “soup” to the galactic structure 

that we observe today: gravity started from the initial conditions of the Big Bang and made 

the universe much more complex, because, even though the density of the universe was 

almost uniform, there were density quantum-mechanical fluctuations, namely, small 

differences in the density of the universe from one region to another. Thus, a region of the 

universe whose density was slightly greater than the mean density of the universe acted upon 

itself by its own gravity, and, gradually, it made itself denser, so that, instead of expanding 

with the rest of the universe, it drew matter into the given region, and, ultimately, this region 

collapsed upon itself and did not participate in the universal expansion. In this way, a physical 

object was made out of such a region. Gradually, the universe was filled with small density 

inhomogeneities resulting from inflation due to quantum-mechanical fluctuations, which, 

ultimately, merged into the structures of the universe that we observe today.93 

 

Conservation of Mass and Energy 

By the term “energy,” we mean the impetus that underpins all motion and all activity, 

and, more specifically, the capacity for doing work. The eighteenth-century French 

mathematician and natural philosopher Émilie du Châtelet proposed and tested the law of 

“conservation of energy,” according to which the total energy of an “isolated system” (i.e., 

one that does not interact with other systems) remains constant. In order to clarify the 

meaning of the principle of the conservation of energy, let us consider the following example: 

 
92 See: Stephani, General Relativity, p. 2.  
93 See: Hawking, The Universe in a Nutshell.  
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setting fire to coal. The chemical bonds of the coal molecules store great amounts of energy. 

If we set fire to coal, then fire causes a chain reaction between the coal and oxygen in the air. 

In this reaction, energy from the chemical bonds is converted into kinetic energy of air 

molecules. Hence, the air becomes warm, and, for this reason, it will rise. This rising air can 

be used in order to drive a turbine and, thus, for instance, move a vehicle, or in order to create 

electricity (by feeding it into the grid). Alternatively, we can just burn coal without doing 

anything with the produced energy. This does not change the total energy in the system, 

because the total energy in the system is conserved. The chemical energy of the coal is 

converted into kinetic energy of air molecules, which are distributed in the atmosphere. Even 

though, in this case, the energy is useless, the total energy in the system remains the same. 

The difference between the aforementioned cases is entropy, namely, the measure of the 

molecular disorder, or randomness, of the system under consideration: initially, the energy 

was packed into the coal, and the level of entropy was low, but, by setting fire to coal, the 

energy was distributed in the motion of air molecules, and the level of entropy became high. 

When a system has energy in a state of low entropy, its energy can be used in order to create 

macroscopic change (e.g., drive a turbine), and this useful energy is called “free energy.” Free 

energy is a type of energy that does “work.” But, if the energy in the system is in a state of 

high entropy, then the energy is useless, and it is called “heat.” Heat is a type of energy that 

does not do “work.” Even though total energy is conserved, free energy is not conserved.  

In 1905, Albert Einstein published his seminal research paper “On the Electromagnetics 

of Moving Bodies,” in which he introduced his famous equation that governs the relationship 

between energy and mass under certain conditions:  

 

𝐸 = 𝑚𝑐2, 

 

where: 𝐸 denotes energy, specifically, the energy of a moving particle; 𝑚 denotes mass; 𝑐 

denotes the speed of light in vacuum, and its value is (in SI units) approximately 

300,000 𝑘𝑚/𝑠𝑒𝑐; and 𝑚𝑐2 denotes the energy of a particle at rest.94 Hence, a more accurate, 

or rather more general, way of formulating the aforementioned equation is 

 

𝐸 = 𝛾𝑚𝑐2, 

 

where 𝛾 =
1

√1−(
𝑣

𝑐
)2

, 𝑣 is the object’s velocity relative to the observer, and 𝑐 is the speed of 

light (so that the equation 𝐸 = 𝑚𝑐2 holds when 𝑣 = 0, namely, when 𝛾 = 1, and, hence, 

when an object does not move with respect to the observer). In the aforementioned research 

paper, Einstein presented his special theory of relativity, based on the following two axioms: 

 

Principle of Relativity: The laws of physics are the same in all inertial reference frames. 

 

Principle of Constancy of the Speed of Light: Light always propagates in a vacuum at a 

definite velocity that is independent of the state of motion of the emitting body.  

 

 
94 See: Sears, Zemansky, and Young, College Physics, pp. 923–45. 
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Remark: The association between energy and matter implies that, in order to measure 

small structures, we need to compress more energy into small volumes of space (in fact, this 

is what high-energy particle colliders, such as the Large Hadron Collider, do). Higher energy 

allows us to find out what happens when distances become very small.  

 

Laws of Thermodynamics 

Thermodynamics is the study of energy relationships that involve heat, mechanical work, 

as well as other aspects of energy and energy transfer, and it was pioneered by the German 

scientist Otto von Guericke (1602–86) and the British scientists Robert Boyle (1627–91) and 

Robert Hooke (1635–1703). By a “thermodynamic system,” we mean “a system that can 

interact with its surroundings in at least two ways, one of which must be heat transfer.”95 

 

The Zeroth Law of Thermodynamics: If two thermodynamic systems are each in thermal 

equilibrium with a third one, then they are in thermal equilibrium with each other. 

 

The First Law of Thermodynamics: In case of a thermodynamic process that does not 

allow any transfer of matter,  

 

𝛥𝑈 = 𝑄 −𝑊, 

 

where 𝛥𝑈 denotes the change in the internal energy of a closed system, 𝑄 denotes the 

quantity of energy supplied to the system as heat, and 𝑊 denotes the amount of 

thermodynamic work done by the system on its surroundings. In other words, the first law of 

thermodynamics is an adaptation of the law of conservation of energy to thermodynamic 

processes.  

 

The Second Law of Thermodynamics: “It is impossible for any process to have as its sole 

result the transfer of heat from a cooler to a hotter body.”96 In other words, “no heat engine 

can have a thermal efficiency of 100%.”97 Intimately related to the second law of 

thermodynamics is “entropy,” 𝑆, which provides a quantitative measure of disorder. In 

particular, entropy counts the number of different microscopic configurations that have the 

same macroscopic appearance (or, in other words, how much information one could stuff into 

a macroscopic object if one kept track of the microscopic details). The entropy change 𝛥𝑆 

during a reversible isothermal process is defined as 

 

𝛥𝑆 =
𝑄

𝑇
, 

 

where 𝑄 denotes the quantity of heat (notice that “heat transfer is energy transfer brought 

about solely by a temperature difference”98), and 𝑇 is the absolute (Kelvin) temperature of the 

substance. According to the second law of thermodynamics, the total entropy (disorder) of an 

isolated system can never decrease over time, and it is constant if and only if all processes are 

 
95 Ibid, p. 407. 
96 Ibid, p. 439.  
97 Ibid, p. 440.  
98 Ibid, p. 353.  
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reversible.99 The second law of thermodynamics is equivalent to the “maximum entropy 

principle” and the “minimum energy principle”: 

 

The maximum entropy principle: For a closed system with fixed internal energy (namely, 

an isolated system), the entropy is maximized at stable equilibrium. For instance, consider a 

marble on the edge of a bowl (i.e., the marble is in a state of unstable equilibrium). Assume 

that the marble and the bowl constitute an isolated system. Then, when the marble drops, the 

potential energy will be converted to the kinetic energy of the motion of the marble. At any 

instant time, 𝑡, the marble has potential energy given by 

 

𝐸𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 = 𝑚𝑔ℎ, 

 

where 𝑚 denotes the mass of the marble, 𝑔 denotes the acceleration constant due to gravity 

(≈ 9.8 𝑚/𝑠𝑒𝑐2), and ℎ denotes the height of the marble as a function of time; and, at any 

instant time, 𝑡, the kinetic energy of the marble is given by 

 

𝐸𝑘𝑖𝑛𝑒𝑡𝑖𝑐 =
1

2
𝑚𝑣2, 

 

where 𝑣 denotes its velocity (which is, by definition, a function of time). Furthermore, 

friction (which is a stabilizing force) will convert this kinetic energy to heat (which is an 

energy transfer process based on a temperature difference between the system and its 

surroundings), and, at stable equilibrium (i.e., when it stops rolling), the marble will be at rest 

at the bottom of the bowl, and the marble and the bowl will be at a slightly higher 

temperature. The total energy of the given system that consists of the marble and the bowl 

will be unchanged. The potential energy that previously existed in the marble will now reside 

in the increased heat of the marble–bowl system. In other words, due to the heating effects, 

the entropy has increased to the maximum value possible given the fixed energy of the 

system.  

 

The minimum energy principle: For a closed system with fixed entropy, the total energy 

is minimized at stable equilibrium. For instance, in the previous example of the marble–bowl 

system, assume that, using a suitable apparatus, the marble is lowered very slowly to the 

bottom of the bowl, so that no heating effects occur (and, thus, this process is reversible). 

Then the entropy of the marble and the bowl will remain constant, and the potential energy of 

the marble will be transferred as work (which is another energy transfer process) to the 

apparatus that is lowering the marble. The potential energy is now at a minimum with no 

increase in energy due to the heat of either the marble or the bowl, and, thus, the total energy 

of the system is at a minimum.  

 

The Third Law of Thermodynamics: A system’s entropy approaches a constant value as 

the temperature approaches absolute zero (the coldest possible temperature).100 In other 

words, at absolute zero, the entropy of a perfect crystal is equal to zero. 

 

 
99 Ibid, p. 446. 
100 See: Wilks, The Third Law of Thermodynamics. 
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Electrostatic Laws 

The structure and the properties of atoms and molecules and, in general, of all ordinary 

matter are due to primarily electrical interactions between electrically charged particles. The 

fundamental building blocks of ordinary matter are the negatively charged “electron,” the 

positively charged “proton,” and the uncharged “neutron.” In a neutral atom, the number of 

electrons equals the number of protons that exist in the nucleus, and the net electrical charge 

is zero. If one or more electrons are removed (resp. added), then the remaining positively 

(resp. negatively) charged structure is called a “positive ion” (resp. a “negative ion”).  

In simple terms, to construct an atom, one needs some protons and neutrons for the 

construction of the nucleus, and then one has to put some electrons around the nucleus until 

the whole system is electrically neutral (in fact, once you have a positively charged nucleus, it 

attracts electrons, which automatically form shells around the nucleus). However, it should be 

mentioned that the construction of an atomic nucleus is a complex process, because protons, 

being positively charged, repel each other, and, therefore, they have to come very close to 

each other in order for the nuclear force to start operating and, thus, keep them together, given 

that there exist sufficiently many neutrons; and this process requires extremely high 

temperatures (hundreds of millions of degrees Kelvin). Such high temperatures existed briefly 

after the Big Bang. 

 

Coulomb’s Law: The magnitude of the force of interaction between two point charges is 

directly proportional to the product of the charges and inversely proportional to the square of 

the distance between them; symbolically: 

 

𝐹 = 𝑘
|𝑞1𝑞2|

𝑟2
, 

 

where 𝐹 denotes the magnitude of the force that each of two point charges 𝑞1 and 𝑞2 a 

distance 𝑟 apart exerts on the other, and 𝑘 is a proportionality constant, whose value is (in SI 

units) approximately 8.988 × 109 𝑁 ∙ 𝑚2 ∙ 𝐶−2. Due to the rigorous description of the 

electrostatic force of attraction and repulsion by the French military engineer and physicist 

Charles-Augustin de Coulomb (1736–1806), the SI unit of electric charge, the coulomb 

(denoted by C), has been named in his honor; it is approximately equivalent to 6.24 × 1018 

electrons. 

In general, by the term “field,” we mean an area in which forces are exerted on things in 

its midst. The modern concept of a physical field was originally formulated in the nineteenth 

century by the English physicist Michael Faraday. An electric charge creates an “electric 

field” in the region of space surrounding it, in the sense that “the properties of space itself are 

modified by the presence of an electric charge.”101 “Electric field” (sometimes called “electric 

intensity”) is defined as the electric force per unit charge, and, therefore (in SI unites), the 

unit of electric field magnitude is one newton per coulomb (i.e., 1𝑁 ∙ 𝐶−1).  

In general, by the term “flux,” we mean the quantity of a substance passing through a 

given area. The “electric flux” through a surface is proportional to the number of field lines 

crossing that surface. In other words, its magnitude is proportional to the portion of the field 

perpendicular to the area: 

 
101 Sears, Zemansky, and Young, College Physics, p. 551. 
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𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐 𝐹𝑙𝑢𝑥 = 𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐 𝐹𝑖𝑒𝑙𝑑 × 𝐴𝑟𝑒𝑎 × 𝑐𝑜𝑠𝜃, 

 

where 𝑐𝑜𝑠𝜃 denotes the cosine of the angle 𝜃 between the electric field and vector that is 

perpendicular to the area.A “field line” is an imaginary line drawn through a region of space 

in such a way that, at every point, it is tangent to the direction of the electric-field vector at 

that point. In particular, in an “electrostatic field,” every field line is a continuous curve with 

a positive charge at one end and a negative charge at the other. The amount of work needed in 

order to move a unit of electric charge from a reference point to a specific point in an electric 

field without producing acceleration is called an “electric potential,” and, in terms of SI units, 

it is represented by  

 

𝑉 =
𝑗𝑜𝑢𝑙𝑒

𝑐𝑜𝑢𝑙𝑜𝑚𝑏
, 

 

joule being the unit for work done, and coulomb being the unit for the charge; V denotes 

“volt,” namely, the derived unit for electric potential (electromotive force), and it is named 

after the Italian physicist Alessandro Volta (1745–1827).  

 

Gauss’s Law: The flux of the electric field through an arbitrary closed surface is equal to 

the net charge enclosed divided by the permittivity of free space.  

Moreover, the German mathematician and physicist Johann Carl Friedrich Gauss (1777–

1855) proposed similar laws relating to magnetism and electromagnetism (“magnetism” 

refers to physical phenomena arising from the force that is caused by magnets, namely, by 

objects that produce fields that attract or repel other objects). In fact, the fundamental nature 

of magnetism can be found in interactions involving electric charges in motion. In 1831, 

Michael Faraday discovered electromagnetic induction: he placed a stationary magnet inside 

or outside a coil, and he observed no deflection in the galvanometer, but, at the moment that 

he moved the magnet toward (into/above/below) the coil, he saw the pointer deflecting in one 

direction, and, at the moment that he moved the magnet way from the coil, he saw the pointer 

deflecting in the opposite direction. This was a really amazing discovery, because one could 

make something move without ever touching it, only by using the field. Indeed, we can affect 

things far away and develop telecommunications using electromagnetic fields. Moreover, 

Faraday was the first to understand that waves of the electromagnetic field are what we call 

light. In simple terms, electromagnetic radiation consists in electric and magnetic fields 

oscillating around each other creating a freely propagating wave that can travel from one 

place to another, and this event explains light, the operation of radio stations, the operation of 

microwave ovens, etc. (these are electromagnetic phenomena, and they differ from each other 

only with respect to the wavelength of the corresponding oscillation, so that we use different 

names for electromagnetic radiation depending on the corresponding wavelength; for 

instance, if we can see electromagnetic radiation, then we call it light, light with large 

wavelengths is red, light with larger wavelengths that is invisible is called infrared, while, at 

even larger wavelengths, electromagnetic radiations are called microwaves, and if the 

wavelengths are even larger, then electromagnetic radiations are called radio-waves).102 

 
102 By the term “radiation,” in general, we mean energy transferred by waves or particles. For instance, radiation 

may take the form of electromagnetic waves, which, however, are made of particles, specifically, photons. 
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As I have already mentioned, electromagnetism is the study of the interaction between 

electrically charged particles. For instance, if a large object has a negative charge, this means 

that it has more electrons than protons. If we have a static object with a charge, it will affect 

only other charges. If we have a static magnet, it will affect only other magnets, not other 

charges. But if we have a moving charge, it will affect a magnet, and, if we have a moving 

magnet, it will affect a charge. These are the four principles of James Clerk Maxwell’s theory 

of electromagnetism.  

In the 1910s, the German mathematician and physicist Theodor Franz Eduard Kaluza 

thought that, since Einstein was successful in describing the mechanism of the force of 

gravity in terms of warps and curves in space-time, it might be possible to describe the 

mechanism of another natural force, namely, electromagnetism, in a similar language. If the 

mechanism of gravity consists of warps and curves, then the mechanism of the 

electromagnetic force could possibly consist of warps and curves, too. However, the 

following question emerged: warps and curves in what? Einstein had used up space-time as 

the substratum of gravity’s warps and curves, and there seemed to be nothing else to warp and 

curve in order to explain the mechanism of electromagnetism. Therefore, Kaluza asked 

himself the following question: what if there are more dimensions in space than we know 

about? For instance, what if there is one more hidden spatial dimension, so that, instead of 

having three spatial dimensions and one temporal dimension, we actually have four spatial 

dimensions and one temporal dimension? In fact, Kaluza took Einstein’s equations that were 

derived and formulated in a context where there are three dimensions of space and one 

dimension of time, and he reformulated them in a context where there are four dimensions of 

space and one dimension of time. Working in this way, Kaluza came up with new equations 

some of which were essentially the same as the equations that Einstein had derived in the 

context of three dimensions of space and one dimension of time, but, since Kaluza had 

postulated the existence of an additional dimension of space, he came up with an additional 

equation that was identical to the equation that James Clerk Maxwell had formulated a few 

years ago in order to describe the influence of the electromagnetic force. Kaluza’s excitement 

was great, because he had managed to put gravity and electromagnetism together by 

imagining and postulating that there is one more spatial dimension that, for some reason, we 

do not see.  

As a consequence of Kaluza’s research work, the following question emerged: if there is 

an additional dimension of space, then where is it, and why can’t we see it? In 1926, the 

Swedish theoretical physicist Oscar Benjamin Klein suggested the following possibility: 

maybe, there are two varieties of dimensions, namely, a variety of “big” dimensions that we 

can easily see (left–right, back–forth, and up– down), and “tiny” dimensions that are too 

small to see, even though they are around us. In order to get a sense of that assumption, we 

can think of a cylindrical cable, which, from a distant vantage point, looks one-dimensional 

(namely, like a line) since we do not have the visual acuity to see that it is cylindrical, but, if 

we zoom in, then we can realize that it is a three-dimensional object. Small dimensions can be 

difficult to see compared to big dimensions that are far more obvious. By analogy, if we zoom 

 
Gravitational radiation is transferred in gravitational waves, which are, actually, periodic deformations 

(“wiggles”) of space-time, and, according to rigorous physical assumptions, gravitational waves are made of a 

peculiar kind of particles called gravitons (a graviton is assumed to be a quantum of gravity, namely, an 

elementary particle mediating the force of gravity). The term “graviton” was coined in the 1930s by the Soviet 

physicists Dmitrii Blokhintsev and F. M. Galperin.  
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in more and more on the three-dimensional space itself, we can encounter hidden additional 

spatial dimensions, which are too small to be seen in the context of everyday life.  

In the 1980s―string theory, which is based on the research work of the American 

physicists Richard Phillips Feynman and Edward Witten, the Austrian theoretical physicist 

Julius Erich Wess, and the Italian theoretical physicist Bruno Zumino―gave an important 

boost to Klein’s aforementioned assumption about extra dimensions. String theory tries to 

explain what things are made of. From the perspective of string theory, if we zoom in 

sufficiently deep inside matter, beyond molecules, atoms, and subatomic particles, we shall 

ultimately see tiny vibrating strings, and different vibrational patterns of these tiny strings 

give rise to the different kinds of particles of the world around us. Strings are assumed to be 

one-dimensional extended bodies whose characteristic length scale is typically on the order of 

the Planck length (approximately 10−35meter), whereas, on much larger length scales, such 

objects would appear to be zero-dimensional point particles. When physicists started 

analyzing the mathematics of string theory, they found certain equations that are meaningful 

and internally consistent only if the universe had more than three dimensions, thus vindicating 

Kaluza’s pioneering research work. Not only does the mathematics of string theory force the 

possibility of extra spatial dimensions upon us, but it also shows that these extra spatial 

dimensions have a very interesting and rich geometry, and they are mathematically described 

as Calabi–Yau manifolds (this type of surfaces has been named in this way in honor of the 

Italian-American mathematician Eugenio Calabi, who first conjectured that such surfaces 

might exist, and the Chinese-American mathematician Shing-Tung Yau, who proved the 

Calabi conjecture). Even though string theory has encountered very serious theoretical 

difficulties,103 and, on several occasions, it was replaced by calculations based on standard 

quantum chromodynamics, to which I shall refer shortly, it has played a positive role in 

helping us to understand the dynamic nature of the physical world. 

Modern physics, as it was developed and formalized in the twentieth century, has 

managed to scientifically confirm the theories that explain gravity, electromagnetism, weak 

nuclear force, and strong nuclear force, but it has not discovered a fifth physical force. 

However, in the beginning of the twenty-first century, physicists discovered a new energy 

source larger than our galaxy itself: “dark energy.” In particular, in the beginning of the 

twenty-first century, a new cosmological model prevailed according to which, in our 

universe, about seventy-two percent of the total energy is in the form of dark energy, known 

as the “energy of nothing,” which blows the galaxies farther and farther apart from each 

other. Dark energy is the energy of the “Big Bang” itself, and, in fact, it was dark energy that 

made the universe (being originally a very hot, small, and dense mix of the four fundamental 

forces) “bang,” according to the Big Bang theory.104 

Intimately related to the notion of “dark energy” is the notion of “dark matter.” Dark 

matter is a peculiar form of material that neither emits, reflects, nor absorbs electromagnetic 

radiation (light and all the different variations of light, like, for instance, radio waves and 

gamma rays). Thus, in this case, “dark” means “invisible.” For instance, if there is a cloud of 

dark matter between a source of light and an eyeball (observer), the light that is emitted from 

the source just goes straight through the cloud of dark matter without bouncing off or 

interacting in any way with the dark matter, and, thus, it is seen by the eyeball (observer) that 

 
103 See: Smolin, The Trouble with Physics; Yau and Nadis, The Shape of Inner Space.  
104 See: Jepsen, “Four Things You Might Not Know About Dark Matter.”  
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is on the other side of the dark matter. By contrast, normal matter (of which the common 

substances studied in physics, chemistry, and biology are made) appears “dark” to our eyes, 

but this is due to the fact that it absorbs or reflects light, namely, it interacts with light (and, 

hence, it is visible).  

The reason why, in the twentieth century, physicists started believing that dark matter 

exists is that, whenever they look in the universe, there is evidence of something that they 

cannot directly see but that has gravitational effects on things that physicists can actually see. 

In fact, dark matter explains gravitational lensing (namely, the fact that gravity from matter 

between us and galaxies bends light: normal mass alone is not sufficient to explain the 

observations, in the sense that the strength with which mass focuses light presupposes the 

existence of dark matter) and the behavior of galaxy clusters (galaxy clusters are collections 

of hundreds of galaxies that are held together by their own gravitational pull, and the higher 

the total mass in the cluster the higher the average velocities of the galaxies in the cluster, but 

it has turned out that the observed mass is not high enough to explain the observed velocities, 

and, thus, it has been postulated that galaxy clusters contain large amounts of dark matter).  

According to new cosmological models that prevailed in the beginning of the twenty-first 

century, about twenty-three percent of the universe is “dark matter,” namely, a peculiar 

invisible form of matter (thought to be non-baryonic in nature, being composed of some 

mysterious subatomic particles).105 Stars, made out of hydrogen and helium, make up about 

four percent of the universe. We, the higher elements of the universe, namely, humans, made 

out of hydrogen, oxygen, carbon, nitrogen, calcium, phosphorus, etc., make up only about 

zero point zero three (0.03) percent of the universe.  

 

Quantum Mechanics  

When scientists investigate physical-biological structures at the nanoscale (namely, the 

scale of nanometers; one nanometer being one billionth of a meter), they actually work at the 

edge of quantum mechanics (namely, on the boundary of the world in which the quantum 

rules start to take effect). Beyond that, scientists can investigate even smaller particles. In the 

second half of the twentieth century, it was understood that all matter is ultimately made of 

four building blocks: up and down quarks (which make up the protons and the neutrons, 

namely, the components of atomic nuclei), electrons (balancing the atomic nuclei), and 

neutrinos (a neutrino is an elementary particle that interacts only via the weak subatomic 

force and gravity). The term “quantum” derives from the Latin language, and it means an 

amount of something. In the context of quantum mechanics, the term “quantum” means the 

smallest amount of energy that can be measured. The central concept of quantum physics is 

that of a wave, namely, a disturbance or oscillation that travels through space-time, and it is 

accompanied by a transfer of energy. The basic properties of a wave are its amplitude (i.e., 

the distance from the center line, that is, the still position, to the top of a crest or the bottom of 

a trough), its frequency (i.e., the number of cycles occurring per second; specifically, it can be 

measured by counting the number of crests of waves that pass a fixed point in one second), 

and its length (i.e., the distance over which the wave’s shape repeats; for instance, the 

distance between two adjacent crests). In mathematical terms, from the perspective of 

quantum mechanics, the concept of a physical system is equivalent to the concept of a state, 

 
105 Ibid.  
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which, in turn, is a vector in a Hilbert space (these mathematical concepts will be clarified in 

Chapter 2).  

The theoretical nuclear physicist Nouredine Zettili has summarized the origins of 

quantum mechanics as follows: 

 

The first real breakthrough came in 1900 when Max Planck introduced the concept of the 

quantum of energy. In his efforts to explain the phenomenon of blackbody radiation, he 

succeeded in reproducing the experimental results only after postulating that the energy 

exchange between radiation and its surroundings takes place in discrete, or quantized, 

amounts. He argued that the energy exchange between an electromagnetic wave of frequency 

𝑣 and matter occurs only in integer multiples of ℎ𝑣, which he called the energy of a quantum, 

where ℎ is a fundamental constant called Planck’s constant.106 

 

Notice that every object with a temperature above absolute zero (–273.15οC) emits 

energy in the form of electromagnetic radiation, which travels through space as electric 

energy and magnetic energy. A “blackbody” is a model body that absorbs all incident 

electromagnetic radiation, regardless of frequency or angle incidence (the term “blackbody” 

is used because such a perfect absorber of energy will absorb incident visible light, instead of 

reflecting it, and, therefore the surface of such a body will appear black). Blackbody radiation 

is the theoretical maximum radiation expected for temperature-dependent thermal self-

radiation. The hotter the emitter, the more energy emitted and the shorter the wavelength. 

Quantum mechanics describes the building blocks of physical-biological reality, and it 

provides us with the rules that inform us about the way in which the subatomic world behaves 

(namely, about the ways in which atoms fit together to make molecules, the ways in which 

particles come together to make atoms, as well as the properties and the behavior of all these 

particles). Without quantum mechanics, most of modern technology that we rely on and take 

for granted today would be impossible because the whole realm of modern electronics (for 

instance, laptops, CD players, mobile telephones, etc.) ultimately relies on chips (integrated 

electronic circuits), which, in turn, rely on semiconductors, and we would not understand how 

semiconductors operate without an understanding of the rules of quantum mechanics. 

In quantum mechanics, the state of an electron is described by four quantum numbers: (i) 

the principle quantum number 𝑛 (it describes the energy and the distance from the nucleus, 

and it represents the shell), (ii) the angular momentum quantum number 𝑙 (it describes the 

shape of the subshell and its orbitals), (iii) the magnetic quantum number 𝑚𝑙 (it describes the 

orientation of the orbitals within the subshells), and (iv) the electron spin quantum number 𝑚𝑠 

(by the term “electron spin,” we mean a form of angular momentum, and an electron can spin 

clockwise or anticlockwise, in two opposite directions). According to Pauli’s Exclusion 

Principle, no two electrons in the same atom can have identical values for all four of their 

quantum numbers, and, therefore, no more than two electrons can occupy the same orbital, 

and two electrons in the same orbital must have opposite spins. 

From the perspective of quantum mechanics, particles are discrete packets, “quanta,” of 

energy with wave-like properties. In other words, according to quantum mechanics, energy is 

not continuous, but it is always parceled up into some tiny discrete “lump” (which is what 

“quantum” literally means: a discrete thing). In essence, an electron is a circular standing 

 
106 Zettili, Quantum Mechanics, p. 2.  
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wave. In the 1950s, physicists used the term “strong force” to mean the nuclear force. In the 

1970s, it was proved that the protons and the neutrons at the center of atoms are made of 

quarks. Because protons and neutrons are found in the nuclei of atoms, they are called 

nucleons. Each nucleon consists of three quarks. A nucleon can be thought of as a tiny sphere 

with a radius of approximately one quadrillionth of a meter, and, inside that tiny sphere, 

quarks zoom around travelling at nearly the speed of light. Whenever particles move at that 

extremely high speed in an extremely small volume, an extremely strong force is needed in 

order to hold them together. The force governing the motion of quarks is a quantum force.  

Quantum electrodynamics describes the manner in which electrically charged particles 

interact by shooting photons back and forth between each other. Electrons, being zero-

dimensional, lack spatial extension (that is, they have practically zero volume), and, therefore, 

they interact with each other by exchanging photons. As two electrons move toward each 

other, a photon is passed from one to another, and it changes the momentum of both of them, 

thus pushing them off. Therefore, in contrast to the folk understanding of “touch,” when we 

say that electrons “touch” each other, we mean that they interact with each other by 

exchanging a photon. The photon is a quantum of light and the force carrier of the 

electromagnetic force (the electromagnetic force is the result of the fact that particles with an 

electric charge exchange photons with each other). Even though photons propagate magnetic 

fields, they cannot be seen, because they are “virtual particles,” namely, particles that cannot 

be directly detected and may not obey all the laws that physicists force all real physical 

particles to adhere to (for instance, virtual particles do not necessarily need to obey the 

Einstein energy–momentum relation). In fact, it is not just electrostatic repulsion that prevents 

atoms from getting close, but it is primarily the Pauli Exclusion Principle that forces the 

electrons and the quarks that make up the atom to arrange in shells instead of sitting on top of 

each other. In other words, since our atoms’ electrons repel objects when they are 

approximately 10−8 m (one eight-billionth of a meter) away from us, we technically never 

touch anything, but we can feel the force of the resistance. However, the quarks inside the 

nuclei of atoms work a little differently: first, the relevant charge is not the electric charge, 

but the strong force charge, which physicists call color (which is a different kind of charge, 

having nothing to do with the way in which the term “color” is used in everyday language); 

second, unlike electric charge, which exists in two varieties (plus and minus), the strong 

charge (“quantum color”) exists in three varieties, called red, blue, and green; third, the 

particles that colored quarks exchange are called gluons (just as the photon is the particle of 

the electromagnetic force, so the gluon is the particle of the strong force). Hence, the 

aforementioned model has been called quantum chromodynamics.  

Intimately related to the study of matter is the division of matter into ever smaller parts, 

and, ultimately, we end up with something that one cannot divide any more; this is what 

ancient Greek scientists called “atom,” literally meaning “indivisible.” According to ancient 

Greek scientists, atoms are the smallest things in the universe and cannot be divided. Of 

course, modern physics has proved that atoms can be further analyzed into smaller particles 

and can be divided, and, by the end of the twentieth century, it was already clear that 

molecules are made of atoms, atomic nuclei are made of neutrons and protons, and the 

neutrons and the protons are made of quarks and gluons (as I have already mentioned, a gluon 

acts as the exchange particle for the strong force between quarks, and it is analogous to the 

exchange of photons in the electromagnetic force between two charged particles, and, 

according to string theory, quarks and gluons are made up of tiny vibrating strings). But the 
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important thing regarding ancient Greek atomic theory is the idea that the analysis of matter 

leads us to an “ultimate,” indivisible element of physical reality. Quantum physics has shown 

that, when we have a single atom, or, in general, a single particle, in a vacuum, it becomes a 

wave. According to the theory of wave mechanics, which was formulated in the 1920s by the 

Nobel Prize-winning Austrian-Irish physicist Erwin Schrödinger, a wave itself does not have 

units of matter or energy, but it is just form, specifically, a pattern of information. In other 

words, waves are just numbers, and, in a sense, their existence corroborates Pythagoras’s 

argument that physical things are ultimately numbers.  

When we isolate a single atom, or, in general, a single particle, so that it does not interact 

with anything else, it becomes a wave, and a wave spreads out in space. If we try to determine 

its position, then we realize that it is in a state of potentiality or probability, which transcends 

sensory perception. In fact, when we observe a wave, we actually destroy its state, in the 

sense that our observation changes the information structure of the given wave: “to detect a 

particle [which has become a wave], the detector must interact with it, and this interaction 

unavoidably changes the state of motion of the particle, introducing uncertainty about its 

original state.”107 From this perspective, waves are non-empirical, logical constituent 

components of the material world. According to Heisenberg’s uncertainty principle, “neither 

the momentum nor the position of a particle can be predicted with arbitrary great precision, as 

classical physics would predict.”108 In quantum mechanics, particles do not have classical 

properties like “position” or “momentum,” but they are described by a “wave-function,” 

which is a complex-valued probability amplitude, usually denoted by the Greek letter psi, 𝜓. 

According to the Born rule,109 the probability of a particle being observed at a particular 

location is given by the square of the amplitude of the wave-function at that 

location―symbolically: 

 

𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦(𝑥) = |𝑎𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒(𝑥)|2 

(regarding the mathematical underpinnings of these theories, see section 2.22). 

 

In the context of quantum mechanics, a molecule can be thought of like a mountain range 

(described by a wave-function) filled with infinitely many energy steps, where each energy 

step, representing a quantum of energy, is a quantum state. A molecule stands on one of these 

quantum states, and all the other infinitely many quantum states are empty, they are virtual 

states. Moreover, each quantum state is characterized by a wave form. When a system stands 

on one of these states, the other states also exist potentially, but they cannot be observed, they 

actually look empty. However, those virtual states are potential modes of being, because, 

otherwise, a molecule could not jump into other quantum states, and, due to Heisenberg’s 

uncertainty principle, we know that it can (molecules can make “quantum jumps,” because 

they have empty states into which they can jump).110 

Consequently, one of the most important problems in the foundations of physics is the 

quantization of gravity (namely, the unification of gravity and quantum mechanics into one 

 
107 See: Sears, Zemansky, and Young, College Physics, p. 986. 
108 Ibid. 
109 See: See: Abbott, Davies, and Pati, eds., Quantum Aspects of Life. In classical physics, phenomena are described 

and explained by continuous functions, that is, they do not make jumps. Hence, in classical physics, we require 

continuity of curves.  
110 See: Schäfer, Infinite Potential. 
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consistent theory), which was originally studied in the 1960s by the American theoretical 

physicists Richard Feynman and Bryce DeWitt. As I mentioned earlier, according to 

Einstein’s general theory of relativity, matter curves space-time in its vicinity, and this 

curvature, in turn, affects the motion of matter. General relativity predicts that light rays bend 

around massive objects, like the Sun; it predicts gravitational lensing (a gravitational lens is a 

distribution of matter between a distant light source and an observer, and it is capable of 

bending the light emitted by the source as the light travels toward the observer; in other 

words, as the light emitted by distant galaxies passes by massive objects in the universe, the 

gravitational pull from these objects can bend the light); it predicts that the universe should 

expand (especially after the correction of some of Einstein’s original calculations by the 

Russian physicist Alexander A. Friedmann); it predicts that time runs more slowly in 

gravitational potentials; it predicts black holes (a black hole is a space-time “singularity,” 

namely, a region of space-time where gravity is so strong that nothing can escape from it); 

and it predicts gravitational waves (disturbances, “ripples,” in the curvature of space-time that 

are caused by accelerated masses and travel across the universe stretching and squeezing 

space-time as they move). All these predictions have been scientifically confirmed. However, 

Einstein’s general theory of relativity does not fit well with quantum mechanics, as indicated, 

for instance, by the following case: Let us consider an electron going through a double slit. 

According to quantum mechanics, the electron goes through both slits at the same time 

simultaneously (according to the uncertainty principle, particles can be in two places at the 

same time). However, an electron has a mass, and masses generate a gravitational pull by 

bending space-time. Thus, the following question emerges: to which place does the 

gravitational pull go if the electron travels through both slits at the same time? One could 

expect that the gravitational pull would also go to two places at the same time, but this cannot 

be the case in the general theory of relativity, because the formalism of the general theory of 

relativity is not identical to the formalism of quantum mechanics. This problem calls for a 

specific interpretation of the quantum properties of gravity, and, because, according to 

Einstein, gravity refers to the curvature of space-time, we need a theory for the quantum 

properties of space-time.  

It should be pointed out that the real problem is not the quantization of gravity itself. We 

can, indeed, quantize gravity in the same way that we can quantize other interactions, but the 

problem is that the theory with which one comes up breaks down at high energies, and, 

therefore, it cannot explain the manner in which nature works at the subatomic level. This 

naive quantization of gravity is known as “perturbatively quantized gravity,” and it was 

proposed in the 1960s by the American theoretical physicists Richard Feynman and Bryce 

DeWitt. Perturbatively quantized gravity is an approximation of actual quantized gravity.  

Furthermore, in the 1930s and in the early 1940s, quantum physicists and mathema-

ticians, such as Erwin Schrödinger, Werner Heisenberg, and Ernst Pascual Jordan, 

highlighted the importance of quantum mechanics in understanding and explaining biology 

and, especially, the dynamics and the complexity of the phenomenon of life. Indeed, one of 

the most creative and thought-provoking scientific disciplines that helps one to understand the 

dynamics and the peculiarities of human life is quantum biology,111 which encompasses 

physics, chemistry, and biology. The application of quantum mechanics to biological objects 

helps us to explain random mutations in DNA, the manner in which birds orient themselves 

 
111 See, for instance: Al-Khalili and McFadden, Life on the Edge.  
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while migrating, the manner in which photosynthesis works, and other complex biological 

phenomena. However, it is worth pointing out that, unfortunately, for a long period of time 

after the end of World War II, quantum biology became disreputable, and the progress of this 

scientific discipline was slow because the acknowledged pioneer in the study of quantum 

mechanics, namely, Ernst Pascual Jordan, was an advocate of the Nazi ideology.  

Furthermore, one of the most important applications of quantum mechanics in medicine 

and material science is quantum metrology, which consists in a collection of techniques to 

improve measurements by help of quantum effects. Metrology is the scientific study of 

measurement. Quantum measurements can be achieved with very few particles, and, 

therefore, they cause minimal damage to the sample, for which reason quantum metrology 

plays a decisively important role in technology. 

 

Structuralism in Biology 

In the eighteenth and the nineteenth centuries, the most important representatives of 

structuralism in the scholarly discipline of biology were the French natural scientist Étienne 

Geoffroy Saint-Hilaire (1772–1844) and the Scottish biologist and mathematician Sir D’Arcy 

Wentworth Thompson (1860–1948). In the twentieth century, some of the most important 

representatives of structuralism in the scholarly discipline of biology were the German 

paleontologist Adolf Seilacher, the American paleontologist and evolutionary biologist 

Stephen Jay Gould, the American evolutionary biologist, mathematician, and geneticist 

Richard Charles Lewontin, the Canadian mathematician and biologist Brian Goodwin, and 

the British-Australian biochemist Michael John Denton. According to biological 

structuralism, a significant part of the order of the biological world arises from “laws of 

form,” which are part of the overall order of the natural world. With regard to structure, 

biological forms can be explained in the same way as crystals, galaxies, and atoms. However, 

the origins of the idea of biological structuralism can be traced to Aristotle’s theory of forms, 

according to which the biological world, at its base, consists of primal patterns, or basic 

forms, generated by laws of form in nature.  

It goes without saying that biological structuralism does not explain the entire order of 

the biological world (for instance, it does not explain adaptation), but it is an attempt to 

explain the basic underlying patters of the world (for instance, why we have insects and 

vertebrates) and the structural stability of the world. As it has been pointed out by Michael 

Denton, one of the simplest examples of “structural order” is the cell membrane, which 

separates the interior of the cell from the outside environment, and organizes itself into a 

semi-permeable lipid bilayer due entirely to natural law (the hydrophobic character of its lipid 

components) irrespective of any functional end it may serve.112 According to Denton, the 

laws of biological form limit the way in which organisms are built to a few basic types, just as 

the laws of chemical form or crystal form limit chemicals and crystals to certain sets of 

“legitimate” forms.113 Biological structuralism accepts that organisms exhibit adaptations to 

serve external environmental conditions, but it maintains that adaptations are “adapted 

masks” grafted onto underlying “primal patterns.”114 Hence, the diverse vertebrate limbs (i.e., 

fins for swimming, hands for grasping, and wings for flying) are all modifications of the same 
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underlying pattern, which serves no particular external environmental necessity. In addition, 

according to Denton, biological structuralism is compatible with the idea of intelligent design, 

because the laws of form are part of the laws of nature, and, according to cosmology, the laws 

of nature are clearly fine-tuned to an extraordinary degree for life on earth. 

The renowned French mathematician and philosopher René Thom (1923–2002), who 

won the Fields Medal in 1958, has argued that “almost any natural process exhibits a kind of 

local regularity . . . which allows one to distinguish recurrent identifiable elements 

denominated by words,” and that, “otherwise, the process would be entirely chaotic and there 

would be nothing to talk about.”115 These “recurrent identifiable elements” can be characte-

ristic shapes (for instance, a snowflake or a butterfly) or characteristic stages of a dynamic 

process (for instance, the formation of snowflakes from water vapor or the metamorphosis 

that turns a caterpillar to a butterfly). In either case, according to Thom, they have the 

property of “structural stability,” in the sense that they have recurrent qualitative features, 

irrespective of the quantitative complexity that characterizes the circumstances that give rise 

to those features.116 Thus, for instance, “an apple seed may experience a wide range of 

temperature, moisture, soil acidity and so on, but if it grows at all it will grow into an apple 

tree, not a cactus or a cattail.”117 

Of all known complex systems that exist in the physical universe, the human brain is 

the most complex one. If we were to construct a computer that would model the human 

brain, then the volume of that computer would be several thousand cubic meters, it would 

have to be cooled down by a river, and it would need a nuclear power plant to energize it 

(whereas the human brain operates with just about 20 Watts). We can use dynamical systems 

in order to create a model of the operation of the brain and, in this way, to explain the 

relationship between the brain and primordial consciousness.  

In mathematics, by the term “dynamical system,” we refer to any system whose state 

evolves with time over a “phase space” according to a fixed rule. The “phase space” of a 

dynamical system is the set of all possible states of the system. Thus, each point in the phase 

space corresponds to a different state of the system. A state in which a system finally settles is 

said to be an “attractor.” In other words, an attractor is a set of numerical values (system 

states) toward which a system tends to evolve for a wide variety of its starting conditions 

(initial data) after transient processes. A “strange attractor” represents a trajectory upon which 

a system runs from situation to situation without ever settling down. A strange attractor, then, 

is an orbital attractor determined by a function that has mathematical discontinuities. Thus, an 

attractor is said to be “strange” if it has a fractal structure, namely, a structure that is 

characterized with self-similarity.118 In other words, a strange attractor is a dynamic kind of 

equilibrium, whereas an attractor is a static state of equilibrium.  

A system in which the change of the output is not proportional to the change of the input, 

and, therefore, it cannot be arranged in a straight line, is called “nonlinear.” Nonlinear 

systems may exhibit chaotic behavior. The best heuristic definition of chaos is that chaos 

means sensitive dependence on initial conditions. Scientists cannot forecast the precise state 

of a chaotic system, but chaotic systems are characterized by structural stability, in the sense 

that they trace repetitive patterns that often provide useful information. Hence, often scientists 

 
115 Quoted in: Woodcock and Davis, Catastrophe Theory, p. 17. 
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118 See: Peitgen, Jürgens, and Saupe, Chaos and Fractals. 
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use the term “deterministic chaos.” According to Michael J. Radzicki, deterministic chaos is 

characterized by self-sustained oscillations whose period and amplitude are non-repetitive and 

unpredictable, but they are generated by a non-random system.119 For instance, we do not 

know exactly where or when tornadoes and hurricanes will strike, but we do know what 

conditions lead to their occurrence, when and where they are most frequent, and their likely 

paths. To give a second example, we know that the economy cycles through recessions and 

booms, but we cannot predict very well the depth or the duration of a particular recession.120 

Neurons (specialized nerve cells) fire a signal when they are activated by incoming 

signals from other neurons. Each neuron can be considered to represent one variable, and, 

therefore, in the phase space that models the brain, each neuron is given one dimension. 

Hence, there are as many dimensions as are the neurons of the human brain (namely, there are 

billions of dimensions).121 The brain is a reducing viber-filter that underpins primordial 

consciousness, and, therefore, to the extent that consciousness is related to the activity of 

these neurons (an issue to which I shall return later in this chapter), consciousness can be 

represented as a point moving in the aforementioned phase space. Regarding the behavior of 

this point (namely, consciousness), we can draw the following conclusions: (i) Its path is 

chaotic, in the sense that, even though the overall system is subject to particular laws, the 

behavior of the point is unpredictable (as a result, we can never totally predict human 

behavior). (ii) Even though the movement of the point is chaotic, it is not random, because it 

follows a strange attractor. In this case, the strange attractor is the phenomenon of 

“personality,” which is inextricably linked to culture, which, in turn, is a factor that 

transcends pure biology. (iii) This model is not algorithmic, in the sense that it is neither 

predictable nor sequential. 

 

Structuralism in Linguistics 

The acknowledged founder of structuralism in the scholarly discipline of linguistics is the 

nineteenth-century Swiss linguist and philosopher Ferdinand de Saussure. Before Saussure, 

linguists were preoccupied with the “diachronic” study of language, namely, with the study of 

the evolution of language over time. However, Saussure founded “synchronic linguistics,” 

which consists in the study of the manner in which a language operates at a given point in 

time. According to Saussure, signification, that is, the relationship between the signifier (i.e., 

a written or spoken word) and the signified (i.e., the thing to which it refers) is almost always 

arbitrary.122 In other words, language is not directly related to the world, in the sense that, for 

instance, the only reason that the word “tree” should be used to describe a perennial plant 

with an elongated stem, or trunk, supporting branches and leaves in most species is that, over 

time, speakers of the English language have come to an agreement on this signification. 

Instead of operating as descriptors of certain objects or actions, words operate according to 

the principle of differentiation. Hence, Saussure analyzed language as a formal system of 

differential elements.  

 
119 Radzicki, “Institutional Dynamics, Deterministic Chaos, and Self-Organizing Systems.” 
120 See: Butler, “A Methodological Approach to Chaos.” 
121 See, for instance: Luo, Principles of Neurobiology; Presti, Foundational Concepts in Neuroscience. There are 

several neuro-correlates of consciousness, but “correlation” is not identical with “causation,” and, for this 

reason, the brain is not the cause of the entire phenomenon of consciousness.  
122 Saussure, Course in General Linguistics, Chapter 1.  
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According to Saussure, the conceptual part of linguistic value depends only on relations 

(similarities and differences) with other signs in the language, and, therefore, language is a 

self-contained formal system of differential elements, and reason transcends language.123 The 

knowledge that is conveyed by individual words or phrases is puny, indeed. Individual 

written phrases or verbal utterances (“parole”) hold meaning due to their relations 

(similarities and differences) with other written phrases or verbal utterances in the wider 

linguistic structure which Saussure calls the “langue.” Therefore, the analysis of the meaning 

of a written phrase or a verbal utterance necessarily takes place with reference to the “langue” 

of which it is part.  

Saussure’s structuralism is based on his argument that human language is not a function 

of the speaking subject, namely, it is not something owned by the speaker, but it is a social 

product (specifically, a social convention) assimilated by the speaker. In other words, the fact 

that human language does not originate in a particular person, namely, the fact that human 

language is not one’s private language, implies that, whenever one speaks, one uses 

something that is not strictly one’s own. In fact, Saussure argues, human language is 

conventional, and, therefore, it belongs in the public sphere, namely, to all of us. The fact that 

human language is not private, but belongs to all of us, allows it to be communicative and an 

object of scientific research. 

 

Philosophical Structuralism and Hermeneutics 

In philosophy, structuralism involves a systematic attempt to uncover and study 

underlying universal mental structures, which manifest themselves in social and cultural 

phenomena, and, in general, to study relations between competence and performance, 

relations between surface and deep structure, and relations between innate rules and 

experience.124 The structuralist method is the last adaptation of phenomenology to the 

problems that stem from the philosophical inquiry into the deepest structures of reality. 

Indeed, if this method is applied carefully, then it can lead to the identification and the 

understanding of the most relevant views of reality. Intimately related to the attempt to 

conceive the deepest meaning of reality is the hermeneutic method, which was originally 

developed by the German philosopher Hans-Georg Gadamer (1900–2002), and it is aimed at 

a deep dialogue between consciousness and its object.  

Gadamer has argued that language exists genuinely only in conversation, or dialogue, 

and, therefore, we have to study language not only as a system by means of which we 

exchange signs, but also as a system of “linguistic togetherness.”125 According to the 

hermeneutic method, the whole must be understood from the individual, and the individual 

must be understood from the whole. In other words, Gadamer proposes a circular model of 

understanding, in the sense that he argues that the movement of understanding is always from 

whole to part, and back to whole. In this way, the hermeneutic method aims to broaden, in 

concentric circles, the unity of the meaning that is understood by consciousness.  

Gadamer maintains that “interpretation” is a peculiar immanent approach to being, in the 

sense that interpretation does not objectify, nor does it seek to determine something as a 

neutral observer, but it seeks to acquire what is actually to be understood in “a fabric of 

 
123 Ibid.  
124 See: Mepham, “The Structuralist Sciences and Philosophy.” 
125 Gadamer, Truth and Method, in conjunction with: Palmer, ed., Gadamer in Conversation, and Zimmermann, 

Hermeneutics.  



Dr. Nicolas Laos, The Dialectic of Rational Dynamicity 67 

meaning.”126 In addition, according to Gadamer, interpretation seeks to acquire what is 

actually to be understood in “a fabric of meaning,” not by pursuing a mere objective 

determination of truth, but by making the object of consciousness “speak” and bring out what 

is in the structures of meaning that correspond to the given object of consciousness.127 

Therefore, influenced by Heidegger, Gadamer argues that, in a conversation, language does 

not only mean that someone speaks, but also speaks itself. However, the hermeneutic method 

is not focused on a particular means of communication, but it is focused on a particular basic 

stance of the human being in the world: this basic stance consists in being in conversation 

with one another. From this perspective, according to Gadamer himself, hermeneutics is “the 

art of being able to listen,” and this art is one that must be taught methodically, because 

people should learn to take back, or discard, the prejudicial effects of their own will to 

understand and let someone oneself or something itself speak.128 Hence, in hermeneutics, the 

actual subject is “understanding-in-the-world.”129 

A synthesis between aspects of Neoplatonism (especially, aspects of Plotinus’s dialectical 

spirit and of Proclus’s cosmology), modern structuralism, Kant’s philosophy of critical 

reasoning, Marx’s analysis of the material underpinnings of historical becoming (especially as 

it has been interpreted by Antonio Gramsci, Rosa Luxemburg, and Alexander Spirkin), and 

hermeneutics gives rise to the method of rational dynamicity, which I shall present and study 

in section 1.3. The purpose of the method of rational dynamicity is to interpret both the 

ontological reality and the intentionality of consciousness, which imposes its own structures 

on reality in order to ultimately reap the benefits of the dynamic action of consciousness in 

the world. As a philosophical method, rational dynamicity recognizes and analyzes both the 

reality of consciousness and the reality of the world, and, hence, it recognizes and analyzes 

both the objective and the subjective forces of history.  

In his Hamlet, the great English dramatist William Shakespeare (1564–1616) uses the 

“Old Mole” to represent the ghost of Hamlet’s father who keeps speaking from under the 

stage, despite Hamlet and Horatio shifting their ground seeking a suitable place to swear their 

oath.130 Hegel, in his Philosophy of History, interpreted the ghost of Hamlet’s father, namely, 

the “Old Mole,” as a metaphor for the Spirit of history, while Karl Marx, in his book The 

Eighteenth Brumaire of Louis Bonaparte, interpreted the aforementioned “Old Mole” as a 

metaphor for the thoroughgoing revolution. However, the “Old Mole” is not only a metaphor 

for the objective forces and conditions of history, but it is also a metaphor for the subjective 

forces of history, namely, for humanity’s own creativity, since the Ghost says: “Swear!”, and 

Hamlet says: “Well said, old mole! Canst work i’ th’ earth so fast? A worthy pioneer! Once 

more remove, good friends!”131 The aforementioned oath represents and expresses one’s 

personal decision and personal commitment to methodically and critically act in order to 

transform a possibility provided by the objective historical conditions into an actuality. For 

instance, the German political theorist and activist Rosa Luxemburg (1871–1919) has 

highlighted the use of the dialectical term “or,” which, as she has explained, implies that 

socialism is a possibility that is objectively offered to humanity and especially to the working 
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class, but it is by no means certain that humanity, in general, or the working class, in 

particular, will endorse this possibility and will decide to act in order to actualize and impose 

this possibility.132 Moreover, in Shakespeare’s Midsummer Night’s Dream, an elf called Puck 

is a metaphor for the revolutionary subjective forces of history, and, thus, speaks as follows: 

“Up and down, up and down,/I will lead them up and down:/I am fear’d in field and town:/ 

Goblin, lead them up and down./Here comes one.”133 

Let us consider the case of a very controversial revolutionary leader and statesman, 

Joseph Stalin (born Iosif Vissarionovich Dzhugashvili), who was the second leader of the 

former Soviet Union (in particular, he was the general secretary of the Communist Party of 

the former Soviet Union from 1922 until 1952). Stalinism signifies the domination of an 

authoritarian bureaucratic regime, which cannot be considered as a logical, linear extension of 

the original Bolshevik revolutionary movement. However, Stalinism cannot be properly 

explained only in terms of Stalin’s personality, ethos, and own political choices. In order to 

explain Stalinism in a philosophically and scientifically rigorous way, one has to take account 

of both the subjective forces and the objective forces that were at play during that historical 

period. 

Apart from Stalin’s own intellectual and moral qualities, the major subjective forces and 

the major objective forces that gave rise to Stalinism and to which Stalin fell prey were the 

following: (i) the socio-cultural underdevelopment of Russia (until the middle of the 

nineteenth century, the overriding majority of the Russians were slaves to an authoritarian 

tsarist-oligarchic regime and overwhelmed by ignorance and superstitions, and the Russian 

economy was significantly underdeveloped vis-à-vis the great Western industrial and 

commercial powers); (ii) particular aspects of traditional Russia’s national character (e.g., 

excessive and eruptive emotionalism, a tendency to be self-absorbed to the degree of failing 

to be rationally integrated into historical becoming and of resorting to excessive dreaming and 

daydreaming, a geopolitically underpinned and motivated deep sense of threat and insecurity, 

a herd mentality resembling the behavior of the Eurasian wolf, etc.) that rendered a significant 

part of the Russian people intellectually and morally incapable of really and creatively 

understanding and implementing a socialist program for the liberation of the human being (as, 

for instance, Marx and Engels had envisaged it);134 (iii) the defeat of revolutionary communist 

movements in the metropolitan capitalist countries; (iv) the decision of the Social Democratic 

Party of Germany (SPD) to discard the revolutionary communist ideology and strategy of the 

“Spartacus League” (founded by Karl Liebknecht, Rosa Luxemburg, and others) and to 

gradually acculturate to the German bourgeois establishment (the way to the notorious 

“Moscow Trials” was largely paved by the German social democrats who discarded the 

Spartacus League and by the assassins of Rosa Luxemburg);135 and (v) the imposition of 

fascist-Nazi regimes in several European countries (e.g., in Germany under Adolf Hitler, in 
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Italy under Benito Mussolini, in Spain under Miguel Cabanellas and Francisco Franco, in 

France under Philippe Pétain, in Greece under Ioannis Metaxas, etc.).136 

Being aware of the aforementioned historical forces, trends, and conditions, in the early 

1920s, Vladimir Lenin introduced the term “cultural revolution” into the Soviet political 

language in order to refer to the whole liberation of the people from all forms of political, 

economic, social, and spiritual despotism and backwardness (Mao Zedong’s notion of a 

“cultural revolution” is something different). From the perspective of rational dynamicity, 

which I propose in this book, a necessary condition for the development of a worthy and 

meaningful model of socialism and for its successful implementation is that the members of 

the socialist movement must have assimilated the rational and liberal thought of the European 

Enlightenment, and they must understand their political task as an attempt to take the legacy 

of the European Enlightenment to its logical conclusion. On the other hand, in the twentieth-

century Russia, the superstitious and fatalistic mentality of the Eurasian steppes and the 

intrinsic contradictions of the traditional Russian civilization proved to be stronger than 

Marxism–Leninism (which is part of the spiritual tradition of the European Enlightenment), 

and they actually spiritually conquered and subjugated Marxism–Leninism, predetermining 

its failure and the transformation of socialism-communism into a Soviet bureaucratic 

autocracy and, subsequently, especially during the presidencies of Boris Yeltsin and Vladimir 

Putin, into a post-Soviet Russian regime whose underpinning ideology is a mixture of 

oligarchic capitalism, Realpolitik, an updated version of the Russian “school” of nihilism 

(pioneered by Ivan S. Turgenev and Anton P. Chekhov), and elements of romanticism. 

Moreover, as the authoritative journalist Vladimir V. Pozner has pointed out, the raid that 

Western capitalist and military-bureaucratic elites launched against Russia in the 1990s and 

NATO’s misguided belligerence played a major role in the development of authoritarianism 

and rigid bureaucratic structures in post-Soviet Russia under Vladimir Putin’s presidency.137  

Fyodor Dostoevsky has argued that, in the nineteenth century, the collective imaginary of 

the Russian society was largely bipolar, in the sense that the emotional aspect of the Russians’ 

collective soul was largely determined by non-modern and Eurasian elements (specifically, by 

dreams of a highly emotional religious and magical nature), whereas the intellectual aspect of 

the Russians’ collective soul, especially, among the most modernized and most educated 

members of the Russian society, was increasingly assimilating modern Western elements, 

which call for a decisive affirmation of reason and history. Thus, for instance, in the 

beginning of the twentieth century, faced with the failure and the discontents of the traditional 

tsarist society, Russia resorted to and endorsed a rational, modern Western ideology, namely, 

Marxism–Leninism, with the help of which Russia made significant and, indeed, stupendous 

achievements in the realms of science, technology, and economics, but, because the emotional 

world of many Russians, including many members of the Soviet elites, continued to clash 

 
136 Fascism/Nazism is an instrument through which capitalist elites control and manipulate disillusioned and 

agitated popular masses (especially petty-bourgeois) during major capitalist crises in order to prevent them 

from contesting the established capitalist system. For instance, the German economist and banker Hjalmar 

Schacht, the German politician Rudolf Hess (a prominent member of the Thule Society), and leading German 

industrialists, such as Fritz Thyssen and Alfred Krupp, supported Adolf Hitler’s rise to power in order to 

promote the interests of the German capitalist elite in combination with the interests of the German “deep 

state” through the Nazi regime and to destroy liberal socialist movements. See: Gluckstein, The Nazis, 

Capitalism and the Working Class; Langer, Mind of Hitler; Young, Heidegger, Philosophy, Nazism. 
137 On 27 September 2018, Vladimir Pozner gave a lecture at Yale University, explaining the impact of U.S. foreign 

policy toward Russia after the dissolution of the Soviet Union.  
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with the rationale of Marxism–Leninism and to be mainly non-modern, Marxism–Leninism 

was radically distorted in Russia, Russia’s attempt to implement Marxism–Leninism was led 

to a dramatic failure, and Russia reproduced many of the defects of the traditional tsarist 

social model, instead of rationally pursuing a creative, progressive synthesis between positive 

traditional Russian qualities (such as Russian-Byzantine Christian morality and esotericism, 

resilience, a noteworthy capacity for accomplishments and perseverance, inner sociality, etc.) 

and positive modern European qualities (such as rational individuation, rational planning, 

rational organization, rational historical action, etc.); in fact, the philosophy of rational 

dynamicity yields such a synthesis. 

It is important to mention that the Russian-Soviet philosopher and scientist Alexander 

Bogdanov, one of the acknowledged founders of the science of planning and organizational 

theory, argued that World War I underlined the cultural deficiency of the working class, in the 

sense that, “inadequately organized and hidebound by tradition, industrial workers had 

succumbed to the primitive nationalism of the petty-bourgeoisie and the peasantry.”138 In 

addition, according to Bogdanov, the socialist intelligentsia was not better equipped to effect 

a socialist transformation of society, because “the cultural development of the socialist 

planners themselves was a precondition of socialism, but most social scientists, as members 

of the ruling class, were imbued with the individualism of private enterprise.”139 Therefore, 

Bogdanov argued that socialism is meaningless without a “universal organizational science,” 

which would “combine and coordinate all the individual disciplines.”140 Bogdanov’s 

structuralist approach to socialism in general and to Marx’s thought in particular is a very 

important contribution to the intellectual development and reinforcement of structuralism, 

because it gives rise to a science of planning, and, given that the philosophy of rational 

dynamicity, which I expound and propose in this book, is founded on structuralism, I have 

utilized elements of Bogdanov’s research work in order to articulate the method that I call the 

“dialectic of rational dynamicity” (see section 1.3.3). 

As a philosophical criterion, rational dynamicity stems from consciousness, but it is 

actually activated and implemented when it is actually possible to be applied to objective 

reality. However, it is important to mention that, as I shall explain in the following section of 

this chapter, rational dynamicity implies that the reality of the world can be restructured by 

the intentionality of consciousness. Objective reality is multidimensional and complex, but it 

becomes significant to consciousness only when objective reality is rationally dynamized in 

accordance with the intentionality of consciousness. Therefore, the method of rational 

dynamicity is in agreement both with the nature of the world and the nature of consciousness. 

Furthermore, the method of rational dynamicity is in agreement with (and provides a creative 

way of interpreting) Genesis 1:26–30: in that biblical excerpt, we read that the divine creative 

Cause not only created the human being in Its image, but also assigned authority and 

responsibility to the human being for the rational organization and management of the world, 

thus proclaiming the reality of the world, the reality of human consciousness, the structural 

continuity between the reality of the world and the reality of consciousness, and the 

submissiveness of the reality of the world to the intentionality of human consciousness.  

 

 
138 See: Biggart, “The Rehabilitation of Bogdanov,” pp. 11–12.  
139 Ibid. 
140 Ibid.  
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1.2.4. The Modes of Being 

 

The essence of being is a system consisting of qualities that can be attributed to it (that is, 

they can be identified, and they can be assigned to it). The act of being is a state in which an 

existent can be in one of the following ways: (i) absolutely positively, and then it is said to be 

a beingly being; (ii) absolutely negatively, and then it is said to be a beingly non-being; (iii) 

intermediately, and then it is said to belong to an intermediate ontological category between 

beingly beings and beingly non-beings. Thus, in his dialogue Sophist, Plato identifies what he 

calls the “greatest kinds” (“mēgista gēne”)—namely: motion, rest, sameness, difference, and 

the relationship between them—which Aristotle would call “categories” of being, and which 

are actual models of the modes of being. From the perspective of Aristotle’s Categories, a 

being exists with regard to its substance, with regard to its form, with regard to the 

relationship between substance and form, with regard to its time, with regard to its space, with 

regard to its activity, and with regard to its passivity.  

When Aristotle says that a being exists with regard to its substance, he refers to the 

“material” of which a being is composed, namely, to the “material cause” of a being. The 

material cause of a being allows a being to be what it is, and it underpins the differentiation of 

a being from every other being that is composed of the same material. This “substantial” 

mode of being is a qualitative attribute of a being, and it is complemented by form (i.e., by the 

“formal” mode of being), which is a quantitative attribute that is due to species. In fact, in his 

Metaphysics, Aristotle replaced the Platonic term “idea” with the concept of species. Form, 

namely, the external shape of a being, is a mode of being that is assumed by substance, and, 

due to its form, a being is even more sharply differentiated from every other being. Due to the 

important role that substance and form play in Aristotle’s philosophy, the latter has been 

characterized as a hylomorphism.  

Besides substance (i.e., the material cause of a being) and form (i.e., the formal cause of a 

being), Aristotle studies the efficient cause of a being and the final cause of a being. The 

efficient cause of a being refers to that event which has produced the given being, and which 

underpins and controls the existence of the given being. The final cause of a being refers to 

that event which is the end-purpose of the existence of the given being, and which can be 

accomplished due to the presence of the given being. No being is totally self-contained, since 

its existence is due to an external cause. According to Aristotle, the only exception to the 

aforementioned rule is the “prime mover” (i.e., the first uncaused cause), which is the cause 

of itself, and whose character is logically necessary. Furthermore, the purpose of a being (i.e., 

the event at which a being is aimed) represents the converse of a being’s dependence on an 

efficient cause, and it vindicates a being’s existence. The purpose, the telos, of a being is 

innate in being, and, if a being does not fulfill its purpose, then it is meaningless and 

irrational. All the aforementioned causes of being can be understood through the following 

example, which is due to Aristotle141: Let us consider the production of an artifact, such as a 

bronze statue. The bronze is the material cause of the bronze statue. However, the bronze is 

not only the material out of which the statue is made, but it is also the thing that undergoes 

the change and results in a statue. The shape of the statue is the formal cause, which actually 

makes the bronze statue a bronze statue and not, for instance, a bronze vase. The art of 

 
141 Aristotle, Physics, 195a6–8; and Metaphysics, 1013b6–9.  
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bronze-casting the statue and the artisan who manifests specific knowledge of that art 

constitute the efficient cause of the bronze statue. The use of the bronze statue is its final 

cause (telos).  

The cohesive bond between substance and form is the structure of a being. The deepest 

reality of a being is its substance, the external aspect of that reality is the form of the given 

being, namely, an element that animates the given being, and these two elements (modes of 

being) concur with each other in the context of the structural mode of being. As mentioned in 

section 1.2.3, “structure is an internal reality that is governed by each own order, which it 

creates and recreates by itself.” Thus, the structural mode of being underpins the rational, 

free, and unique order of the internal and the external elements of a being, because the 

coexistence of the internal and the external elements of each being is expressed through the 

structure of the given being, and the structure of each being is the cohesive bond between the 

internal and the external elements of the given being, and it guarantees the coexistence of 

these elements. In addition, structure allows a being to adapt to changeable situations without 

changing itself, since it remains (structurally) immutable. In other words, structure is the 

animate program of being, and it is actualized in terms of an existential journey that is 

determined by the corresponding being itself. Consequently, the structural mode of being 

allows a being to subsist and to remain in existence by being identified with itself, despite the 

various circumstantial changes that a being may undergo in the context of its activities and/or 

due to tactical adaptations, which a being may make in order to facilitate its action. 

Because of its intermediary and relational role, structure underpins and secures what 

Aristotle has called “entelechy,” namely, the continuity of the presence of a being as that 

which the given being is and not as something else. Entelechy signifies the a priori existence 

of a specific existential model within a being, and, according to this model, the corresponding 

being determines its existential journey. Intimately related to structure are two other modes of 

being, which have also been identified and studied by Aristotle, specifically, “being 

potentially” and “being actually.” Being potentially is an existential state in which the 

existential program of a being has not been completed, and it may only be in an early stage of 

its structural formation, but it has a clear and definite orientation, and, thus, there is a program 

that governs every aspect of the behavior of the being under consideration. The potential 

being of a being contains aspects and consequences of every forthcoming particular mode of 

being of the given being, and, even though the manifestations of these forthcoming modes of 

being may be conceived in infinitely many different ways, all forthcoming modes of being are 

determined by the innate existential program of the corresponding being (this is the meaning 

of “structural stability”).  

Being actually is an existential state in which the existential program of a being has been 

totally completed. The completion of the existential program of a being determines both the 

given being itself and the impact of the given being’s behavior on other beings and on the 

existential states of other beings. According to Aristotle, being actually (actuality) is to being 

potentially (potentiality) as “someone walking is to someone sleeping, as someone seeing is 

to a sighted person with his eyes closed, as that which has been shaped out of some matter is 

to the matter from which it has been shaped.”142 Being actually is an ultimate mode of being, 

but it is not an exclusive mode of being, in the sense that there exist intermediate existential 

states that correspond to several degrees of being. 

 
142 Aristotle, Metaphysics, 1048b1–3.  



Dr. Nicolas Laos, The Dialectic of Rational Dynamicity 73 

An important problem is to determine the critical points (or critical values) of the 

function of a being’s existence (in this case, I use the terms “function” and “critical point of a 

function” as they are used in mathematics, and I study their mathematical significance in 

Chapter 2). By a critical point of the function of a being’s existence, I mean a dynamized 

degree of being before which the given being is not an actuality yet, and after which the given 

being is not a mere potentiality anymore. If we want to formulate the corresponding 

mathematical model, then we should define a being’s existence as a function of time and find 

its critical points (namely, the points at which the corresponding function is not differentiable 

or its derivative is equal to zero). In other words, at a critical point of the function of its 

existence, a being is simultaneously a quasi-actuality and a quasi-potentiality, and, therefore, 

it is present enough and malleable enough to be restructured according to the intentionality of 

one’s consciousness. In fact, this argument underpins the dialectic of rational dynamicity, 

which I shall study in section 1.3.3. 

In view of the foregoing, actuality, potentiality, and every other fundamental mode of 

being can be relativized. In fact, at the level of the absolute being, the modes of being can be 

considered in an absolute way, but, at the level of any other being, the modes of being should 

be considered in a relative way. Therefore, at the level of any relative being, the fundamental 

modes of being can be replaced by other existential qualities that derive from the fundamental 

modes of being themselves, and I would call them “existential derivatives” (since they derive 

from the fundamental modes of being). The aforementioned “existential derivatives,” namely, 

the relativized varieties of the fundamental modes of being of classical ontology, underpin the 

creativity of the active presence of consciousness in the world, and they confirm and 

semantically enrich Thomas Jefferson’s argument that “the earth belongs in usufruct to the 

living.”143 As I shall argue in section 1.3, the world belongs in usufruct to consciousness, and 

there is a structural continuity between the reality of the world and the reality of 

consciousness. 

 

 

1.3. THE DIALECTIC OF RATIONAL DYNAMICITY 
 

The concept of structure can be associated with and ascribed to both the reality of the 

world and the reality of consciousness whenever the reality of the world and the reality of 

consciousness are considered with regard to their functions and energies. As I shall argue in 

this section, the concept of dynamization underpins the conception of the character of the 

structural synthesis between the reality of the world and the reality of consciousness, it 

indicates that consciousness is fundamental to reality, and it highlights the ability of 

consciousness to interpret the reality of the world and assign meaning to it. 

 

 

1.3.1. Dynamized Time 

 

The philosophical and the scientific theories of cosmology that belong to the “school” of 

philosophical realism maintain that the concept of time corresponds to an objective reality. 

 
143 Jefferson, “The Earth Belongs in Usufruct to the Living.” 
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The philosophical and the scientific theories of cosmology that belong to the “school” of 

idealism maintain that the concept of time is a conscious construction that serves as a means 

for understanding the world and the relations between consciousness and the world. Thus, the 

comprehension of the concept of time depends on the comprehension of the relation of 

between consciousness and the world. 

In general, time is perceived as an order on the set of the states through which a being 

passes successively (for a rigorous study of the concept of an ordering relation, see Chapter 

2). Thus, the notion of time seems to be intimately related to the notion of being, and, for this 

reason, Aristotle has argued that time is one of the modes of being.144 From this perspective, 

Aristotle’s perception of time belongs to the “school” of philosophical realism. Before 

Aristotle, Plato had set the foundations for the development of a realist philosophy of time by 

arguing that time is a moving image of eternity, specifically, a fluid-like phenomenon that 

corresponds to the stable, unchangeable, and infinite reality that exists continuously and 

uninterruptedly.145 

From the perspective of Platonism, the relation between “eternity” and “time” is similar 

to the relation between the “idea” (as a transcendent reality) and the “phenomenon”: eternity, 

just like the idea, is immovable, free from passion, and hardly conceivable in itself, but it is 

dynamically reflected in the fluid-like realm of phenomenality. Moreover, from the 

perspective of Platonism, by harmonizing itself with the mobility of the world (as a reflection 

and sensory manifestation of eternity), consciousness conceives both itself and the reality of 

the world, irrespective of whether one may think that the reality of the world contains 

consciousness or it is contained in consciousness.146 

According to Platonism, eternity is conceptually equivalent to infinity and the absolute, 

which exists unchanging over time, and all particular events take place within the absolute. 

Furthermore, from Plato’s perspective, eternity is the underlying fabric of time. As Aristotle 

has pointed out, because eternity has the property of infinity, it cannot be experienced 

directly, but only indirectly, through the intellect (namely, the rational faculty of 

consciousness), as a concept, except for those cases of metaphysical intuition which are not 

reducible to discursive reasoning, and they are called experiences of “grace” by religious 

mystics and theologians. However, as Conor Cunningham stresses in his scholarly work in 

philosophical theology, many doctors of the Christian church have taught that, far from 

contradicting nature, grace signifies the ultimate reason of nature and its fulfillment.147 As 

Thomas Aquinas has written, “grace does not destroy nature, but perfects it.”148 

In short, “grace” can be construed as the very possibility of nature, as we read in the 

Hermetica (Egyptian-Greek wisdom texts from the second and the third centuries A.D. that 

are mostly presented as dialogues in which a teacher, generally identified as Hermes 

Trismegistus (“thrice-greatest Hermes”), enlightens a disciple).149 According to Hermeticism, 

 
144 Aristotle, Metaphysics, 1b25–2a4. 
145 Plato, Timaeus; Parmenides; and Republic. Moreover, see: Brague, Du Temps chez Platon et Aristote; Leyden, 

“Time, Number, and Eternity in Plato and Aristotle.” 
146 Ibid.  
147 Cunningham, Genealogy of Nihilism. 
148 Thomas Aquinas, Summa Theologiae, Q. 1. 
149 Around 1460, a Greek manuscript (known as the Hermetica) was delivered to Cosimo de’ Medici, containing 

mysterious tracts attributed to the mythical exalted mystic Hermes Trismegistus, who, according to the 

symbolic language of those tracts, had gained his knowledge and wisdom directly from the divine “Nous” 
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namely, the cult of Hermes Trismegistus, there is a reciprocal relationship between the 

physical world (the physical “microcosm”) and the spiritual world (the spiritual 

“macrocosm”): the world is a “dynamic world,” specifically, a lawful, intelligent, and active 

system (or “order”) directed by a transcendent, wise efficient and final Cause in accordance 

with the Hermetic maxim “as above, so below.” In particular, according to Sir Isaac Newton’s 

translation of the “Emerald Tablet” (one of the most important pieces of the Hermetica 

reputed to contain the secret of the “prima materia” and its transmutation), “That which is 

below is like that which is above that which is above is like that which is below to do the 

miracles of one only thing.” On this account, the human being has agency, making one’s fate 

within the framework of divine traditions (systems of ultimate values) and according to one’s 

rational dynamicity at every moment.  

Furthermore, “grace” can be experienced and understood as initiation into a path of 

existential integration and as the pursuit of and the impetus toward existential integration, 

combined with a way of life that discloses the meaning of grace.150 The pursuit of and the 

impetus toward perfection are inextricably linked to the concept of infinity and, more 

specifically, to the infinite mobility of the human mind, which, when operating according to 

its nature, moves unceasingly toward ever higher levels of understanding. The presence of 

grace is intimately related to and indicated by a way of life that is characterized by the 

orientation of consciousness toward infinity, according to which a transcendent synthesis 

between perception and intuition is achieved. On the other hand, the lack of grace is 

intimately related to and indicated by a way of life that is characterized either by the 

entrapment of consciousness in finitude or by an ineffectual effort to escape to infinity, which 

results in irrationality. Hence, in the context of rational dynamicity, what one calls “god” is 

construed and experienced as a model and a force of ontological perfection that humanity is 

called to achieve and manifest through the dialectic of rational dynamicity (see section 1.3.3). 

Eternity constitutes the continuous, underlying fabric of the movements of a being, 

whereas time is the means by which these movements are measured. Furthermore, eternity is 

the absolute Infinity, the infinity par excellence, whereas time is a dimension of a world of 

several relative infinities, which I shall mathematically analyze in Chapter 2, according to 

Georg Cantor’s transfinite arithmetic, and it is infinitely divisible into infinitesimals, which 

underpin the development of infinitesimal calculus by Isaac Newton and Gottfried Wilhelm 

von Leibniz, as I shall explain in Chapter 2. Thus, time is not so much a reality as a 

measuring instrument used by consciousness whenever the latter tries to determine its own 

reality. As Immanuel Kant has argued, time is an a priori (specifically, pre-experiential and 

pre-perceptive) “schema” (figure) that underpins the presence of the world within 

consciousness, and it structures and makes possible the cognition of objects as appearances.151 

In Kant’s philosophy, a transcendental “schema” (plural “schemata”) is a procedural rule, 

specifically, a mediating function between the active consciousness (the activity of the 

understanding) and the passive sensibility (the receptivity of the senses), by which a category 

is associated with a sensory perception. In his essay “On a Discovery Whereby Any New 

Critique of Pure Reason Is to Be Made Superfluous by an Older One,” Kant explains that he 

relies on a method through which objects are constructed according to rules of the 

 
(mind), Pimander, and who later himself became deified. The Hermetica teaches a tolerant philosophical 

religion of the illumined mind and a spiritualist variety of globalism.  
150 See: Cunningham, “Natura Pura, the Invention of the Anti-Christ.” 
151 See: Guyer, ed., The Cambridge Companion to Kant. 
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understanding, and he argues that it is also requisite for a philosopher to make abstract 

constructs (concepts) sensible, specifically, to display the objects that correspond to concepts 

in intuition, because otherwise concepts remain without sense and, hence, insignificant. In the 

same essay, Kant argues that mathematics can achieve this goal by means of the construction 

of figures, which, even though brought about a priori, are appearances present to the 

senses.152 

In the twentieth century, the Swiss epistemologist and psychologist Jean Piaget took up 

Kant’s terminology while refashioning the function of schemata to his theory of cognitive 

development.153 In fact, Piaget has shown that the development of the concept of time within 

consciousness takes place in parallel with the development of consciousness itself, in the 

following sense: initially, time does not exist “in itself” as a monotonous, uniform metric 

time, but it exists as a collection of partial, “impure” conceptions of time, which are mutually 

irrelevant and underpin different functions of consciousness (for instance, according to 

Piaget, for children up to the age of operative intelligence, time exists embedded in contexts 

of action, specifically, in pragmatically oriented processes of movement and action, and it is 

bound to objects). During this initial stage, consciousness refers to these partial, “impure” 

conceptions of time only when consciousness wishes to integrate some of its experiences into 

a particular timeline. During subsequent stages of the development of consciousness, as 

consciousness expands itself and accumulates more experiences, the aforementioned 

unrelated, partial conceptions of time gradually become united. 

Piaget’s perception of time is, in a sense, an extension of Bergson’s perception of time, 

which is based on the comparison between time and duration. According to Descartes, the 

comparison between time and duration leads to the conclusion that time is abstract, while 

duration is concrete. However, Bergson maintains that duration is the only indisputable 

reality, and it constitutes the depth of both the reality of the world and the reality of 

consciousness, while time is a practical substitute for duration. Furthermore, according to 

Bergson, whereas eternity is infinite, duration is finite, it is essentially memory, and it can be 

conceived by means of a logical concept, just as time is conceived through alterations of 

consciousness. Analyzing Bergson’s philosophy, the Japanese philosopher Daisaku Ikeda 

argues as follows: 

 

According to Bergson’s theory of time, the division into past, present, and future is the 

product of human consciousness . . . Bergson considered the true nature of consciousness to 

be in flux, and he spoke of “flowing time.” Time perceived from the physical, objective 

viewpoint is time past. In contrast, “flowing time” is the flow of consciousness or of life itself. 

In essence, there is no distinction between past, present, and future, since they are created by 

the flow of consciousness. What is inseparable becomes separated in our minds.154 

 

From Bergson’s perspective, duration is a continuous flow that cannot be conceived 

logically or empirically, but it can be conceived through intuition, which is a function of 

consciousness through which, instead of going around its object from the outside in a 

cognitively ineffective way, consciousness enters directly into its object in order to consider it 

 
152 See: Allison and Heath, eds., Immanuel Kant: Theoretical Philosophy After 1781, pp. 271–336.  
153 Kitchener, Piaget’s Theory of Knowledge; Piaget, Biology and Knowledge; Piaget and Inhelder, Memory and 

Intelligence. 
154 Ikeda, Life an Enigma, p. 73. 
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from the inside. For Bergson, intuitive thinking consists in thinking in terms of duration, and, 

according to Bergson’s conception of duration, consciousness knows itself as duration, 

consciousness knows that it is the consciousness of the duration of the existence to which it 

refers, and consciousness knows that, by being duration, it is part of reality. Thus, Bergson 

conceives duration as “the multiplicity of conscious states”155 and as a “qualitative 

multiplicity” that can be defined as “a unity that is multiple and a multiplicity that is one,”156 

so that, as John Mullarkey (the editor of the journal Film-Philosophy) has pointed out, 

Bergson’s notion of duration is “a group of mutually interpenetrating elements.”157 According 

to Bergson’s sensuous and psychological type of intuition, the subject and the object of 

intuitive conception interact and mingle with each other in the context of the reality of 

duration.  

Summarizing Bergson’s philosophy of time, we conclude that, according to Bergson, 

time is always a concept that is formed a posteriori as a consequence of the interplay between 

the divisible concept of time and the consciousness of the indivisible duration. Due to the 

aforementioned interplay, time is an inauthentic concept, in the sense that it does not 

correspond to anything, but it is created by consciousness, because the latter seeks to 

overcome its difficulties by analyzing them—in Cartesian fashion—in order to make them 

measurable. Moreover, as I have already mentioned, in Bergson’s philosophy, eternity, as 

reality, is conceived in a static way, but duration is conceived in a dynamic way—

specifically, as a continuous directed flow—and it imparts its direction to the concept of time.  

As the ancient Greek philosophers Proclus (fifth century A.D.)158 and Aenesidemus (first 

century B.C.)159 have explained, we conceive the direction of duration and of time in terms of 

the relationship between an obsolete state and a forthcoming state. Let us assume that a 

horizontal straight line 𝑙 represents the flow of time. Moreover, let us consider an arbitrary 

point 𝑝 moving on 𝑙. The motion of 𝑝 is meaningless, unless we define two relevant 

directions on 𝑙: the direction of the “predecessor” and the direction of the “successor” (for a 

mathematically rigorous explanation of these terms, see Chapter 2). Only then can we 

determine the magnitude and the direction of the motion of 𝑝. However, the point 𝑝 can be 

interpreted either as a segment of transient time, which comes in order to leave and to become 

part of the past, or as the consciousness of existence that moves from an obsolete state to a 

forthcoming state. In each case, following the reasoning of Proclus and Aenesidemus, we 

realize that time is divided into smaller segments that correspond to the concepts of before 

and of after due to a moving point that represents the concept of now, which is defined as a 

continuously changing state of becoming that moves in the direction of the perceived motion 

of time or of consciousness itself. 

Furthermore, in view of Bergson’s and Piaget’s philosophies of time, the motion of time 

is not homogeneous, since time can flow at different rates in different reference frames; for 

instance, in some cases, the rate of time’s flow is intense, while, in other cases, it is 

imperceptible. These variations can be interpreted in two ways: first, there are different kinds 

of time, such as cosmological time, biological time, psychological time, and historical time; 

second, the dynamic nature of time allows its restructuring by consciousness. 

 
155 Bergson, Time and Free Will, p. 75. 
156 Bergson, Creative Evolution, p. 258.  
157 Mullarkey, Bergson and Philosophy, p. 19. 
158 Proclus, Elements of Physics. 
159 Aenesidemus, Pyrrhonian Discourses.  
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The relation between time and light and, particularly, the dynamic nature of physical time 

have been explained by Albert Einstein’s theory of relativity.160 According to the special 

theory of relativity, time can flow at different rates in different frames of reference, since time 

depends on the velocity of one frame of reference relative to another. Time dilation is the 

slowing down of a clock as determined by an observer who is in relative motion with respect 

to that clock; so that the faster one moves through space the slower one moves through time. 

Given that the speed of light is the same in all reference frames, the moving clocks run slow. 

In particular, time intervals have different values when measured in different frames of 

reference. Hence, by the term “time dilation,” we refer to the lengthening of the time interval 

between two events for an observer in a frame of reference that is moving with respect to the 

rest frame of the events, in which the events occur at the same location. The relation between 

a time 𝑡𝑠 measured by a stationary observer (i.e., the time measured by an observer inside the 

given frame of reference), and the time 𝑡𝑚 measured by an observer moving with velocity 𝑣 

(i.e., the time measured by an observer outside the given frame of reference) is given by the 

following formula, known as the equation for “time dilation”: 

 

𝑡𝑚 = 𝛾𝑡𝑠 where 𝛾 =
1

√1−(
𝑣

𝑐
)
2
, 

 

𝑣 denotes the speed of the moving observer, who sees the clock moving (or, equivalently, 

the speed of the clock relative to the observer who is outside the given frame of reference), 

and 𝑐 is the speed of light in a vacuum. In fact, at low speeds, there is only a small change in 

time dilation, namely, the flow of natural time does not change very much, but, at speeds over 

about seventy-five percent of the speed of light, the effect of time dilation is very dramatic 

(for instance, imagine the following case: an astronaut left on a space flight today, and, on 

that space flight, he flew around outer space at near the speed of light for about three years 

according to his clock; then, during his space flight, your clock on Earth was moving much 

faster relative to his clock, and, in fact, more than sixty years would have passed on Earth).  

In the 1940s, the renowned American theoretical physicist John Archibald Wheeler 

(largely responsible for reviving interest in general relativity in the United States after World 

War II), studying positrons as electrons travelling backward in time, proposed his one-

electron universe postulate, according to which there was, in fact, only one electron, bouncing 

back and forth in time.161 Wheeler’s idea that positrons were electrons travelling backward in 

time was studied further by another renowned American theoretical physicist, Richard 

Feynman, who, in fact, incorporated the idea of the reversibility of time into his famous 

“Feynman diagrams,” which are pictorial representations of the mathematical expressions that 

describe the behavior and the interactions of subatomic particles.  

On the basis of the foregoing philosophical and physical ideas, time depends not only on 

the concepts of before and of after, which refer to the flow of time, but also on the concept of 

 
160 See: Sears, Zemansky, and Young, College Physics, pp. 927–28.  
161 A positron (alternatively known as an antielectron) is the antiparticle or antimatter counterpart of the electron, 

and it has an electric charge of +1𝑒, a spin of 
1

2
 (the same as an electron), and the same mass as an electron. 

According to the Breit–Wheeler process, a positron–electron pair is created from the collision of two photons, 

and this process is the simplest mechanism by which pure light can be potentially transformed into matter. The 

inverse process, according to which an electron and a positron collide and annihilate to generate a pair of 

gamma photons, is known as electron–positron annihilation, or the Dirac process. 
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now, and, therefore, time can (and, in fact, should) be parametrized in terms of two 

parameters, one of which represents the flow of time, while the other represents the concept 

of now. Consequently, in order to define any temporal point, we need a two-dimensional 

coordinate system, consisting of the horizontal axis, namely, the 𝑥-axis, and the vertical axis, 

namely, the 𝑦-axis (in this case, by the term “axis,” we mean a straight line with respect to 

which a body or structure is symmetrical), and the intersection of the two axes is the origin 𝑂 

of the coordinate system (regarding the meaning of a coordinate system, see also Chapter 2). 

In this case, the 𝑥-axis represents the flow of time, and it runs left and right, where the terms 

“left” and “right” are defined with respect to the origin 𝑂 of the coordinate system; the left 

part of the 𝑥-axis represents the concept of before, and the right part of the 𝑥-axis represents 

the concept of after. Moreover, in this coordinate system, the 𝑦-axis, which is perpendicular 

to the 𝑥-axis (their intersection being the origin of the coordinate system), represents the 

concept of now, which is determined by the manner in which consciousness experiences the 

flow of time. The 𝑦-axis runs down and up, where the terms “down” and “up” are defined 

with respect to the origin 𝑂 of the coordinate system, the downward part of the 𝑦-axis 

represents the “past,” namely, the manner in which consciousness organizes the temporal 

points that correspond to the concept of before and to obsolete conscious states, and the 

upward part of the 𝑦-axis represents the “future,” namely, the manner in which consciousness 

organizes the temporal points that correspond to the concept of after and to forthcoming 

conscious states. The parameter of now is a conscious construction, and, therefore, it is the 

aspect of time that is determined by consciousness. This is the reason why this “now” (like a 

rational equivalent of Wheeler’s positron) can assume values over the entire 𝑦-axis, running 

down (past) and up (future). Consequently, an arbitrary temporal point 𝑡 is parametrically 

defined as an ordered pair  

 

(𝑥, 𝑦) = (𝑓𝑙𝑜𝑤 𝑜𝑓 𝑡𝑖𝑚𝑒, 𝑛𝑜𝑤). 

 

This is the way in which I define the dynamization of time, namely, as the 

parametrization of time in terms of the flow of time and the concept of now (regarding the 

mathematical concepts involved in this analysis, see Chapter 2). 

In the beginning of the twentieth century, the German philosopher Edmund Husserl 

originally and emphatically argued that consciousness can extend to capture past moments of 

experience and temporal objects therein by “retaining” and “protending” elapsed and yet to 

come phases of experience, so that past words that do not actually exist in the present (when 

one is in a particular stage of a process of receiving information) can, indeed, remain related 

to the present experience.162 For instance, when we listen to a piece of music, we have direct 

access to a certain note, but the piece of music is not composed of a single, isolated note, 

since it is a coherent unity of different notes, and we perceive it as such. Thus, according to 

Husserl’s phenomenology, the direct access to a certain note is the “primal impression,” but 

our experience is not exhausted in that note, since we simultaneously retain the notes that are 

no longer heard (and this is the process that Husserl has called “retention”), and we anticipate 

the subsequent notes (and this is the process that Husserl has called “protention”). From 

Husserl’s perspective, the dilation of the present that corresponds to protention is underpinned 

 
162 Husserl, On the Phenomenology of the Consciousness of Internal Time. Moreover, see: Zahavi, Husserl’s 

Phenomenology. 



Dr. Nicolas Laos, The Dialectic of Rational Dynamicity 80 

by retention, and, therefore, Husserl perceives the dilated present in terms of retention. This 

peculiar way in which consciousness refers to time is due to what Husserl has called the 

“intentionality” (or the “referentiality”) of consciousness, namely, due to the fact that 

consciousness is the consciousness of its contents, which thus become experiences for it. 

However, this is not the only way in which consciousness intervenes in the flow of reality.  

It goes without saying that consciousness is not passive, because not only does 

consciousness treat the presence of experiences within itself in a critical way, it also causes 

their presence, as it is implied by the term “intentionality,” which Husserl has ascribed to the 

activity of consciousness. However, from Husserl’s perspective, intentionality reduces to 

referentiality, and, therefore, the creativity of consciousness is constrained to referentiality, 

whereas, from Bergson’s perspective, intentionality is not only the ability to refer to 

something, but also the ability to cause something. Hence, if we espouse Bergson’s argument 

that intentionality consists of both the ability to refer and the ability to cause, then we realize 

that the term “intentionality” expresses the dynamism of consciousness, and the dynamism of 

consciousness manifests itself in the manner in which consciousness intervenes in 

temporality. In order to understand and appreciate the dynamism of consciousness and the 

meaning of the “dynamized time,” we have to realize that the parameter of now (namely, the 

movement of a temporal point 𝑡 with respect to the 𝑦-axis) allows consciousness to 

restructure time by evaluating and characterizing the various segments of time and, thus, by 

seeking some of them, recalling others, and transcending or repelling others. This dynamic 

process can be called “dynamic recursion” (as I shall explain in Chapter 2, “recursion” is a 

programming term that means calling a function from itself). This dynamic and creative 

conception of “now” as well as its dynamic interplay with the “past” and the “future” were 

originally studied by Proclus and Aenesidemus.  

According to dynamic recursion, consciousness does not merely retain the present, 

preventing it from becoming part of the past, but also intervenes in the flow of time in several 

other ways. For instance, consciousness makes temporal jumps by recursively dynamizing 

segments of the past and/or of the future and, thus, transforming them into “now-

experiences.” Whenever consciousness recursively dynamizes a segment of the past and, thus, 

transforms it into a now-experience, the given now-experience can be characterized as a type 

of present that is “recursive up to the past.” Whenever consciousness recursively dynamizes a 

segment of the future and, thus, transforms it into a now-experience, the given now-

experience can be characterized as a type of present that is “recursive up to the future.” 

Whenever consciousness recursively dynamizes both a segment of the past and a segment of 

the future and, thus, transforms both of them into a now-experience, the given now-

experience (which is a synthesis of the two aforementioned dynamized segments) can be 

characterized as a type of present that is “recursive.” In other words, the term “recursive 

present” refers to the synthesis between the present that is recursive up to the past (thesis) and 

the present that is recursive up to the future (antithesis). 

The aforementioned conception of the “recursive present” gives rise to a dynamical 

model of the consciousness of time, according to which consciousness is capable of the 

following: (i) dynamizing and, thus, retaining the present in order to prevent it from becoming 

part of the past; (ii) dynamizing and, thus, retaining segments of the past, even of the distant 

past (and not only—as Husserl suggests—segments of the recent and still formless or 

incompletely formed past); and (iii) dynamizing and, thus, protending segments of the future, 

even of the distant future, by transforming them into now-experiences, meaning that 



Dr. Nicolas Laos, The Dialectic of Rational Dynamicity 81 

consciousness can conceive a future possibility and transform it into a present actionable 

situation, thus creating the favorable conditions required for achieving a goal. Consequently, 

the most important aspect of time is a now-experience that can run the entire continuum of the 

flow of time, namely, the aforementioned 𝑥-axis (the mathematical terminology that I have 

just used will be clarified in Chapter 2). According to the terminology that I have used until 

now, I define the “recursive present,” denoted by 𝑅𝑃, as a concept that denotes accumulated 

now-experience, denoted by 𝑁𝐸, divided by the flow of time, denoted by 𝐹𝑇, on either an 

instantaneous or an average basis, symbolically: 

 

𝐼𝑛𝑠𝑡𝑎𝑛𝑡𝑎𝑛𝑒𝑜𝑢𝑠 𝑅𝑃 = 𝐶ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝑎𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑒𝑑 𝑁𝐸 =
𝑁𝐸

𝐹𝑇
 at time 𝑥0; 

 

and 

 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑅𝑃 = 𝑅𝑎𝑡𝑒 𝑜𝑓 𝐶ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝑎𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑒𝑑 𝑁𝐸 =
𝑐ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝑁𝐸

𝑐ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝐹𝑇
=

𝛥𝑦

𝛥𝑥
𝑓𝑜𝑟 𝑡ℎ𝑒 𝑡𝑖𝑚𝑒 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 𝑥1𝑡𝑜 𝑥2.  

 

Given the aforementioned dynamical system of categories, “now-experiences” may 

correspond to temporal points (namely, to points of the 𝑥-axis) that are far away from the 

actual, immediate present. Furthermore, from the previous perspective, a “now-experience” 

can be interpreted as a local extremum of time caused by the intervention of consciousness in 

the flow of time (the mathematical significance of an extremum will be clarified and studied 

in Chapter 2). In fact, now-experiences, as extreme points of time, represent the results of the 

intervention of consciousness in the flow of time, since the fact that dynamized time is 

actionable is manifested in the ability of consciousness to discern and utilize possibilities of 

action in dynamized time and to find different ways of dynamizing time. These now-

experiences, representing local extrema of time, encompass dynamized time, and, in general, 

the essence of dynamization. The aforementioned interpretation of “now-experiences” is a 

(re)formulation and modification of the following mystical approaches to time in purely 

philosophical and scientific terms: (i) that mystical Christian approach to time according to 

which the dynamization of time is construed as the experience of the encounter between “ens 

creatum” and “ens increatum”163; and (ii) the concept of “discrete time,” proposed by the 

French philosopher, theologian, and Iranologist Henry Corbin in his analysis of the structure 

of time in the Shia and Sufi Islamic traditions.164 

In general, as Jean Piaget,165 among others, has pointed out, time is an “intellectual 

construction” that facilitates the activity of consciousness. However, far from becoming a 

 
163 It is worth mentioning that the word “encounter” is one of Pope Francis’s favorites, and, for instance, it was used 

thirty-four times in his apostolic exhortation Evangelii Gaudium (Rome, 24 November 2013).  
164According to Corbin, a mystic following the path of Islamic gnosis should make time somewhat personal; one 

can personalize time by discovering its unique features (name, figure, character, etc.). By doing so, a mystic 

achieves the transformation of time into space. That was the original meaning of the ancient concept of 

“Aeon”; namely, a personalized “time entity.” Acquainting oneself with this “time entity,” a mystic avoids the 

doom of the “horizontal” time and finds the way into the imaginary one, “alam-al-mithal,” the inner realm of 

the “malakut” (“beyond birth and death”); this is the very place where the “hidden Imam” lives (Corbin, La 

Topographie Spirituelle de l’Islam Iranien). 
165 Kitchener, Piaget’s Theory of Knowledge; Piaget, Biology and Knowledge; Piaget and Inhelder, Memory and 

Intelligence. 
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prisoner of its own constructs, such as time, consciousness forms systems of dynamized time 

by means of which consciousness restructures temporality, and, ultimately, it affirms its 

freedom and imposes its intentionality on the world. By dynamizing time, consciousness, 

ultimately, rationalizes and manages the world, given that, through the dynamization of time, 

consciousness understands the world in a more intelligent and a more creative way. Whereas 

time is an “intellectual construction” that derives from the reference of consciousness to the 

world, the dynamization of time is an “intellectual construction” that derives from the 

intentionality of consciousness. In particular, dynamization can be construed as the dynamic 

expression of the intentionality of consciousness whenever the intentionality of consciousness 

consists in a continuously updated strategic plan of action, formed by consciousness for the 

sake of consciousness. From this perspective, the aforementioned way of defining and 

studying the dynamization of time is akin to Heidegger’s notion of “Ereignis”: in terms of 

Heidegger’s philosophy, the dynamization of time can be understood as an event, specifically, 

as something “coming into view,” or as “enowning” (in German, “Ereignis”), and, more 

precisely, it refers to the transition of “Dasein” (“being there” or “presence”) from an 

inauthentic mode of being to the authentic mode of being; this is the time of authentic being 

in contrast to the time of inauthentic being, and, in the time of inauthentic being, one always 

hesitates whether to be or not to be (yet). Thus, from Heidegger’s perspective, dynamization 

signifies the moment of decision (in German, “Entscheidung”) that implies whether it is 

possible or not for “gods” to return.  

In conclusion:  

 

• eternity is the characteristic mode of being of what we construe by the term “absolute 

being” (as I have already explained, according to Plotinus, eternity is not the whole 

time, but the everlasting moment of being always equal to itself, and, from this 

perspective, dynamization is the moment of rapture and instant elevation to the 

utmost levels of being);  

• duration is the characteristic mode of being of every being that continuously tries to 

preserve and affirm its own substance and to discard any alien substance;  

• time is the characteristic mode of being of the world as the latter is perceived and 

organized by consciousness; and  

• dynamized time is the characteristic mode of being of consciousness, because, as I 

have already explained, consciousness perceives the reality of the world and thinks 

of the reality of the world, while simultaneously having intentionality and will, 

according to which consciousness acts in order to restructure the reality of the world 

in terms of dynamized time.  

 

Through the aforementioned analysis of time, we can understand both the mechanical 

way in which the states of being succeed each other and the dynamic way in which 

consciousness refers to time. Dynamization signifies both a dynamic attitude of consciousness 

toward the world and a way in which consciousness manages to intensify its presence in the 

world. The presence of consciousness in the world restructures time, and, therefore, it calls 

for the study of dynamized time. Moreover, as I shall argue in the following section, 

intimately related to the dynamization of time is the dynamization of space.  
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1.3.2. Dynamized Space and the Problem of the Extension of the Quantum 

Formalism 

 

At the highest level of abstraction, specifically, in the context of pure mathematics, which 

I shall study in Chapter 2, the term “space” is construed as a structured set, namely, as a 

collection of elements, called the points of the given space, equipped with a set of rules that 

determine the relations and, in general, the behavior of the given space’s elements. Because a 

structured set is, more generally, a “system,” we can define “space” as a geometric system. 

Therefore, if we think of space as a geometric system, then the three dimensions of the 

physical space of our everyday experience and the dimension of time can be thought of 

together as four dimensions of the same geometric system, namely, of the same abstract 

space. In fact, an abstract space can have as many dimensions as are the independent 

variables of the model that we study in the corresponding space. As I have already mentioned, 

from Aristotle’s perspective, space is a category of being. From a physical perspective, one 

can argue that, whereas time can be thought of as the set of all points through which reality 

passes successively, space can be thought of as the set of all points over which reality is 

extended simultaneously. In fact, Leibniz has highlighted the distinction between the notion 

of succession and the notion of co-existence, and, in his fifth letter to the English 

metaphysician and theologian Samuel Clarke, he wrote the following: “place is that, which is 

the same in different moments to different existent things, when their relations of co-existence 

with certain other existents, which are supposed to continue fixed from one of those moments 

to the other, agree entirely together,” and “space is that, which results from places taken 

together.”166 

In his Principles of Philosophy, Descartes maintains that, just as abstract time is distinct 

from duration, since the latter is concrete, so abstract space is distinct from extension, since 

the latter is concrete. In particular, Cartesianism semantically equates the defining property, 

namely, the “essence,” of material substance with three-dimensional spatial extension: “the 

extension in length, breadth, and depth which constitutes the space occupied by a body, is 

exactly the same as that which constitutes the body.”167 According to Descartes’s Principles 

of Philosophy, the surface on which a body ends constitutes a set of boundary points: if this 

set is considered with regard to its external side vis-à-vis the given body, then it can be 

thought of as the extension of the given body; but, if the same set is considered with regard to 

its internal side vis-à-vis the given body, then it can be thought of as the place of the given 

body. According to the aforementioned argument, which is largely in agreement with 

Aristotle’s physics, the boundaries of “place” and “extension” coincide with each other, but 

“place” and “extension” differ from each other with regard to the perspective from which 

their boundaries are considered.  

According to Cartesianism, extension and place are data that underpin the fact that the 

internal and the external boundaries of every physical body coincide with each other, and, just 

as the internal and the external boundaries of every physical body are infinitely divisible, so 

extension and place are also infinitely divisible. Furthermore, in the context of Cartesianism, 

space, construed as the abstract setting of the particular extended bodies and of the particular 

places, is also infinitely divisible. Bergson maintains that the degree to which indivisible real 

 
166 Leibniz, “Fifth Letter to Samuel Clarke,” par. 47.  
167 Descartes, Principles of Philosophy, II, 10.  
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duration is substituted by divisible conceptual time is analogous to the experience of the 

divisibility of space. In general, space is an abstract generalization of extension, and, 

therefore, it has been studied from several perspectives.  

The first scientifically rigorous perception of space was formulated by the ancient Greek 

geometers. Around 300 B.C., Euclid published the definitive treatment of Greek geometry 

and number theory in his thirteen-volume Elements, building on the experience and the 

achievements of previous Greek mathematicians: on the Pythagoreans for Books I–IV, VII, 

and IX, on Archytas for Book VIII, on Eudoxus for Books V, VI, and XII, and on Theaetetus 

for Books X and XIII. The axiomatic method used by Euclid is the prototype for the entire 

field of “pure mathematics,” which is “pure” in the sense that we need only pure thought, no 

physical experiments, in order to verify that the statements are correct, that is, we need only 

to check the reasoning in the demonstrations. All mathematical theorems are conditional 

statements, namely, statements of the form 

 

If (hypothesis) then (conclusion), 

 

that is, one condition (hypothesis) implies another (conclusion). In particular, in a given 

mathematical system, the only statements that are called “theorems” are those statements for 

which a proof has been supplied. By a “proof,” we mean a list of statements that is endowed 

with a justification for each statement, and it ends up with the conclusion desired. The 

following are the six types of justifications allowed for statements in proofs: (i) “by 

hypothesis . . .”; (ii) “by axiom . . .”; (iii) “by theorem . . .”; (iv) “by definition . . .”; (v) “by 

step . . .”; (vi) “by rule . . . of logic”; and a justification may involve several of the 

aforementioned types (see Chapter 2).  

In particular, Euclid articulated: 

 

i. A set of definitions, such as the following: 

• A point is that which has no part or magnitude (i.e., it does not have a concrete 

size). 

• A line is length without breadth.  

• The ends of a line are points. A straight line is a line that lies evenly with the 

points on itself.  

• A surface is that which has length and breadth only. 

• The edges of a surface are lines.  

• A plane surface is a surface that lies evenly with the straight lines on itself. 

ii. A set of fundamental rules (axioms): 

• Things that are equal to the same thing are equal to each other. 

• If equals are added to equals, then the wholes are equal. 

• If equals are subtracted from equals, then the remainders are equal. 

• Things that coincide with each other are equal to each other. 

• The whole is greater than the part. 

• Things that are double of the same things are equal to each other. 

• Things that are halves of the same things are equal to each other. 

iii. A set of fundamental propositions (postulates): 
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• Postulate 1: A straight line may be drawn from one point to any other point. 

Given two distinct points, there is a unique straight line that passes through 

them.  

• Postulate 2: A terminated straight line can be produced indefinitely. 

• Postulate 3: A circle can be drawn with any center and any radius. 

• Postulate 4: All right angles are equal to each other. 

• Postulate 5 (known as the Parallel Postulate): If a line segment intersects two 

straight lines forming two interior angles on the same side that sum to less than 

two right angles, then the two lines, if extended indefinitely, meet on that side on 

which the angles sum to less than two right angles. 

 

According to Euclidean geometry, space is three-dimensional and isotropic (i.e., it has the 

same value when measured in different directions). This scientific conception of space 

clashes with several mythical and folk perceptions of space, according to which space is 

connected with a form of temporality, and it is unisotropic (for instance, the “upward” and the 

“forward” directions are evaluated as superior to the “downward” and the “backward” 

directions). The Euclidean perception of space, combined with the concept of gravity, found 

its fullest expression in Isaac Newton’s calculus and mechanics (which are systematically 

studied in Chapter 2). The modern conceptions of space and time are largely dependent on 

Newton’s arguments regarding their indisputable reality, their divisibility, and their 

correspondence to empirical observations.  

In contradistinction to Newton’s philosophical realism, Kant articulates an idealist 

argument, according to which both space and time are a priori (pre-perceptive) schemata of 

consciousness, through which the intellect articulates synthetic explanations of the world, of 

which the senses form fragmented perceptions. In general, Kant emphasizes that judgments 

can be distinguished into two categories: analytic judgments and synthetic judgments. In an 

“analytic judgment,” the predicate merely elucidates what is already contained in the subject; 

for instance, the judgment “body is an extended thing.” Therefore, such judgments are 

tautological, namely, they are by definition true. On the other hand, “synthetic judgments” 

add something to the predicate; for instance, the judgment “every material body has specific 

gravity.” However, some synthetic judgments derive from experience, namely, they are a 

posteriori, and, therefore, they are lacking in necessity and in universality (for instance, the 

judgment “the cat is black”), whereas other synthetic judgments are (or rather deemed) 

necessary and universal (at least in a certain context), namely, they are a priori, which have 

their source in reason, namely, in the understanding itself. Logicians, mathematicians, and 

natural scientists wish to find synthetic a priori judgments in the foundations of physics and 

mathematics, and, as I shall explain later, this is a very arduous task (see Chapter 3).  

In the fifth century A.D., the Greek philosopher Proclus criticized Euclid’s parallel 

postulate (i.e., “if a line segment intersects two straight lines forming two interior angles on 

the same side that sum to less than two right angles, then the two lines, if extended 

indefinitely, meet on that side on which the angles sum to less than two right angles”) by 

arguing that it should be struck out of the axioms of geometry altogether, because, actually, it 

is a theorem involving many difficulties. Proclus offered the example of a hyperbola that 

approaches its asymptotes as closely as one likes without ever meeting them (see Chapter 2), 

thus indicating that the opposite of Euclid’s conclusion is at least conceivable. Consequently, 
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according to Proclus, Euclid’s parallel postulate should be treated as a theorem, which should 

be proved from the other axioms. In fact, the first known such attempt was made, without 

success, by the second-century A.D. Greek mathematician, astronomer, and geographer 

Claudius Ptolemy. For about seventeen centuries, some of the best mathematicians 

unsuccessfully tried to prove Euclid’s parallel postulate, which is equivalent to the statement 

that, given a line 𝑙 and a point 𝑃 not on 𝑙, there exists a unique line through 𝑃 that does not 

intersect 𝑙.  

In 1824, the German mathematician and physicist Johann Carl Friedrich Gauss wrote to 

the German mathematician Franz Adolph Taurinus, who had attempted to inquire into the 

theory of the parallels, that “the assumption that the angle sum [of a triangle] is less than 180ο 

leads to a curious geometry, quite different from ours [the Euclidean], but thoroughly 

consistent, which I have developed to my entire satisfaction,” and he added that, in this new 

geometry, he could “solve every problem . . . with the exception of the determination of a 

constant, which cannot be designated a priori,” and that “the greater one takes this constant, 

the nearer one comes to Euclidean geometry, and when it is chosen infinitely large the two 

coincide.”168 However, Gauss was afraid to publish his research work in non-Euclidean 

geometry, because, as he wrote to another important German mathematician and physicist, 

Friedrich Wilhelm Bessel, on 27 January 1829, he feared “the howl from the Boeotians [an 

allusion to prejudiced, obtuse persons]” if he were to make public the results of his research 

work.169 The first mathematician to publish an account on non-Euclidean geometry was the 

Russian mathematician Nikolai Ivanovich Lobachevski (1792–1856), who initially called this 

geometry “imaginary” and, later, “pangeometry.” In the 1830s, Lobachevski openly 

challenged Kant’s argument that space is an a priori schema of consciousness, and he 

mentioned that, in order to establish the validity of his non-Euclidean geometry, he needed 

the aid of experiments, such as astronomical observations, as in the case of other natural 

laws.170 

 

 

 
(a)          (b) 

Figure 1.1. Hyperbolic Axiom and Hyperbolic Triangle. 

In Gaussian–Lobachevskian geometry, known as hyperbolic geometry, Euclid’s parallel 

postulate is replaced by the so-called “hyperbolic axiom”: for any given line 𝐿 and point 𝑃not 

 
168 Quoted in: Wolfe, Introduction to Non-Euclidean Geometry, pp. 46–47; Katz, ed., Using History to Teach 

Mathematics, p. 80. 
169 Quoted in: Katz, ed., Using History to Teach Mathematics, p. 80. 
170 See: Bell, The Search for Truth. 
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on 𝐿, in the plane containing both line 𝐿 and point 𝑃, there exist at least two distinct lines 

through 𝑃 that do not intersect 𝐿, as shown in Figure 1.1(a). In Euclidean geometry, the sum 

of the three interior angles of a triangle is always equal to 𝜋 radians (i.e., 180ο, a straight line), 

but, in hyperbolic geometry, the sum of the three interior angles of a triangle is always strictly 

less than 𝜋 radians, as shown in Figure 1.1(b); the difference is referred to as the “defect.” 

The renowned German mathematician Bernhard Riemann (1826–66), who was a student 

of Gauss, had the most profound insight in non-Euclidean geometry (see also Chapter 2). In 

the 1850s, Riemann invented the concept of an abstract geometric surface that need not be 

embeddable in Euclidean three-dimensional space, and, on this surface, the “lines” can be 

interpreted as geodesics, and the intrinsic curvature of the surface can be precisely defined, as 

shown in Figure 1.2(a): a “geodesic” is the shortest path between two points on a curved 

surface (i.e., the non-Euclidean equivalent of a Euclidean straight line); like, for instance, on 

the surface of the Earth (e.g., airplanes, wishing to minimize the time that they spend on the 

air, do not follow Euclidean straight lines, but they follow shortest curves known as 

geodesics). In other words, Riemannian geometry is geometry on the ellipsoid or on the 

sphere, and, thus, it exists on surfaces that have constant positive curvature; Gaussian–

Lobachevskian geometry exists on surfaces that have constant negative curvature; and 

Euclidean geometry exists on surfaces that have constant zero curvature. This is the way in 

which modern geometers construe the reality of non-Euclidean planes. Therefore, whereas 

hyperbolic triangles are “thin” triangles (i.e., their angle sum is strictly less than 180ο, as 

shown in Figure 1.1(b)), Riemannian triangles (i.e., triangles on the ellipsoid or on the sphere) 

are “fat” triangles (i.e., their angle sum is strictly greater than 180ο, as shown in Figure 

1.2(b)).  

 

                  
(a)        (b) 

Figure 1.2. Riemannian Geometry on the Sphere (where “Lines” are Geodesics) and a Spherical 

Triangle. 

For instance, Riemannian geometry was used by Albert Einstein in order to formulate the 

general theory of relativity: According to Newtonian mechanics, which is formulated in the 

context of Euclidean geometry (assuming zero curvature), the natural trajectory of a physical 

body that is not acted upon by any external force is a straight line. According to the general 

theory of relativity, gravity manifests itself as space-time curvature, and, therefore, what 

Newton has called natural straight-line trajectories should be generalized into curved paths 

known as geodesics (great circle arcs). Moreover, a significant relationship between the 

special theory of relativity and hyperbolic geometry was pointed out and analyzed by the 
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German physicist Arnold Sommerfeld in 1909 and by the Serbian-Croatian mathematician 

Vladimir Veričak in 1912. In particular, during a series of lectures in Munich, in 1909–10, 

Sommerfeld showed the manner in which hyperbolic geometry “facilitated the derivation of 

the formula for the addition of velocities in special relativity and made it seem natural.”171 

If Euclidean geometry is consistent, then non-Euclidean geometries, specifically 

Gaussian–Lobachevskian geometry and Riemannian geometry, are also consistent, since we 

can construct models (projections) for the latter within Euclidean geometry. Conversely, if 

non-Euclidean geometries, specifically Gaussian–Lobachevskian geometry and Riemannian 

geometry, are consistent, then Euclidean geometry is also consistent, because the lines in non-

Euclidean geometries (specifically, the “horocycles” on the “horosphere” in hyperbolic space 

and the “geodesics” in Riemannian space) form a model of the lines on the Euclidean plane. 

Thus, the aforementioned geometries are equally consistent.172 Geometry on the sphere is 

known as “embedded geometry,” since the spherical surface is thought of as embedded in 

(i.e., as part of) the three-dimensional space, whereas geometry on the plane, which is a two-

dimensional continuum, is known as “intrinsic geometry,” since the plane representation of 

the world uses only the two dimensions that are intrinsic to the surface of the sphere (for 

instance, aviation is based on geodesics, and, hence, it uses embedded geometry, whereas 

two-dimensional maps of the world use intrinsic geometry).  

It goes without saying that engineers, architects, and real-estate developers use Euclidean 

geometry, because they are concerned with ordinary measurements that are not too large. 

Nevertheless, the representational accuracy of Euclidean geometry is less certain when one is 

concerned with the measurement of larger distances. According to Albert Einstein, space and 

time are inseparable, and the geometry of space-time is affected by matter, so that light rays 

are curved by the gravitational attraction of masses. Therefore, physicists have ceased to think 

of space as an empty Newtonian box whose contours are unaffected by the masses of heavy 

bodies. Einstein has made the following statement regarding the non-Euclidean interpretation 

of geometry: “To this [non-Euclidean] interpretation of geometry I attach great importance, 

for should I not have been acquainted with it, I never would have been able to develop the 

theory of relativity.”173 

When the great French mathematician and philosopher Henri Poincaré (1854–1912) was 

asked which geometry is true, he answered as follows:  

 

If geometry were an experimental science, it would not be an exact science. 

It would be subjected to continual revision . . . The geometric axioms are 

therefore neither synthetic a priori intuitions [as Kant has contended] nor 

experimental facts [as Newton has assumed]. They are conventions. Our choice 

among all possible conventions is guided by experimental facts; but it remains 

free, and is only limited by the necessity of avoiding every contradiction, and 

thus it is that postulates may remain rigorously true even when the experimental 

laws which have determined their adoption are only approximate . . . One 

geometry cannot be more true than another: it can only be more convenient.174 

 

 
171 See: Gray, Plato’s Ghost, p. 322. 
172 See: Kulczycki, Non-Euclidean Geometry. 
173 Quoted in: Pickover, The Math Book, p. 224. 
174 Poincaré, Science and Hypothesis, p. 50. 
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For instance, Euclidean geometry is the most convenient geometry for ordinary 

engineering, but it is not the most convenient geometry for the theory of relativity or for 

aviation. Moreover, computations show that the geometry of perspective spaces is non-

Euclidean (for instance, in perspective spaces, collinearity, instead of parallelism, is 

preserved, and angles are not invariant under translation and rotation). In particular, the 

German-American mathematician Rudolf Karl Luneburg has argued that the most convenient 

geometry in order to study the “visual space,” namely, the space that we perceive through 

vision, is hyperbolic geometry.175 

Guided by Max Planck’s research work in quantum physics, by Bernhard Riemann’s 

research work in non-Euclidean geometry, and by Constantin Carathéodory’s research work 

in mathematical analysis and the axiomatization of thermodynamics, Albert Einstein 

concluded that space and time are functions of each other, so that, by referring to space, we 

actually refer to a temporal correspondence of space, and vice versa. Einstein’s theory of 

relativity implies that, in contrast to Newton’s perception of a three-dimensional space, we 

should perceive a four-dimensional space whose fourth dimension is time, and, thus, time is 

part of the substance of space; and, conversely, time is underpinned by the three classical 

dimensions of space. The experiments on which Einstein was based in order to articulate his 

general theory of relativity, according to which mass and energy are, in essence, mutually 

transformable forms of the same reality, presupposed the existence of a four-dimensional 

continuum (space-time) whose curvature is determined by gravity.  

Henri-Louis Bergson was deeply interested in the study of Einstein’s theory of relativity, 

but he attempted to transcend the concept of space-time through the distinction between 

conceptual time and real duration. Following Bergson’s thought, the French psychiatrist 

Eugène Minkowski (1885–1972) incorporated the four-dimensional space-time model of 

physics into psychoanalysis, arguing that the entire physical reality is directly related to the 

reality of consciousness, and that consciousness determines both the relations that govern 

itself and the relations that govern existence with respect to consciousness.176 According to 

Eugène Minkowski, schizophrenia is a “spectrum disorder”: it is characterized by the 

arbitrary domination of the schizoid dimension of personality (consisting of interpersonal 

withdrawal, solitude, and a tendency to indulge private cognitions) over syntonia (an 

extroverted, world-oriented sociable attitude). 

Eugène Minkowski’s aforementioned arguments are intimately related to the 

development of two alternative cosmological models: a continuous one (associated, under 

certain conditions, by Minkowski with “syntonia”) and a discrete one (associated, under 

certain conditions, by Minkowski with “schizoïdia”). Every physical theory contains the 

following two theoretical ingredients: first, the “state” of the system, namely, a complete 

description of the object for which one wants to make predictions (for instance, in the context 

of the classical theory, which is not quantized, the state would consist of the positions and the 

velocities of the particles, whereas, in order to describe the position in a quantum theory, one 

should take the wave-functions); and, second, a “dynamical law,” which is often called an 

“evolution equation” (namely, an equation that tells one how the state of the corresponding 

system changes over time). With regard to time, the distinction between the continuous 

cosmological model and the discrete one can be explained as follows: the evolution of a 

 
175 Luneburg, Mathematical Analysis of Binocular Vision. 
176 Minkowski, Lived Time. 
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system can be described either as a continuous trajectory in the space of system states (called 

the system’s “phase space”) or as a discrete sequence of successive states. With regard to 

space, the distinction between the continuous cosmological model and the discrete one can be 

explained as follows: the underlying space (which has 𝑛 ≥ 3 dimensions, depending on the 

corresponding model) can be thought of either as a continuum, where positions are defined by 

𝑛 real-valued coordinates, or as a tiling of discrete cells (i.e., completely covered by identical 

plane shapes that do not overlap with each other), or as a lattice (i.e., a partially ordered set in 

which every two elements have a unique least upper bound and a unique greatest lower 

bound), where positions are defined by 𝑛 integers. 

In classical mechanics, we have mechanical waves (such as water waves, sound waves, 

and seismic waves) and light waves, which are described in terms of a continuous 

cosmological model177: During wave motion, a particle with equilibrium position 𝑥 is 

displaced some distance 𝑦 in the direction perpendicular to the 𝑥-axis, and the value of 𝑦 

depends on 𝑥 (namely, on the specific particle) and on the time 𝑡 when we observe it, so that 

𝑦 is a function of 𝑥 and 𝑡, symbolically: 𝑦 = 𝑓(𝑥, 𝑡). Let us consider a string kept at a 

constant tension 𝐹𝑇 in such a way that one end is fixed and the free end oscillates between 

𝑦 = +𝐴 and 𝑦 = −𝐴 due to a mechanical device or a constant frequency. Given that the sine 

function of an angle 𝜃 oscillates between +1 and −1 and repeats every 2𝜋 radians, and that 

the 𝑦-position of the medium, or the wave-function, oscillates between +𝐴 and – 𝐴 and 

repeats every wave-length 𝜆, we obtain the classical wave equation for the computation of the 

motion of point 𝑥 at time 𝑡, as the wave disturbance travels from 𝑥 = 0 to some point 𝑥 to the 

right of the origin in an amount of time given by 𝑥/𝑐, where 𝑐 is the wave speed: 

 

𝑦(𝑥, 𝑡) = 𝐴𝑠𝑖𝑛𝜃(𝑡 −
𝑥

𝑐
) = 𝐴𝑠𝑖𝑛2𝜋𝑓(𝑡 −

𝑥

𝑐
), 

 

where 𝑐 is the wave speed, 𝑐 =
𝜆

𝑇
, where 𝜆 denotes the wavelength, and 𝑇 denotes the time 

period (𝑡𝑖𝑚𝑒 𝑝𝑒𝑟𝑖𝑜𝑑 =
1

𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦
). 

On the other hand, in the context of quantum physics, the Danish quantum physicist Niels 

Bohr has articulated a model of the atom, according to which electrons in atoms move in 

circular orbits around a certain nucleus, and they can only orbit stably in certain fixed circular 

orbits at a discrete set of distances from the nucleus. These orbits, called energy shells or 

energy levels, are associated with definite energies. Nevertheless, as the theoretical physicist 

David Tong has argued, in contrast to Bohr’s discrete cosmological model, integers are not 

inputs of the theory but outputs, and, therefore, ultimately, quantum-mechanical models are 

underpinned by an underlying continuous process. For instance—according to David Tong—

in the hydrogen atom, the processes described by the theory mold discreteness from the 

corresponding system’s underlying continuity.178 David Tong argues that the building blocks 

of modern physical theories are not particles but fields, namely, continuous, fluid-like 

substances that are spread throughout the entire universe, and they ripple in ways that have 

very interesting geometries.179 Far from maintaining a sharp distinction between continuous 

cosmological models and discrete ones, modern physics tends to highlight the underlying 

 
177 See: Sears, Zemansky, and Young, College Physics, pp. 477–93.  
178Tong, “The Unquantum Quantum.” 

179 Ibid. 
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structural continuity of the world. This situation is similar to the following debate in computer 

science: all computers are analog computers, because digital computers consist of analog 

parts, and, even though one may argue that those analog parts depend on discrete quantum 

phenomena, another may counter-argue that those discrete quantum phenomena depend on 

continuous fields.180 The aforementioned scientific research results seem to corroborate 

Bergson’s insistence on a continuous worldview, such as that of classical wave mechanics, as 

opposed to the French epistemologist Gaston Bachelard’s insistence on a discrete worldview, 

inspired by earlier formulations of quantum mechanics.181 However, the debate does not end 

here. 

The perception of the relation of dynamized time to both the couple (𝑡𝑖𝑚𝑒, 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛) 

and the couple (𝑠𝑝𝑎𝑐𝑒, 𝑒𝑥𝑡𝑒𝑛𝑠𝑖𝑜𝑛), which play fundamental roles in the theory of relativity 

as well as in the continuous and the discrete cosmological models, can be studied on the basis 

of the fact that the observed, fluid-like objective continuity can be broken (“discretized”) as a 

consequence of the experienced continuity of conscious states whenever consciousness 

manifests its intentionality in the external world and exerts its intentional influence on the 

reality of the world. When this is the case, consciousness restructures and reorganizes the 

world in a way that, far from being arbitrary, is determined by the capabilities of 

consciousness and their relation to the capabilities of the world. Thus, the fact that 

consciousness may interrupt the flow of particular states of the world does not signify an 

interruption of the operation of the world itself, but it signifies that consciousness controls 

and manages the operation of the world.  

In view of the foregoing, the cohesive bond between temporal presence and spatial 

presence is manifested in history. History is a series of acts through which consciousness 

controls and manages regions of the world. In other words, history is a series of interventions 

of consciousness in the space-time continuum, which underpin the distinction between the 

notion of before and the notion of after. Moreover, the relationship between time and space as 

well as the dynamization of both time and space underpin the notion of dynamized space, 

which complements the notion of dynamized time.  

On the basis of the foregoing ideas, space is not a three-dimensional concept, or 

magnitude, but a six-dimensional one, because space depends not only on the concepts of 

“somewhere” and “nowhere,” which refer to the place of bodies, but also on the concept of 

“here,” which is determined by consciousness. Therefore, a spatial point should be defined in 

a six-dimensional coordinate system, consisting of the three classical “big” dimensions of 

space and of three “small” spatial dimensions: besides each of the three classical “big” 

dimensions of space (length, width, height/depth), there is a corresponding dimension of 

“here” (i.e., “here-length,” “here-width,” “here-height/depth”), which is determined by the 

manner in which consciousness experiences and organizes the corresponding dimension of 

extension (i.e., length, width, height/depth). Because the aforementioned “here-dimensions” 

are conscious constructions, they can be thought of as spatial objects that are determined by 

consciousness. Therefore, a spatial point 𝑝 is an ordered pair (𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6), defined 

by length, width, height/depth, here-length, here-width, and here-height/depth; and total real 

space can (and, in fact, should) be parametrized in terms of the aforementioned six spatial 

dimensions (regarding the mathematical concepts involved in this analysis, see Chapter 2). 

 
180 Ibid.  
181 Bachelard, The Poetics of Space. 
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This parametrized space is a manifestation of the fact that consciousness can restructure and 

reorganize the world whenever consciousness intentionally refers to the world, and it is 

inseparable from the parametrized time studied in section 1.3.1. Therefore, we obtain an 

eight-dimensional extension of the four-dimensional space-time. This conclusion is in 

agreement with the applications of “octonions” (an eight-dimensional analog of complex 

numbers) in string theory, special relativity, and quantum logic.182 

Through the dynamization of space-time and through its operation in the context of 

dynamized space-time, consciousness expresses its dynamic reference to the world. 

Dynamization underpins and vindicates the intentionality of the consciousness of a being that 

is governed not only by a biological program but also by an evaluative one. By the term 

“evaluative program,” I mean a program in terms of which consciousness 

structures/restructures itself and the world. In the context of an evaluative program, 

consciousness: 

 

• determines the content of a scholarly discipline by tackling the philosophical 

problems (particularly, the ontological, epistemological, and ethical problems) that 

the corresponding object evokes; 

• is committed to logic and reasonable explanations; 

• is committed to history, which, as I have already argued, refers both to a 

methodology (i.e., historiography) and to a way of understanding reality (in terms of 

the interventions of consciousness in the world); and 

• is committed to a system of values and to a moral criterion.  

 

Thus, both the spatial mode of being and the temporal mode of being are enriched with 

the possibility of experiencing and utilizing a dynamized mode of being. Consequently, space 

and time are not universal conditions, or the conditions in which consciousness operates, but 

consciousness creates its spatio-temporal existential conditions by dynamizing space-time. In 

particular, consciousness integrates itself into the world in order to dynamize the world and, 

thus, in order to create dynamized space and dynamized time, structuring/restructuring the 

world according to the intentionality of consciousness. In this way, consciousness utilizes the 

world as a source of energy that allows a conscious being to develop into an enhanced, 

superior version of itself according to its own structure in the context of an organism. 

Contrary to what some reductionists maintain, the fact that the integration of beings into 

the world underpins their organization, which, in turn, underpins the completion and the 

integration of their presence, does not imply that the presence of beings is passive or that the 

study of beings as agents is of secondary significance vis-à-vis the study of beings as 

organisms of the world. Being as agency is best understood as dynamic intentionality. The 

reality of a being as an agent is manifested through discarding those possibilities which do not 

comply with the given being’s nature or with its program of development as well as though 

the identification and the embracing of those elements which are akin to the given being’s 

nature and reinforce it. In other words, being as agency is manifested through self-

affirmation. In the context of their integration into the world, beings are structurally 

interrelated and interdependent, and they affirm themselves within each other, but the nature 

of each being is not altered by this interaction.  

 
182 See: Baez, “The Octonions.” 
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The constitutive elements of being, namely, the categories of being, interact with the 

constitutive elements of the reality of the world, and, therefore, apart from being modes of 

being, they become modes of enhanced being. The intentionality of the structure of a being, 

namely, the character of a being’s intentionality, is manifested through the dynamization of 

the existential conditions of that being by that being, and, therefore, consciousness 

restructures both the world and itself in a way that ontologically upgrades the corresponding 

being into an enhanced, superior version of itself, so that its organic integration does not bring 

about its substantial alteration. The aforementioned perspective paves a new way of thinking 

about the problem of the extension of the quantum formalism, which pertains to the 

contradiction between the formalism of quantum mechanics and the formalism of classical 

physics (including the general theory of relativity). 

It goes without saying that the general theory of relativity and quantum mechanics are the 

two scientific theoretical systems that most explain the physical world: the former explains 

the macro-structure of the physical reality, while the latter explains the micro-structure of the 

physical reality. Many physicists maintain that these two theories must be integrated into a 

unified physical theory, while others, such as Niels Bohr and Freeman Dyson,183 maintain 

that such a theoretical unification is neither needed nor plausible. In particular, according to 

Freeman Dyson, the classical worldview, to which the general theory of relativity belongs, 

underpins our knowledge of the past and of indisputable facts (such as the fact that the Earth 

condensed out of a cloud of dust, the fact that heat from the Earth’s core creates convection 

currents that cause tectonic plates to move, the fact that uranium isotopes are radioactive, 

and—because the nuclei of radioactive elements are unstable—they are transformed into 

other elements in the context of a process known as radioactive decay, generally resulting in 

the emission of alpha or beta particles from the nucleus, etc.), whereas quantum mechanics is 

concerned with future possibilities and the calculation of probabilities (for instance, the 

probability of an atom of uranium decaying at time 𝑡0 in the future, etc.). Everything that we 

can say about the physical world with certainty and everything that we can definitely say 

about the past of the physical world are based on the classical worldview, which is founded 

on two major theoretical pillars (depending on the scale of our analysis): Newtonian 

mechanics and the general theory of relativity. In fact, the general theory of relativity is a 

geometric theory of gravitation and of space-time, explaining the behavior of the universe on 

the large scale. On the other hand, the quantum world is not directly observable, and it can be 

used only for calculating probabilities (see also Chapter 2). 

The distinction between being actually and being potentially, the concepts of dynamized 

time and of dynamized space, as well as the distinction between the modes of being and the 

modes of enhanced being, as I have already expounded them, provide new insights to the 

understanding of the fundamental difference between the general theory of relativity and 

quantum mechanics: the objects with which the general theory of relativity is concerned are 

actual beings, and, therefore, Einstein’s theory of gravity and of space-time deals with 

actuality (being actually) in the physical world, whereas the objects with which quantum 

mechanics is concerned are potential beings, and, therefore, quantum mechanics is concerned 

with potentiality (being potentially) in the physical world. Therefore, the reality of the 

physical world is not one, since it consists of two different realms, namely, the realm of 

actuality and the realm of potentiality; but the reality of the physical world is unified, in the 
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sense that there is a structural continuity between the reality described by quantum mechanics 

and the reality described by the general theory of relativity, since both of them are parts of the 

intrinsic program of development of the physical world. David Tong’s argument that the 

building blocks of physics are fields can be better understood and appreciated in the context 

of the aforementioned argument about the structural continuity between the worldview of 

quantum mechanics and the worldview of the general theory of relativity.  

Moreover, in accordance with the foregoing inquiries into dynamized time and 

dynamized space, the worldview of quantum mechanics and the worldview of the general 

theory of relativity do not represent the world (the reality of the world) more than they 

represent views (the reality of consciousness). In fact, consciousness is fundamental to the 

way in which “existence” is perceived in the context of modern positive science. In the 

context of modern positive science, a (successful) scientific theory (such as the general theory 

of relativity, quantum mechanics, etc.) is a mathematical framework, that is, an abstract 

system, from which we can derive predictions that agree with observation. Therefore, 

physical objects (such as time, black holes, quarks, etc.), which are said to “exist” in the 

physical world, are names that physicists give to mathematical structures that are parts of 

successful hypothetico-deductive systems, and, in physics, a hypothetico-deductive system is 

said to be successful if the predictions, that is, the generalizations, that derive from it agree 

with observations and logic (see also Chapter 2). This is the meaning of the term “existence” 

in the context of the natural sciences. However, as I shall explain in section 3.6, the definition 

of empirical significance and especially the articulation of criteria of empirical significance in 

the context of modern science are highly controversial and complex issues. 

 

 

1.3.3. Consciousness, the World, and the Dialectic of Rational Dynamicity  

 

My foregoing analyses and arguments point us in the direction of the awareness that 

reality is composed of both the presence of the world within consciousness (namely, of 

intellectual representations of the world) and of the reality of the world. In fact, even 

cosmology—namely, the branch of philosophy that is preoccupied with the study of the 

nature and the meaning of the world—is ultimately based on consciousness, because the latter 

determines which part of reality is external to and independent of consciousness. 

Furthermore, philosophical research, in general, is based on the elucidation of the relations 

between consciousness and extra-conscious reality. Hence, those natural scientists who are 

insensitive to ontological questions and do not consider ontology to be an integral part of their 

research work do not really know what they do. The renowned French mathematician and 

philosopher René Thom has recognized the importance of ontology for the natural sciences, 

in general, and he has conceded that “modern science has made the mistake of foregoing all 

ontology by reducing the criteria of truth to pragmatic success,” and that, even though 

“pragmatic success is a source of pregnance and so of signification,” pragmatism can produce 

only “an immediate, purely local meaning,” and it “is hardly more than the conceptualized 

form of a certain return to animal nature.”184 

As I mentioned in section 1.2.2, there are two fundamental “schools” of ontology: 

philosophical realism and idealism. According to philosophical realism, the fact that 
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experience provides images—even unrelated to each other—of a reality that seems to lie 

outside the dominion of consciousness implies that the reality of the world is the cause of the 

particular images of the world that are present within consciousness. From the realist 

perspective, the principle of causality points us in the direction of the claim that the 

autonomous existence of reality is naturally and logically necessary. In addition, as I 

explained in section 1.2.2, the philosophical “school” of realism is subdivided into several 

particular views that differ from each other, namely: the monist variety of realism, which is 

further subdivided into the materialist type of monism and the spiritualist type of monism; 

and the dualist variety of realism. It is worth pointing out that, in the context of 

Neoplatonism, Plato’s dualism was transformed into a spiritualist theory, since the “One” is 

the beingly being par excellence, whereas matter does not really exist, but, during subsequent 

stages of Neoplatonism, specifically, in the context of Proclus’s philosophical work, 

Neoplatonism assigned being to matter. 

The second fundamental “school” of ontology is idealism. According to idealism, the 

nature of consciousness is not totally different from or opposite to the nature of extra-

conscious reality. The representatives of idealism, as it was formed in the context of modern 

philosophy, highlight the logical principle of identity (in contradistinction to the logical 

principle of causality, which is highlighted by the representatives of philosophical realism), 

and their way of thinking can be summarized as follows: if the nature of reality were totally 

different from the nature of consciousness, then the human being would be unable to know 

reality. Thus, ultimately, idealism construes and studies the world not as something reflected 

in consciousness, but as an extension and a projection of consciousness outside itself and as 

part of consciousness. The “school” of idealism presupposes a radical form and a very high 

degree of individuation, and, for this reason, the fundamental arguments of modern idealism 

were inconceivable in the ancient and the medieval societies, which were characterized by a 

high degree of collectivism, and, as I shall explain shortly, the philosophical “school” of 

idealism was articulated in the eighteenth century under particular social-anthropological and 

cultural conditions.  

In the Middle Ages, after the dismantling of the Western Roman Empire, knowledge was 

largely subjugated to belief, and philosophy was largely subjugated to religious belief 

systems, “faith,” which required humanity to exist for the sake of a separate, divine world. 

The confinement of human consciousness within the realm of belief brought about the 

confinement of humanity within the realm of emotion, which, in turn, underpinned the 

development of mystical theology as an internal, apophatic, experience of the deity. However, 

after the ninth century A.D., and especially during the twelfth and the thirteenth centuries, 

scholastic theologians developed a new spiritual research program: they attempted to utilize 

reason and to integrate reason into theology. In the context of scholasticism, philosophy—as 

the “handmaiden of theology” (“ancilla theologiae”), according to Petrus Damianus’s and 

Thomas Aquinas’s thinking—undertook to achieve a great intellectual compromise between 

revealed truth and ontology in compliance with the teachings of the church fathers.185 The 

scholastics’ acquaintance with Aristotle’s philosophy (a magnificent example of dualist 

realism), which was reinforced by the Arabs’ translations of Aristotle’s works, opened new 

philosophical horizons, and it made the Western intellectual elite capable of reconsidering the 

existing stock of knowledge and of recognizing the autonomy of sciences, such as 

 
185 See: Gracia and Noone, eds., A Companion to Philosophy in the Middle Ages. 
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mathematics, astronomy, and medicine. In particular, Thomas Aquinas managed to inquire 

into theological issues by articulating philosophical arguments and to create a synthesis 

between theology and philosophy, while recognizing and explaining the methodological 

differences between theology and philosophy. Thomas Aquinas argues that God knows all 

things in One, namely, in Himself, and, therefore, He does not need any methodologies, 

syllogisms, analyses, or syntheses, whereas the human being knows only under specific 

conditions and through specific mental processes. In Scripta super libros Sententiarum, III, 

31, Thomas Aquinas argues that, “in the present life, it is true what the Philosopher [Aristotle] 

says, namely that, without images [‘phantasmata’], the soul could neither develop science nor 

revise the things that it already knows; since images are for the intellect what sensibilia [i.e., 

sensory-sensuous data] are for the senses.” Thus, positive, cataphatic, theology arose, and the 

inquiry into divine reason underpinned the legitimation of human reason.  

One of the most important consequences of the legitimation of human reason was that 

logic gave rise to the problem of certainty, which, in turn, gave rise to heated debates about 

human thinking and its validity. In the fourteenth century, philosophy was preoccupied with 

the problem of universals: do concepts (that is, “genera” and “species”) exist in nature 

(“subsistentia”), or are they mere abstractions (“nuda intellect”)? Thus, as I explained in 

section 1.2.2, medieval Western philosophy was divided into two mutually competing 

philosophical “camps”: realism and nominalism. However, in the late medieval period, the 

philosophy that prevailed was a form of Aristotelianism adapted to the spirit of Christianity, 

and the development of this philosophy was mainly due to the work of Thomas Aquinas. 

However, Platonism and Neoplatonism survived in a dynamic way, and they inspired 

subsequent philosophers, such as George Berkeley and Georg Wilhelm Friedrich Hegel, 

respectively, whose philosophies exerted an important influence on the development of 

modern philosophy.  

The Renaissance led European civilization to modernity, combining elements of the 

medieval civilization and new findings. The term “Renaissance” was coined by the French 

historian Jules Michelet (1798–1874), who used it in his seminal book Histoire de France 

(History of France) in order to describe the historical period that roughly covers the time 

from 1400 to 1600 as “the discovery of the world, the discovery of man.”186 The Renaissance 

was guided by the idea of reviving classical Antiquity, but it attempted to do so in a creative 

and unique way that was underpinned by the post-medieval human being’s self-confidence 

and humanistic spirit. Hence, the Renaissance is associated with the following events:  

 

• the founding of Italian republics;  

• the development of political science by the Italian diplomat, political philosopher, 

and writer Niccolò Machiavelli;  

• the placing of emphasis on the principle of harmony (methodically studied by the 

Spanish mathematician, music theorist, and composer Bartolomé Ramos de Pareja, 

as well as by the Italian music theorists and composers Franchinus Gaffurius, 

Giovanni Spataro, and Pietro Aaron);  

• the development of the idea that the universe is infinite (proposed by the Italian 

Dominican friar, philosopher, and mathematician Giordano Bruno); 

 
186 Michelet, Histoire de France, vol. 7.  
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• the invention of the mechanical movable type printing press (by the German 

goldsmith and printer Johannes Gutenberg); 

• the manufacturing of high-quality gunpowder and firearms; 

• the construction and the systematic use of the nautical (magnetic) compass; 

• the achievement of important advances in machinery, mining, and chemistry (as 

exemplified in Georg Bauer’s treatise De Re Metallica, published in 1556); 

• the rigorous formulation of Heliocentrism (i.e., the astronomical model in which the 

Earth and other planets revolve around the Sun at the center of the solar system; this 

astronomical model was originally proposed by the ancient Greek astronomer and 

mathematician Aristarchus of Samos, and it was reformulated in a scientifically more 

rigorous way by the Polish mathematician and astronomer Nicolaus Copernicus); 

• the Lutheran Reformation (despite the fact that Matin Luther’s teaching about the 

three “Solae” has caused agitation and controversies, Martin Luther’s attempt was 

focused on liberating Western Christians from legalism and from a feeling of guilt 

that was deliberately cultivated by particular authoritarian clerical elites, and, 

therefore, he emphasized that the primary and most important factor that determines 

whether one can achieve eternal life is one’s psychical openness toward Christ, the 

belief that God comes to serve humanity187); 

• and the mastering of perspective space and perspective drawing (Renaissance artists 

replaced the extra-temporal and extra-spatial symbolism of medieval painting with 

the subject’s own logical way of seeing the world).  

 

In the context of the Renaissance, humanism, as a cultural movement, was based on 

classical ancient literature in order to teach trust in education, art, and science, to defend 

rational thinking and its link to action, to propose the use of a scholarly advanced language in 

contradistinction to “common speech,” and to highlight personal expression. Thus, Dante 

Alighieri’s poetry was largely displaced by Francesco Petrarca’s poetry, whose lyricism 

expresses the sensitivity of the emerging individual.  

Moreover, it is important to mention that the Renaissance was characterized by a new 

individualist spirit, which highlights the human individual as a moral, independent, and 

autonomous being, but it was expressed in different and sometimes contradictory ways, 

including science, art, mysticism, modern rationalism, and modern forms of 

communitarianism. Thus, the history of the Renaissance is identified with artists, engineers, 

and inventors, such as Filippo Brunelleschi, Donatello, Sandro Botticelli, and Leonardo da 

Vinci, as well as with mystical philosophers, occultists, and scientists, such as Giordano 

Bruno, Henry C. Agrippa, Jakob Böhme, Robert Boyle, John Dee, Paracelsus, and Sir Walter 

Raleigh.  

The natural sciences and their relationship with philosophy, the recognition of the 

significance of individual consciousness, the development of towns and bourgeois culture, the 

creation of sovereign nation-states as a result of the Treaty of Westphalia, which was signed 

 
187 The fundamental principles held by Luther to be central to the doctrine of salvation are the following: “Sola 

scriptura” (“by Scripture alone”); “Sola fide” (“by faith alone”); and “Sola gratia” (“by grace alone”). 

Furthermore, in the context of the controversy between the church of Rome and Luther, Lutheranism 

contributed to the revival of patristic theology, because the Lutheran movement had to delve into the early 

church fathers in order to try to refute the arguments of the Roman Catholic church against Luther’s theology. 

For more details, one may study the works of the eminent theologian Martin Chemnitz (1522–86). 
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in 1648, marking the end of European religious wars, the establishment of standards of 

international political and economic behavior, and the theory of natural law as a 

counterbalance to “monarchy by divine right” gave rise to a new historical reality that was 

characterized by rationalism and empiricism, and it was spiritually founded on a reflective 

human being, known as the “modern subject.” This is the historical period of the seventeenth 

century, which proclaimed consciousness to be a category distinct from the world, and it 

became strongly preoccupied with the theory of knowledge, namely, with the inquiry into the 

relations between consciousness and its objects.  

As I have already mentioned, some types of dualism emphasize the significance of 

matter, while others emphasize the significance of spirit, namely, of those aspects of a being 

that are not exhausted in physics and biology. The type of dualism that prevailed in modern 

philosophy is Descartes’s dualism, which is based on the distinction between “extension” and 

“cognition.” Descartes assigned primary importance to cognition, in contrast to his 

philosophical opponent, the French philosopher, scientific chronicler, experimentalist, and 

Roman Catholic priest Pierre Gassendi, who proposed a neo-Epicurean cosmology according 

to which the material constitution of the world should not be considered as one of the primary 

aspects of the world at all. Moreover, as I have already mentioned, Descartes also opposed 

scholasticism. Descartes is considered to be the father of modern philosophy, because he 

founded his spiritualist variety of dualism on his perception of the self-reliance of reason. 

In fact, Descartes’s perception of the self-reliance of reason is the common attribute of all 

theories that belong to the philosophical “school” of Cartesianism: First, the French Cartesian 

philosopher and Oratorian priest Nicolas Malebranche articulated a synthesis between 

Augustinian theology and Cartesianism by arguing that spirit is the substance of the absolute, 

and cognition is the imposition of the spirit through the perception of extended matter by 

consciousness. In other words, according to Malebranche, there is only one supreme Reason 

encompassing the ideas of all possible things, and the material world is terra incognita (i.e., 

we do not know whether it exists or not). Second, in Spinoza’s monist system, cognition 

(which is considered to be the most important attribute of consciousness) and extension are 

interconnected due to a mutual transition from one extended thing to another, since, according 

to Spinoza’s Ethics, God, who is considered to be equivalent to nature, is an “extended thing” 

(“res extensa”), and bodies are “modes of extension” (“modi extensionis”). Spinoza’s 

ontological sequence of extended things indicates a strong Neoplatonic influence on his 

philosophy, but, in the case of Spinoza’s philosophy, Neoplatonism is adapted to Descartes’s 

rationalism, and it gives rise to a deterministic and pantheistic model of the universe. Third, 

Leibniz gives primacy to motion over extension. In Leibniz’s philosophy, the concept of 

inertia plays a major role, and it is interpreted as an expression of force rather than as the 

absence of motion. Leibniz’s monadology, namely, his theory of the existence of real, unique, 

indivisible, fundamental things (“monads”) that constitute the world, is a type of spiritualist 

atomism: whereas “atoms” were meant to be the smallest unit of extension out of which all 

larger extended things are built, Leibniz’s monads are not extended, and they are “pregnant” 

with the future and “laden” with the past (so that, according to Leibniz, space is an illusion). 

With regard to the substance of the monads, Leibniz disagrees with Descartes by arguing that 

there exist only spiritual, and not material, monads. Nevertheless, Leibniz espouses 

Descartes’s rationalism by arguing that the order of the monads is determined by an a priori 

and definite harmony, and, therefore, Leibniz’s monads are governed by reason.  
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As I have already mentioned, materialism is a kind of monist realism that espouses 

Descartes’s rationalism, while discarding Descartes’s dualism. Descartes maintains that the 

entire reality is subject to a mechanistic organization, and that, by exception, the human being 

is composed of two separate substances: matter/body and soul/mind. In his Treatise of Man, 

Descartes argues that the pineal gland (or “conarion,” or “epiphysis celebri”)188 is the 

principal seat of the soul and the place in which all thoughts are formed, and, in his Passions 

of the Soul, Descartes argues that, according to the mechanism of the human body, whenever 

the pineal gland is moved in any way by the soul/mind, or by any other cause, it drives spirits 

toward the pores of the brain, which, in turn, direct them to the muscles through the nervous 

system, and, in this way, the pineal gland makes the spirits move the limbs.189 Descartes 

described the aforementioned animal spirits as “a very fine wind, or rather a very lively and 

pure flame,”190 and as “a certain very fine air or wind,”191 and he thought that the pineal gland 

is full of animal spirits brought to it by the surrounding arteries. However, the ancient Greek 

anatomist Galen had already discovered that the pineal gland is surrounded by veins rather 

than arteries, and the Italian anatomist Niccolò Massa had already discovered that the 

ventricles are filled with liquid rather than Descartes’s airy spirits.  

Descartes explains the distinction and the interaction between the soul/mind and the body 

as follows: “as regards the body in particular, we have only the notion of extension, which 

entails the notions of shape and motion”; “as regards the soul on its own, we have only the 

notion of thought, which includes the perceptions of the intellect and the inclinations of the 

will”; and, “as regards the soul and the body together, we have only the notion of their union, 

on which depends our notion of the soul’s power to move the body, and the body’s power to 

act on the soul and cause its sensations and passions.”192 Moreover, in his Third Mediation, 

Descartes argues that the soul/mind, which is more real than the body, causes the latter’s 

motions according to the aforementioned mechanism. According to Descartes, the soul/mind 

is “the true substantial form of man,” and, as he wrote to Denis Mesland, on 9 February 1645, 

the soul/mind is “substantially united” with the human body, thus implying that the reality of 

the human being ultimately reduces to the reality of the human soul/mind.193 The biological 

fallacies and the philosophical gaps of Descartes’s treatment of the mind–body problem led 

post-Cartesian mechanical philosophy to discard Descartes’s concept of the soul/mind and to 

apply Descartes’s concept of an animal-machine to the study of the human brain, and, thus, 

post-Cartesian mechanical philosophy maintains that the brain secretes cognition just as, for 

instance, the liver secretes bile. As I shall explain shortly, this argument is both logically and 

biologically mistaken, but, in the eighteenth and the nineteenth centuries, it was endorsed by 

naive materialists, such as the French physician and philosopher Julien Offray de La Mettrie, 

the German-Swiss physician and philosopher Karl Vogt, and the German physician, biologist, 

and philosopher Ernst Haeckel.  

In contrast to the aforementioned naive varieties of materialism, Karl Marx formulated a 

materialist theory that is a reversed form of the Hegelian dialectic. In particular, Marx 

endorsed Hegel’s concepts of antithesis and synthesis, and he applied them to the study of 

 
188 The pineal gland is located in the epithalamus (a part of the forebrain), near the center of the brain, between the 

two brain hemispheres, and it produces melatonin, a serotonin-derived hormone that modulates sleep patterns. 
189 Descartes, Oeuvres de Descartes, 3:19–20, 11:354. 
190 Ibid, 11:129. 
191 Ibid, 11:331. 
192 Ibid, 3:665. 
193 Ibid, 3:508, 4:166. 
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economics, in the context of his theory of surplus value, as well as to cosmology, attempting, 

like Hegel, to articulate a philosophy of nature. According to Marx, surplus value is the new, 

additional value (antithesis) created by the labor force in excess of the workers’ own labor 

cost (thesis), and it is appropriated by the capitalists as profit when the production is sold 

(synthesis). Marx’s dialectic is the converse of Hegel’s dialectic, in the sense that Marx 

interchanged the hypothesis and the conclusion in Hegel’s dialectic, in accordance with 

Marx’s thesis that people’s social being determines consciousness rather than the converse. 

However, ultimately, Marx did not manage to articulate a complete philosophy of nature, 

since he did not conceive of nature as separate from society, and he argued that the 

explanation of space, nature, history, consciousness, and, in general, of every aspect of 

existence is reducible to the following three material laws: law of opposites (i.e., every 

existent is a combination of opposites), law of negation (i.e., every entity tends to negate itself 

in order to reproduce itself in higher quantity), and law of transformation (i.e., a continuous 

quantitative development by a particular class of entities may give rise to a qualitative 

change, and, therefore, to the production of a completely new form or entity).  

Even though neither Marx nor Hegel managed to articulate a complete philosophy of 

nature, it is worth pointing out that Marx was more careful than Hegel and Comte in applying 

the dialectical method in the context of dialectical materialism, because, in contrast to Hegel 

and Comte, Marx avoided determining the precise moment of the beginning of the final stage 

of the development of the desired type of society. According to Marx, the beginning of the 

final stage of the development of the desired type of society (namely, communism) 

corresponds to a future moment that is approaching gradually. Thus, Marx’s dialectical model 

is more flexible than Hegel’s and Conte’s dialectical models. Intimately related to the 

intellectual flexibility of Marx’s dialectical model is his argument that human emancipation is 

based on critical self-consciousness, whereas, in Hegel’s model, the request for human 

emancipation and the principle of critical self-consciousness are rather meaningless, since, in 

the context of Hegelianism, humanity is subjugated to the autonomous logic of historical 

becoming. 

Marx argues: “Only when man has recognized and organized his forces propres as social 

forces, and consequently no longer separates power from himself in the shape of political 

power, only then will human emancipation have been accomplished.”194 According to Marx, 

theory and practice will lead to human emancipation only when consciousness and reality are 

brought into unison, namely, only when humanity’s conception of consciousness, conceived 

as “theory,” will be historical, and, as Marx contends, “theory becomes a material force once 

it has gripped the masses.”195 Furthermore, as I have already mentioned, Antonio Gramsci has 

highlighted the importance of culture and discourse as catalysts for creating those subjective 

conditions (namely, conscious contents and states) which, together with objective conditions, 

are necessary in order to bring about desired historical changes and to provide a new political 

and economic order. Gramsci’s interpretation of Marx’s theory of communism signifies 

reason in revolt, and it elaborates on the subjective requisites of social transformation, which 

were also recognized by Marx himself, since, in 1843, Marx wrote to Arnold Ruge: 

 

 
194 Marx, “On the Jewish Question,” p. 68.  
195 Marx, Critique of Hegel’s Philosophy of Right, p. 137. 
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The internal obstacles seem to be almost greater than external difficulties . . . The reform 

of consciousness consists entirely in making the world aware of its own consciousness, in 

arousing it from its dream of itself, in explaining its own actions to it . . . Hence, our program 

must be: the reform of consciousness.196 

 

As regards the naive materialists’ approach to the mind–body problem, it should be 

mentioned that modern biology implies that the functioning of a biological organism can be 

compared to a bio-chemical factory, but it does not legitimate the argument that 

consciousness is caused by the brain. It goes without saying that modern biologists have 

discovered many correlations between neural activity and conscious experiences, but a 

“cause-and-effect relationship” between neural activity and conscious experiences cannot be 

deduced solely on the basis of an observed association, or “correlation,” between them. 

According to an old statistical adage, “correlation does not imply causation.” Hence, for 

instance, in the case of anxiety disorders, symptomatic pharmacotherapy (e.g., through the 

administration of: neuroleptic or antipsychotic drugs, such as derivatives of phenothiazine; 

narcotic–hypnotic drugs, such as phenobarbital; and tranquilizers and antidepressants, such as 

benzodiazepines) proves that there exist important neural correlates of consciousness (i.e., a 

biological substrate of conscious experiences), but the explanation of the phenomenon of 

consciousness cannot be exhausted in or entirely reduced to the explanation of its biological 

substrate, for which reason, for instance, the treatment of anxiety disorders cannot be 

constrained to symptomatic pharmacotherapy, but it calls for other types of treatment, too, 

such as psychoanalytic therapy. Indeed, if consciousness were only a consequence of bio-

chemical processes in the brain, or the central nervous system, then the academic discipline of 

psychology should be totally abolished and totally replaced by bio-chemistry.  

Furthermore, apart from the “down-top” pathways that feed forward data from the sense 

organs up to the brain, there are also “top-down” response pathways, which are intimately 

related to the intentionality of consciousness, and, in several cases, their effects (positive or 

negative) are more important than the effects of the “down-top” pathways. Far from passively 

responding to or reflecting sensory-sensuous data, consciousness creates abstract models of 

them, which are often structurally intertwined with the world, and, in fact, the natural sciences 

are based on such models. Thus, scientific theories are not occurrences seen and the 

associations recorded, but they are explanations of them. The Austrian physicist and 

philosopher Ludwig Boltzmann (1844–1906) has argued that a theory is not a reproduction of 

external reality, but is a picture, mentally formed, of a bounded realm or domain of activity, 

namely, it is an intellectual depiction of the organization of a domain and of the connections 

between its parts.197 

In the beginning of the twentieth century, Gestalt psychology highlighted the active role 

of consciousness in perception. Gestalt psychology was founded by Max Wertheimer (1880–

1943), an Austro-Hungarian psychologist.198 Wertheimer noted that we perceive motion 

where there is nothing more than a rapid sequence of individual sensory events. This 

argument is based on observations that he made with his stroboscope at the Frankfurt train 

station and on additional observations that he made in his laboratory when he experimented 

with lights flashing in rapid succession (like the Christmas lights that appear to course around 

 
196 Marx and Ruge, Deutsch–Französische Jahrbücher, Letters to Ruge, September 1843. 
197 Boltzmann, “Theories as Representations.” 
198 See: Asch, “Max Wertheimer’s Contribution to Modern Psychology.” 
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the tree, or the fancy neon signs in Las Vegas that seem to move). Wertheimer called this 

effect “apparent motion,” and it is actually the basic principle of motion pictures.  

According to Wertheimer, apparent motion proves that people don’t respond to isolated 

segments of sensation but to the whole (Gestalt) of the situation. Gestalt psychologists have 

shown, through various experiments, that consciousness does not respond to isolated 

segments of sensation but to the whole (Gestalt) of the situation, and they have argued that, in 

perception, there are many organizing principles called “Gestalt laws.”199 Examples of such 

laws are the following: the law of closure: if something is missing in an otherwise complete 

figure, we shall tend to add it (e.g., a triangle with a small part of its edge missing, will still be 

seen as a triangle, and also we shall “close” the gap); the law of similarity: we shall tend to 

group similar items together, to see them as forming a whole (Gestalt), within a larger form; 

the law of proximity: things that are close together are seen as belonging together.200 Thus, 

consciousness perceives and thinks in nonlinear ways, and it actively influences perception. 

In addition, Gestalt psychology has shown that, in perception, the method of trial and error 

coexists with psychological intuition (which plays a protagonist role in Bergson’s 

philosophy).  

In 2001, Harold Koenig (professor of Psychiatry and Behavioral Sciences at Duke 

University), Michael McCullough (professor of Psychology at the University of Miami), and 

David Larson (adjunct professor of Psychiatry and Behavioral Sciences at Duke University) 

published the Handbook of Religion and Health, in which they inquire into the interplay 

between religion—perceived in a more encompassing manner including “spirituality”—and 

mental health, and, in particular, they argue as follows:  

 

. . . religious beliefs may prevent sufferers from complying with medical treatments by 

encouraging them to rely on faith rather than on traditional medical care; they may therefore 

refuse potentially life-saving blood transfusions, prenatal care, childhood vaccinations, or 

other standard treatments or prevention measures.201 

 

They likewise maintain that the mental patients who “present with bizarre and distorted 

religious ideas” or who use “religious beliefs and practices” in “pathological ways” suffer 

negatively on account of their religious beliefs or practices.202 Nevertheless, as regards the 

positive effects of spirituality on general health, they concede that “it is clear that much of the 

general public and a growing number of health professionals believe that religion and good 

health are somehow related.”203 Even though “some religious attitudes are associated with 

worse health outcomes,”204 and allowing that “religious and health professionals may debate 

the benefits or risk to health that religion conveys,” it still remains that: 

 

. . . people with serious health problems, people fighting against life-threatening or life-

disabling diseases, tell us the most about how religion relates to health. Even if no relationship 

existed, religion would be relevant to health care if patients perceived that it improved their 

 
199 See: Köhler, Gestalt Psychology. 
200 Ibid. 
201 Koenig, McCullough, and Larson, Handbook of Religion and Health, p. 77.  
202 Ibid.  
203 Ibid, p. 59.  
204 Ibid, p. 94. 
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coping with health problems and therefore wished health care providers to address spiritual 

issues as part of their medical or psychiatric care.205 

 

It is important to recall that Koenig, McCullough, and Larson subsume the concept of 

spirituality under the term “religion,” and, therefore, they use the term “religion” in a more 

encompassing way, but they have clarified the difference between “religion” and 

“spirituality” as follows: religion is a system of beliefs, practices, rituals, and symbols that 

aims to facilitate a person’s attempt to access the sacred and to develop and further one’s 

relationship with and moral responsibility toward the others in the context of a community; 

spirituality is one’s personal quest for, or encounter with, the sacred and ultimate existential 

questions, and it “may (or may not) lead to or arise from the development of religious rituals 

and the formation of community.”206 Harald Walach (professor of Research Methodology in 

Complementary Medicine at Viadrina European University Frankfurt and former researcher 

in Clinical Psychology at the University of Northampton), Niko Kohls (Human Science 

Center, Ludwig-University-Munich), Nikolaus von Stillfried (Institute for Environmental 

Medicine and Hospital Epidemiology, Freiburg), Thilo Hinterberger (Institute for 

Environmental Medicine and Hospital Epidemiology, Freiburg), and Stefan Schmidt (Institute 

for Environmental Medicine and Hospital Epidemiology, Freiburg), in their scientific 

research paper entitled “Spirituality,” argue that, apart from “transcendence,” which is a 

“common denominator of different concepts and definitions of spirituality,” spirituality can 

be interpreted as “alignment of the individual with the whole,” and “the Whole would be a 

transcendent reality as well.”207 Moreover, in the aforementioned research paper, Walach et 

al. have clarified the meaning of spirituality as follows: 

 

Spirituality is the experiential realization of a transcendent reality. This is variably called 

meaning or purpose, sometimes it is called a relationship with a transcendent goal or reality 

reaching beyond the ego . . . spirituality has at least two core aspects: It refers to a relationship 

with a reality that reaches beyond the ego. The second aspect is about its experiential 

manifestation, i.e., a holistic type of knowing that includes cognition, affect, and 

motivation.208 

 

Using the term “religion” in a way that encompasses “spirituality,” Koenig, McCullough, 

and Larson argue that “religion provides a powerful source of comfort and hope for many 

persons with chronic mental illness,”209 and they add that “the primary influence of Judeo-

Christian beliefs and practices on schizophrenia and other psychotic disorders is in providing 

comfort, hope, and a supportive community to individuals who must cope with their 

emotionally devastating, largely biological illnesses.”210 Hence, these are characteristic cases 

of what I earlier called “top-down” response pathways.  

From the perspective of structuralist philosophy, and according to the dialectic of rational 

dynamicity, which I expound and support in this book, religion as spirituality (in 

contradistinction to religion as ritualism, superstition, and spiritual despotism) and the idea of 

 
205 Ibid, 78. 
206 Ibid, p. 18.  
207 Walach, Kohls, von Stillfried, Hinterberger, and Schmidt, “Spirituality,” p. 279.  
208 Ibid, p. 297. 
209 Koenig, McCullough, and Larson, Handbook of Religion and Health, p. 165.  
210 Ibid, p. 163.  
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the absolute (or the deity) itself elevate and orient consciousness to the vision and the ideal of 

the ontological perfection of humanity, and they help one to envisage the human being as a 

god-in-the-making instead of being confined to a bounded historical horizon. This 

empowering perception of spirituality was highlighted by the young Karl Marx in his poems 

and theatrical plays.211 Moreover, the German philosopher Ernst Bloch (1885–1977) has 

pointedly observed that the human being (in spite of the gloomier littérateurs and in spite of 

particular psychoanalysts’ tendency to emphasize humanity’s inner litter) is a hoping 

animal.212 At the most fundamental level, humanity expresses its urge to hope by being 

unsatisfied and by wishing to envisage an alternative (specifically, better) state of the world. 

At the highest level, humanity’s urge to hope is expressed through a strategic existential 

vision, or a philosophico-theological (as opposed to a political) utopia: an ideal type of 

perfection that human beings seek or try to realize and guides human action like an 

intellectual sun. According to Bloch, “utopia” is the bond and the interplay between that 

which does not exist yet and that which already exists. The guiding idea of Bloch’s 

philosophy is that the ever present now, conceived as the one and only creative event, is 

pregnant with that which is about to be. Thus, the now as “noch-nicht-Sein” (“not-yet-

Being”) is a “that” (“ein Das”) on the way toward its “what” and, hence, the location of 

newness. 

Not only has modern natural science not proved that physical phenomena, such as the 

brain, cause consciousness, but also it lacks a physical explanation of the choices made by 

quantum systems. In quantum mechanics, we cannot predict the outcome of measurements 

with certainty, we can only calculate probabilities, and, even though quantum physicists have 

gradually managed to reduce the significance of observers in quantum mechanics, quantum 

mechanics cannot explain the aforementioned probabilities, namely, it cannot explain what 

drives a quantum system toward one way or another at each junction (quantum transition). 

This strange quantum image of the world implies that, as I have already argued, there is an 

underlying structure, namely, the ontological program of the world, which is structurally 

united with consciousness. 

In view of the foregoing, regarding the mind–body problem, one can reasonably argue 

that modern biology and, in general, modern natural science, far from confirming naïve 

materialist arguments, corroborate Aristotle’s hylomorphism and Thomas Aquinas’s 

Aristotelianism. Aristotle argues as follows: 

 

It is not necessary to ask whether soul and body are one, just as it is not necessary to ask 

whether the wax and its shape are one, nor generally whether the matter of each thing and that 

of which it is the matter are one. For even if one and being are spoken of in several ways, 

what is properly so spoken of is the actuality.213 

 

Similarly, Thomas Aquinas argues that the mind and the body are united with each other, 

like the integral union of the seal and the wax, and, in the spirit of Christianity, he adds that, 

with regard to the body, the human being is mortal, while, with regard to the mind, the human 

being is immortal, in spite of the unity between the mind and the body.214 According to 

 
211 See: Johnston, “Karl Marx’s Verse of 1836–1837 as a Philosophical Foreshadowing of His Early Philosophy.” 
212 Bloch, The Principle of Hope. 
213 Aristotle, De Anima, 412b6–9. 
214 See: Kretzmann and Stump, eds., The Cambridge Companion to Aquinas.  
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Aquinas, the human soul/mind is the form of the human being, which is a hylomorphic 

(matter–form) composite. Aquinas specifies that form is the intrinsic constitutive element of 

the species, matter is the “stuff” of which creation is made, and substantial form is a type of 

form that is specifically ascribed to the human soul/mind, and informs materia prima (prime 

matter), so that any other form that may be ascribed to a being or thing is posterior to 

substantial form, and informs an already constituted substance, namely, it is an accidental 

form.  

A very good approximation of hylomorphism in relation to the explanation of the 

relationship between consciousness and the brain has been formulated by the American 

philosopher James Porter Moreland as follows215: A CD (compact disc) does not actually 

contain music, but it contains only pits (recessed areas on a CD where data are stored). 

Moreover, a CD does not “create” music. But, if the configurations on a CD are placed into 

the adequate retrieval system, then music can be played. If the CD is damaged, then the CD 

player cannot properly read the configurations, and, therefore, it cannot play the music. By 

analogy, consciousness can read pathways in the brain and, thus, access and process stored 

information, and, if these pathways are changed or damaged, then the underlying information 

(received and stored by the brain) will not be available or could be read in an altered way. 

Similarly, the English philosopher, theologian, and Anglican priest Keith Ward has explained 

the interplay between consciousness and the brain by arguing that consciousness reads or 

interprets the configuration of neurons, which store information that the brain receives from 

the environment.216 

Let us now turn our attention to the second major “school” of ontology, namely, idealism. 

As I have already mentioned, idealism is a creation of the eighteenth century. The realist 

philosopher Descartes proved to be an involuntary founder of idealism, because he started his 

philosophical inquiries with a “methodological doubt” regarding the ability of consciousness 

to predicate the correctness or the falsehood of its elements of knowledge, he discarded such 

elements of knowledge on the grounds that they are uncertain, and, therefore, he concluded 

that consciousness is an ontologically sufficient foundation of truth. The aforementioned 

Cartesian reasoning has been summarized in the statement: “Cogito ergo sum” (“I think, 

therefore I am”).217 

The English empiricist philosopher John Locke (1632–1704) was the second (after 

Descartes) involuntary founder of idealism, because he argued that ideas derive from 

sensation, which supplies the mind with sensible qualities, and from reflection, which 

supplies the mind with ideas of its own functions (perceiving, thinking, believing, doubting, 

reasoning, knowing, willing).218 From Locke’s perspective, the mind, in its first state, is a 

tabula rasa (“white paper”), all our knowledge is founded on and, hence, derives from 

experience, and the primary capacity of consciousness is the intellect’s ability to receive the 

impressions made on it, either through sensation (by external objects) or through reflection 

(when it reflects on its own functions). The ideas thus received do not constitute knowledge 

per se, but they are elements of knowledge (“simple ideas”), which consciousness can repeat, 

compare, and combine in different ways, and, therefore, it can make at pleasure new 

“complex ideas.” According to Locke, no understanding can invent or frame a new element of 

 
215 Moreland, “In Defense of a Thomistic-like Dualism,” pp. 107–08.  
216 Ward, More than Matter?, p. 121. 
217 Descartes, Oeuvres de Descartes, 7:25, 7:140, and 8a:7.  
218 See: Chappell, ed., The Cambridge Companion to Locke. 
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knowledge (“simple idea”). As a result, Locke’s theory of knowledge replaced certainty with 

the uncertainty of sensation, and, furthermore, it replaced “substantial truth” with 

“conventional truth.” However, Locke failed to bear in mind that, even if ideas are not innate 

with regard to their content or substance, ideas may be innate with regard to their structure. 

Modern idealism has different forms, namely: first, solipsism, which maintains that the 

only reality consists of one’s own intellections; second, the more moderate thesis that the 

sensory-sensuous world is a degraded sensory-sensuous appearance of an experienced 

conscious state that is the only reality; and, third, immaterialism, which was put forward by 

the Irish philosopher George Berkeley (1685–1753), who became Bishop of Cloyne in 1734, 

and he opposed philosophical realism (especially Newton’s natural philosophy) by arguing—

under the influence of Neoplatonism—that matter is not real and by replacing dualist realism 

(which is based on two principles: the reality of the world and the reality of consciousness) 

with the thesis that there exist two principles: one that cognizes, namely, the spirit, and 

another that creates, namely, the absolute.219 

According to Berkeley, the world exists only because it fills human consciousness. The 

starting point of Berkeley’s philosophy is Locke’s empiricism, specifically, the argument that 

perception is a prerequisite for existence and a demonstration of the perceived things and of 

the consciousness that perceives them. However, by trying to reinforce the consistency of 

immaterialism, Berkeley ultimately reached a conclusion that is similar to philosophical 

realism, namely, he concluded that the existence of things consists in being perceived, and 

this conclusion is conceptually very close to the realist argument that things exist because 

they are perceived.  

Apart from Berkeley, another major modern scholar who was strongly influenced by 

Locke’s philosophy was the Scottish philosopher, historian, and economist David Hume 

(1711–76). Hume’s variety of empiricism consists in a theory of phenomena that advocates 

the reality of impressions and rejects every stable substance.220By “impressions,” Hume 

means our more lively perceptions when we see, or hear, or feel, or love, or hate, or desire, 

etc., namely, all our sensations, passions, and emotions as they originally appear in 

consciousness, and, by “ideas,” or “thoughts,” he means representations, or copies, of such 

impressions, namely, the faded perceptions of which we are conscious when we recall an 

impression or reflect on it. Hume maintains that we cannot assert the reality either of matter, 

because we have only representations of matter, or of the soul, because we experience only 

actions. 

However, Hume failed to take account of the following three fundamental mistakes of 

skepticism:  

 

i. Skepticism maintains that we can know very few of the elements of each object of 

consciousness, and that, because we ignore most of them, we substantially ignore the 

corresponding object of consciousness itself. This skeptical argument can be refuted 

by counter-arguing that limited knowledge is not equivalent to invalid knowledge, 

and that the knowledge of a few significant and actionable attributes of an object of 

consciousness is equivalent to valid knowledge.  
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ii. Skepticism maintains that our cognition tends to operate according to circular 

reasoning (i.e., one begins with what one tries to end with), and that, therefore, we 

should discredit every logical certainty, and we should endlessly question 

knowledge. This skeptical argument can be refuted by counter-arguing that the 

logical fallacy of circular reasoning is less serious and less detrimental than the 

skeptics’ attempt to show that it is reasonable to negate the validity of reason, which 

is an obvious contradiction.  

iii. Skepticism maintains that the senses and reason can provide us with false 

impressions. Indeed, our senses are imperfect (and, thus, fallible), and our intellect 

may confuse dreams with reality. However, this skeptical argument can be refuted by 

counter-arguing that the fallibility of sensible knowledge and dreams can be 

examined and controlled by reason, and that, at least within certain conceptual 

communities, there exist self-evident truths and epistemological principles, such as 

the principle of contradiction.  

 

Immanuel Kant has written about Hume: “I freely admit that the remembrance of David 

Hume was the very thing that many years ago first interrupted my dogmatic slumber.”221 

Under Hume’s influence, Kant rejected metaphysics as the knowledge of the supersensuous, 

but, in contrast to Hume, he accepted metaphysics as the knowledge of knowledge, and, 

therefore, Kant’s philosophy, which he called “critical,” fluctuates between realism and 

idealism. In particular, Kant recognizes the existence of a real world and of a “noumenon,” 

namely, a thing-in-itself, and he argues that a “phenomenon” is a faded, dissolved declaration 

of the corresponding noumenon, the manner in which the corresponding noumenon appears to 

an observer.222 In his Critique of Pure Reason (first edition), A34 and A249, Kant defines 

appearances as the undetermined objects of empirical intuitions, and he defines noumena as 

follows:  

 

Appearances, to the extent that as objects they are thought in accordance with the unity of 

the categories, are called phenomena. If, however, I suppose there to be things that are merely 

objects of the understanding and that, nevertheless, can be given to an intuition, although not 

to sensible intuition (as coram intuiti intellectuali), then such things would be called noumena 

(intelligibilia).223 

 

Furthermore, he argues that consciousness cannot know the substance of the real world, 

and that the only thing that consciousness can achieve is to organize mutually unconnected 

segments of the real world that exist within consciousness into systems (structured sets) with 

the assistance of twelve mental categories with which cognition is a priori equipped as well 

as with the assistance of two pre-perceptive schemata, namely, those of space and time.224 

Kant distinguishes twelve mental categories (general concepts of the understanding), divided 

into four sets of three as follows: (i) quantity: unity, plurality, totality; (ii) quality: reality, 

negation, limitation; (iii) relation: inherence and subsistence (substance and accident), 

 
221 Kant, Prolegomena, p. 10.  
222 The term “noumenon” (plural: “noumena”) derives from Greek, and Kant used it in order to refer to something 

that can be the object only of a purely logical, non-sensuous intuition.  
223 Kant, Critique of Pure Reason, p. 347. 
224 See: Guyer, ed., The Cambridge Companion to Kant. 
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causality and dependence (cause and effect), community (reciprocity); (iv) modality: 

possibility, existence, necessity.225 Kant’s refusal to accept the knowledge of the noumena is 

epistemological (signifying only formal idealism), but not ontological, and, in his 

Prolegomena to Any Future Metaphysics that Could Come Forth as Science, Kant maintains 

that transcendent reality is indisputable. In particular, in his Prolegomena, which is a 

summary of his Critique, Kant explains the following: first, the difference between his critical 

philosophy and idealism: idealism, Kant argues, is founded on the thesis that all cognition 

through the senses and experience is illusion, and that valid knowledge consists only of the 

ideas of pure understanding and reason, whereas Kant’s Critique consistently maintains that 

bodies exist in space, and consciousness has immediate, non-inferential, knowledge of them; 

second, his formal idealism: Kant’s Critique is characterized by formal idealism, in the sense 

that it maintains that the form of objects is due to consciousness, but not their matter. 

In contrast to Kant’s formal idealism, which is inextricably linked to Kant’s 

transcendentalism (realism) in the context of his attempt to provide a general way of 

understanding the overall evolutionary course of the natural world and humanity, romantic 

idealism, marking a significant philosophical departure from the European Enlightenment, 

proposes a way of understanding history as the self-disclosure of the spirit in the temporal 

manifestation of particular egos, whether human individuals or national units. The two first 

pioneers of romantic idealism were the German philosophers Johann Gottlieb Fichte (1762–

1814) and Friedrich Wilhelm Joseph von Schelling (1775–1854).226 A few years after the 

publication of Kant’s Critique of Pure Reason (first edition: 1781, second edition: 1787), 

Fichte published the Foundations of the Science of Knowledge (1794). Fichte recognizes only 

an “ego” that alone creates the object of its representations, and that becomes self-conscious 

by opposing everything alien to it. Thus, the elements that are alien to the ego become the 

means through which the ego affirms itself. By highlighting the importance of the ego, Fichte 

discards the concept of the noumenon. Following a reasoning that is similar to that of Fichte, 

Schelling argues that both the “ego” (namely, consciousness) and the things that are alien to it 

are functions of a unique reality that Schelling calls the “absolute.”  

The most famous representative of German romantic idealism is Hegel, who systematized 

the philosophies of Fichte and Schelling, and he focused on the active spiritual reality, which 

he called the “idea.” In fact, Hegel replaced Kant’s conception of the noumenon with his 

conception of the idea, to which, as he contends, everything is reducible. As I explained in 

section 1.2.2, Hegel’s idealism is totally historicized, and, in his philosophy, he described 

cognition as something that exists in-itself and for-itself, and that, like a distinct subject, 

reflects on itself. According to Hegel, the “real” is the “rational,” in the sense that the core of 

the rational is the absolute idea, which is embodied by the nation-state, philosophy, art, and 

religion, and the absolute (“objective”) spirit tends to the absolute idea. In particular, Hegel 

identifies three “sectors” of society, namely, the family, civil society, and the state, and he 

argues that, in the context of social and political philosophy, family (symbolizing “unity,” 

which absorbs the particularity of each individual) represents the “thesis,” civil society 

(symbolizing the “singularity” of its atomistic subjects and their “particularity” as members of 

families) represents the “antithesis” (in the context of which, the “becoming citizen” 
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gradually recognizes civil society as one’s broader family), and the state (symbolizing the 

optimum form of universality) represents the “synthesis”; and, according to Hegel, the 

immediacy of family life finds greater fulfillment as part of civil society, and the nation-state 

is the largest extension of the family, and it unites all its particular families and all the 

particular relations that are established in civil society into an organic whole (hence, Hegel’s 

communitarian, state-centered idealism).227 In Hegel’s philosophical system, history is the 

“laborious journey” of the absolute spirit toward the absolute idea in a dialectical way, which 

generalizes Fichte’s and Schelling’s teachings about the development of the ego (each 

“thesis” gives rise to its “antithesis,” and both of them are negated and preserved in a 

subsequent, superior stage, called “synthesis”).  

In the context of Hegelianism, Fichte’s and Schelling’s concept of the ego is 

counterbalanced by Hegel’s concept of the absolute (“objective”) spirit. In this way, 

Hegelianism leads to the conclusion that, even though the world constitutes a historical 

creation of humanity, the world has obtained its autonomy vis-à-vis humanity. In the 

nineteenth century, Hegel’s arguments exerted a significant influence on the philosophical 

“school” of spiritualism, represented by Antonio Rosmini-Serbati and Vincenzo Gioberti in 

Italy as well as by Charles-Bernard Renouvier, Octave Hamelin, Léon Brunschvicg, and René 

Le Senne in France. On the other hand, Bergson managed to transcend the antithesis between 

realism and idealism, but his work gave rise to a new antithesis, namely, that between 

intuition and cognition, which, in turn, can be overcome in the context of structuralism. 

Structuralism, which has assimilated Hegelianism in a creative way, corroborates Bachelard’s 

argument that there is a dynamic continuity between cognizing consciousness and the object 

of cognition.228 

Furthermore, as I have already pointed out, realism and idealism are issues of great 

concern in the foundations of physics (i.e., the area of physics that deals with those natural 

laws which do not derive from any underlying laws, and it consists of General Relativity, 

which deals with the behavior of space and time, and of the Standard Model of Particle 

Physics, which deals with the smallest constituents of matter and the manners in which they 

interact) and in biology (especially, in neuroscience). The natural sciences are based on 

mathematics. In order to understand the structure of mathematics, we have to realize that 

mathematics is an abstract field, and, for this reason, it is very powerful, since it can manifest 

itself in many different problems. In fact, mathematics is based on a peculiar synthesis 

between imagination, perception, and scientific rigor, or, equivalently, between intuition, 

experience, and logic. This awareness is the starting point and the original underpinning of 

my thesis that mathematics and philosophy are homomorphic. It is due to this homomorphism 

that mathematics has furnished philosophy with a model of a certain kind of knowledge as 

well as with several intellectually challenging and significant philosophical problems, and 

philosophy, in turn, underpins the development of mathematics not only in terms of ontology 

and epistemology but also in terms of moral values and aesthetic.  

Mathematics is done by consciousness. Mathematics provides a model of knowledge of a 

particular kind, and, in fact, philosophers have highlighted the particular nature of 

mathematical knowledge and have argued that all knowledge could possibly aspire to the 

particular nature of mathematical knowledge. Unlike other kinds of knowledge, mathematical 
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knowledge is characterized by rigor, because mathematics is constituted as a logical system, 

in the sense that mathematical concepts are subject to the relations 𝑅0 and the judgments 𝑆0 

of formal logic 𝑇0(𝑅0, 𝑆0), which I shall study in chapters 2 and 3, and which hold for every 

kind of concepts. In other words, inherent in the relations and the judgments of mathematical 

theories is the system 𝑇0(𝑅0, 𝑆0) of formal logic. The addition of new relations 𝑅1 and new 

judgments 𝑆1 to 𝑇0(𝑅0, 𝑆0) determines, under certain conditions, a set 𝑀 of mathematical 

concepts, namely, objects that belong to the system 𝑇0(𝑀, 𝑅0, 𝑆0, 𝑅1, 𝑆1), which is formed by 

𝑅0, 𝑆0, 𝑅1, 𝑆1 and their corollaries.  

As I shall explain in chapters 2 and 3, the basic concepts of the relations 𝑅0 of formal 

logic, namely, “is a part of” or “belongs to” (∈), “if, then” (𝑎 → 𝑏), “a, not a” (𝑎, ¬𝑎), “or” 

(˅), “and” (˄ or &), and the relations that are expressed through the judgments 𝑆0 of formal 

logic determine the axiomatic system 𝑇0(𝑅0, 𝑆0) of formal logic. The set of all the new 

concepts, the new definitions, and the new true propositions that are produced from 

𝑇0(𝑅0, 𝑆0) constitute what is called the theory of formal logic, or the structure of formal logic, 

or simply formal logic, and it is denoted by 𝑇̃0(𝑅0, 𝑆0). In mathematics, by the term 

“axiomatization,” we mean the creation of theories that comply with 𝑇0(𝑅0, 𝑆0).  

Suppose that a mathematician is given an object 𝐴 whose properties can be described in 

terms of formal logic, but the substance of this object has not yet been studied. Then this 

mathematician can study 𝐴 with the help of𝑇0(𝑅0, 𝑆0), that is, through logical abstraction. In 

this case, 𝑇̃0(𝑅0, 𝑆0) is the well-defined initial information. Using this well-defined initial 

information, namely, 𝑇̃0(𝑅0, 𝑆0), one can study the object 𝐴 and produce a scientific result 𝐴̃. 

By analogy, a mathematical theory (or structure) can be constituted as follows: Let 𝜔0 denote 

the empirical, sensory-sensuous world, and suppose that, in 𝜔0, we have to study “space” as 

an object 𝜔0
1 = 𝜔0

1(𝛼, 𝛽), where 𝛼 denotes the property of being a “measurable magnitude,” 

and 𝛽 denotes the property of having a “shape.” Then, by using the structure 𝑇̃0(𝑅0, 𝑆0), we 

can study 𝜔0
1(𝛼, 𝛽) and, ultimately, produce the axiomatic system 𝜔1

1 = 𝑇1(𝑀, 𝑅, 𝑆) of 

Euclidean geometry, which includes the set 𝑀 of all the objects for which 𝑅 and 𝑆 hold. In 

fact, within the structure 𝑇̃1(𝑀, 𝑅, 𝑆), we can look for theorems and algorithms, and, through 

a system of algorithms, we can deduce new results.  

With the help of the logic of the formal system 𝑇̃1(𝑀, 𝑅, 𝑆), mathematical consciousness 

created Euclidean geometry 𝑇1(𝑀, 𝑅, 𝑆) from the object 𝜔0
1(𝛼, 𝛽) ⊂ 𝜔0, and, gradually, over 

the course of the history of mathematics, mathematical consciousness created new 

mathematical structures from other objects 𝜔0
𝑖 (𝛼, 𝛽) ⊂ 𝜔0, 𝑖 = 2,3,… For instance, the 

mathematical theory that is deduced from the object 𝜔0
2 and whose basic concepts are those 

of a function and of a real number, is known as real analysis, and it can be denoted by 𝜔0
2.1. If 

we create the theory of complex numbers, then we can also create the corresponding structure 

𝜔0
2.2, which is known as complex analysis, etc. All these theories will be studied in Chapter 2.  

The incorporation of logical relations 𝑅0 and logical judgments 𝑆0 into mathematics 

underpins the creation of mathematical concepts. The mathematical model of the property of 

being a “measurable magnitude” gives rise to the concepts of a subset and of the arithmetic 

operations, which correspond to the relations 𝑅0 of formal logic. Given the fact that there is a 

homomorphism (structural similarity) between 𝑅0 and the basic concepts of number theory, 

as I shall explain in chapters 2 and 3, the basic concepts of logic become mathematical 

concepts, thus giving rise to mathematical logic.  
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In view of the foregoing, the model of knowledge that is provided by mathematics has the 

following characteristics: (i) certainty (in the sense that, if something is true and known in 

mathematics, then it is undoubted), (ii) incorrigibility (in the sense that the development of 

mathematical knowledge is internally consistent), (iii) eternity (in the sense that mathematical 

knowledge is not subject to time), and (iv) necessity (in the sense that mathematical truths are 

not contingently true but necessarily true). Being aware of these attributes of mathematical 

knowledge, Plato had the phrase “Let no one ignorant of geometry enter” engraved at the 

door of his Academy. In the context of Plato’s philosophy, geometry is concerned with the 

understanding of the reason (“logos”) of the world. Thus, Plato, in his Republic, 527c, argues 

that “geometry is the knowledge of the eternally existent,” and that, therefore, geometry 

“would tend to draw the soul to truth, and create the spirit of philosophy, and would be 

productive of a philosophical attitude of mind.” 

By the term “mathematical model,” we mean the description of an object or a 

phenomenon by means of mathematics. Let 𝐶 denote the set of all basic conceptual objects, 𝑅 

the set of all basic conceptual relations, and 𝐴 the set of the axioms of a structure. Then the 

corresponding structure is denoted by 𝒮(𝐶, 𝑅, 𝐴). A segment of a structure is a set of 

concepts, definitions, and judgments of the given structure that it satisfies the axioms of the 

given structure as well as some additional conditions, and it is denoted by 𝒮̅(𝐶,̅ 𝑅,̅ 𝐴̅). 

Suppose that a phenomenon of the sensory-sensuous world has been described by a structure 

𝒮(𝐶, 𝑅, 𝐴) or by a segment of this structure. Both the phenomenon and its mathematical 

model can be regarded as two homomorphic models, since the original phenomenon is 

initially modeled by our perception of it, or, more precisely, by the initial reference of our 

consciousness to it, and its mathematical model is 𝒮(𝐶, 𝑅, 𝐴) or a segment of 𝒮(𝐶, 𝑅, 𝐴). The 

creation of homomorphisms between mathematics and other sciences or human activities, 

namely, the creation of mathematical models, is called mathematical modelling. Thus, 

mathematical modelling consists of two stages: (i) the formulation of the mathematical model 

of the object that one studies, that is, the transformation of the given problem into a 

mathematical one, and (ii) the solution of the corresponding mathematical problem, namely, 

the processing of the information that is contained in the given problem by means of 

mathematics and mathematical informatics. Consequently, we realize that mathematical 

modelling is a method of studying every particular science, including mathematics itself, and 

this fact leads to philosophy’s aspiration to universality and philosophy’s intention to evaluate 

the object of its inquiry and the inquiry into its object according to a general criterion. From 

this perspective, one can argue that mathematics is a way of doing philosophy through 

mathematical concepts, mathematical methods, and mathematical structures. In addition, the 

American mathematician Jordan Ellenberg has pointed out that, unlike computing machines, 

a mathematician’s work is not just to compute formulas, but to develop and implement a way 

of thinking that involves the evaluation of research questions, the formulation of the right 

research questions, and the investigation of the assumptions that underlie research work.229 

 
229 Ellenberg, How Not to Be Wrong. In his aforementioned book, Ellenberg writes that, during World War II, a 

group of U.S. military officers visited the Statistical Research Group (a classified scientific research program 

in the context of which mathematicians and statisticians were working on problems related to the conduct of 

war), and they stated that they had noticed that the U.S. military aircrafts that were returning from flying 

missions over Germany were riddled with bullet holes, and that the damage was not uniformly distributed 

across the aircraft, since there were more bullet holes in the fuselage and less in the engines, and, therefore, 

those U.S. military officers asked the members of the Statistical Research Group (SRG) to optimize the armor 

of the U.S. military aircrafts on the basis of those findings. Then one of the most distinguished members of the 
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The intellectual capacity of a human being derives from one’s genetic and, generally, 

biological state as well as from one’s contact with reality. In other words, the intellectual 

capacity of a human being derives from one’s physical abilities, innate traits, and culture. For 

instance, the origin of mathematics lies, arguably, in counting, which is not even an 

exclusively human trait (since other animals can count as well230), and evidence of human 

counting goes back to prehistoric times, when people were using “tally marks” marked on 

bones, namely, a primitive unary numeral system. However, with the advancement of 

civilization, several mathematical innovations were achieved. For instance, the ancient 

Egyptians developed the first equation (related to architecture and agriculture), the ancient 

Greeks made great strides in geometry and arithmetic, negative numbers were invented in 

ancient China, zero as a number was first used in ancient India, Persian and Arab 

mathematicians, during the golden age of Islam, made significant contributions to the further 

development of algebra, a great flourishing of mathematics and the natural sciences took 

place in the Renaissance, etc.231 

If, in a certain domain, a human being can form new intellectual images, reinterpret and 

reorganize old intellectual images, and create meaningful models by identifying and 

understanding harmonious phenomena and by synthesizing new harmonies from them, then 

one can be creative in this domain. In these creative processes, both one’s innate abilities and 

one’s overall culture are crucially significant. These factors determine the relationship 

between a creative conscious being and the world. In the context of the rational dynamization 

of reality, one can conceive a new phenomenon and express it through a model, and/or can 

combine existing images of one’s culture into beautiful, inspiring forms. The rational 

dynamization of reality by consciousness is a complex intuitive process, which is inextricably 

linked to one’s culture, and it underpins creativity in arts and sciences. 

Let us denote the underlying structure of external (“objective”) reality by 𝑆𝐸𝑅. In the 

present book, I maintain that 𝑆𝐸𝑅 cannot be opposite to the structure of that kind of existence 

which is inextricably linked to 𝑆𝐸𝑅 and manifests itself as consciousness. As the French 

philosopher and Jesuit priest Pierre Teilhard de Chardin (1881–1955) has pointedly argued, 

there is a continuity between the energy (and, hence, the evolutionary process) of the world, 

the energy of life, and the energy of consciousness, and this continuity is condensed into and 

manifested as an energy field that is subjective with regard to experience, while it is 

objectified with regard to its effects in the realm of creative activity.232 As I have already 

argued, the structure of the universe (at all levels, namely, those of astronomy, life, subatomic 

particles, and consciousness) does not consist in a “unique” universal structure, but it consists 

in a “unified” system of structures, and, for this reason, the structure of the universe can be 

expressed in limitless ways, all of which designate and reflect the energy structure of the 

universe. Consequently, the energy structure of the universe is malleable, and, just as the 

mass of each celestial body deforms the fabric of physical space-time (as I explained in 

 
SRG, Abraham Wald, pointed out that those U.S. military officers had formulated their problem in a wrong 

way, and that they had to put the armor where there were no bullet holes. In particular, Wald argued that they 

had to armor the engines, not the fuselage, because the fundamental assumption should not be that the 

Germans could not hit the U.S. military aircrafts on the engines (because they could), but the fundamental 

assumption should be that the U.S. military aircrafts that got hit on the engines were unable to return from 

their flying missions (for which reason they did not).  
230 See: Angier, “Many Animals Can Count.” 
231 See: Ball, A Short Account of the History of Mathematics. 
232 Chardin, The Phenomenon of Man; Chardin, Human Energy; and Chardin, Activation of Energy. 



Dr. Nicolas Laos, The Dialectic of Rational Dynamicity 113 

section 1.2.3), so the energy structure of the universe is susceptible to change in accordance 

with the intentionality of that type of consciousness to which the universe refers and into 

which the universe can be condensed, and that type consciousness has been called the 

“Omega Point” by Teilhard de Chardin. The aforementioned type of consciousness can 

actualize its worldview and make it meaningful. In fact, according to the dialectic of rational 

dynamicity, the history of civilization can be interpreted as humanity’s “laborious journey” 

toward the aforementioned type of consciousness, namely, toward the “Omega Point,” and, 

more specifically, the history of civilization can be interpreted as humanity’s attempt to attain 

the mode of being that corresponds to the “Omega Point.” 

Isaac Newton’s “classical scholia” (explanatory notes intended for use in a future edition 

of his seminal Principia) and his library (which included many books on mathematics, the 

natural sciences, philosophy, theology, mythology, and occultism) indicate that he achieved 

major scientific breakthroughs by studying certain phenomena deeply, analytically, and 

synthetically throughout his life, by living within his intellectual images, ideas, and 

intellectual representations. This is the way in which a creative conscious being lives in 

general, continuously trying to expand one’s consciousness in order to ascend to and become 

the aforementioned “Omega Point.” Every creative conscious being is continuously oriented 

toward one’s intellectual images, ideas, and intellectual representations, and inquires into 

them systematically on the way to the “Omega Point.” After the accomplishment of arduous 

tasks and the overcoming of various obstacles, and with the contribution of several conscious 

and unconscious factors, one enters into a state of dynamized reality, and then one suddenly 

sees the goal that one has achieved. Regarding the unconscious processes of creativity, the 

distinguished Hungarian-American mathematician George Polya (1887–1985) has argued as 

follows: 

 

The fact is that a problem, after prolonged absence, may return into consciousness 

essentially clarified, much nearer to its solution than it was when it dropped out of 

consciousness. Who clarified it, who brought it nearer to the solution? Obviously, oneself, 

working at it subconsciously.233 

 

The moment of intuitive enlightenment is a creative discontinuity in one’s life, a unique, 

sudden event through which something new comes into view, but it comes to fruition only 

because the subject has the necessary culture in order to be able to see the corresponding 

phenomenon, and is internally prepared to see it. Without the requisite culture, the same 

subject might be unable to see the given phenomenon.  

The 2004 American film What the Bleep Do We Know? (co-directed and co-authored by 

William Arntz, Betsy Chasse, and Mark Vicente) mentions the invisible-ships phenomenon: 

When the great Italian explorer and navigator Christopher Columbus (1451–1506) first 

approached the shore of Hispaniola, the natives sitting on the shore were unable to see his 

ships approaching, not due to their distance from the shore, but because of the fact that, until 

then, the natives in the Caribbean had no objects in their lives that even remotely resembled 

Columbus’s galleons, and, therefore, they did not have any categories in which they could 

place these objects. In other words, the natives in the Caribbean were unable to see 

Columbus’s galleons as they were approaching to them because they lacked a mental model 

 
233 Polya, How to Solve It, p. 198. 
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in terms of which they could register and process this stimulus. The first person to notice 

Columbus’s galleons was a local shaman, because shamans were accustomed to seeing 

strange things. In general, if we do not have the requisite concepts in order to understand 

something, then our consciousness may be unable to process it, and it may even fail to notice 

it at all.  

One can argue as follows: we have mathematical models of space, because we move in 

space; we have mathematical models of time, because we move in time; we have counting 

systems, because we see objects; we study lengths, areas, the paths that objects with mass in 

motion follow, velocities, and slopes, because we throw objects (e.g., stones, bullets, etc.), we 

are involved in building activities, we travel, and we cultivate the land. From the 

aforementioned perspective, one could argue that our consciousness is largely determined by 

everyday experience. However, if we restrict our analysis of mathematics to the 

aforementioned perspective, then we are urged to think that mathematical concepts are 

“local,” namely, that mathematics ceases to be effective (cognitively relevant) in a new realm, 

for instance, in the realm of the “very large,” the “universe,” or in the realm of the “very 

small,” the world of elementary particles. But, remarkably, this is not the case. Mathematics 

has been extremely successful in conceptually conquering the entire field of physical 

experience. Thus, for instance, Einstein could not have articulated his theory of relativity 

unless Riemann had previously articulated his theory of geometry and mathematical analysis.  

Nevertheless, quantum theory is a very peculiar case, because of the following reason: 

the traditional methods of abstract reasoning cannot lead to the articulation of quantum laws 

(generalizations). Both physicists and mathematicians are bewildered by facts such as the 

following: in classical mechanics (dealing with “big,” massive bodies), one can know both 

the position and the velocity of an object, whereas, in quantum mechanics, one can know only 

either the position or the velocity of a particle; in classical mechanics, objects move from one 

position to another by following the shortest (i.e., the “optimal”) path between two positions 

(e.g., classical straight lines in a Euclidean space, geodesics in a Riemannian space, or 

horocycles in a hyperbolic space), but, in quantum mechanics, a particle (e.g., an electron 

moving from one atom to another) is free to follow any possible path between any two 

positions, and the only thing that quantum physicists can do is to assign a certain probability 

to each of these paths (possible scenarios), so that, when quantum physicists are faced with 

the question of whether a particle is in a position 𝐴 or in a position 𝐵, they realize that there is 

a probability that it is in position 𝐴, there is a probability that it is in position 𝐵, and it can 

even be partially in position 𝐴 and partially in position 𝐵 at the same time. In other words, the 

realm of quantum mechanics is not merely the realm of probability, but also the realm of 

potentiality.  

Moreover, one of the most intellectually challenging and thought-provoking 

phenomena of quantum physics is quantum tunneling, which has absolutely no analogy in 

classical physics. From the perspective of classical mechanics, if the energy of a barrier is 

greater than the energy of the incoming particles, then there is no possibility that any of 

the particles will reach the other side of the barrier, but, from the perspective of quantum 

mechanics, the rules of the world are different, and, thus, we have quantum tunneling. Let 

us suppose that a particle bounces off a barrier, because the energy of the barrier is greater 

than the energy of the particle. This situation is represented by the wave-function 

reflecting at the boundary. Inside the barrier, the wave-function behaves as follows: as the 

distance into the barrier increases, the amplitude of the wave-function decreases 
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exponentially, but the wave-function does not actually reach an amplitude of zero. Now, 

let us consider a different scenario where the barrier is shorter in length. As in the previous 

case, the amplitude of the wave-function will decay inside the barrier. But, because the 

wave-function does not reach an amplitude of zero, the wave-function can exit the barrier 

on the other side. Once the wave-function exits the barrier, its amplitude does not decay 

any more. Therefore, a portion of the wave-function passes through each of the two sides 

of the boundary, and a portion of the wave-function reflects at each of the two sides of the 

boundary. Consequently, there is a non-zero probability that the particle will pass through 

the barrier to the other side, and there is a non-zero probability that the particle will 

bounce off the barrier. Furthermore, let us consider a third scenario where the barrier’s 

length is even shorter. In this case, the wave-function does not have as much distance to 

decay inside the barrier, and, therefore, we have a larger amplitude for the portion of the 

wave-function that exits the barrier. In other words, with this smaller barrier, the particle 

has a greater probability of passing through and a lower probability of bouncing off the 

barrier, which is represented by a smaller amplitude for the reflected wave. In general, 

irrespective of the barrier’s size, and even if the probability of each individual particle 

passing through a barrier is inversely proportional to the barrier’s size, if there is a very 

large number of particles (“large” in relation to the barrier’s size), then there is a 

significant probability that at least some of these particles will pass through the barrier. 

The bewilderment that overwhelms physicists when they deal with quantum-mechanical 

problems is due to the fact that classical physics deals with the realm of actuality, and even 

classical probability theory reflects the underlying intuition of the realm of actuality. 

Quantum mechanics implies that we should not think in terms of a single path between states, 

but in terms of the system of all possible paths between states, which is called the “sum over 

histories” (in this case, “history” means all possible scenarios at the same time). This is the 

reason why, as I have already mentioned, quantum theory, which deals with elementary 

particles, clashes with general relativity, which deals with large structures in the universe. In a 

sense, quantum mechanics is pure physics, whereas general relativity reduces to geometry, 

and, therefore, in order to properly understand and resolve the clash between the worldview 

of quantum mechanics and the worldview of general relativity, we have to come up with 

something even more fundamental than geometry, namely, we have to study “structure” at an 

even higher level of abstraction. Geometry is an abstract study of actual material objects, but, 

if we zoom in on the material world sufficiently enough in order to enter the realm of 

quantum mechanics, then actual matter, or material actuality, is replaced by potential matter, 

or material potentiality, and, of course, we realize that consciousness is fundamental to 

reality. The material-physical world is characterized by different levels of ontological 

development (e.g., starting from the level of quantum physics, advancing to the level of 

classical physics and the general theory of relativity, and then advancing further to the level 

of biology, culminating in the phenomenon of intelligent life); and, hence, the difference 

between microscopic physical laws and macroscopic physical laws.  

As Proclus argued in his Elements of Theology (Proposition 37), of all those beings or 

things that are maintained through their intrinsic structural program, which determines their 

ontological development and perfection, “those that are first are more imperfect than those 

that are second, and those that are second are more imperfect than those that are successive, 

whereas those that are last are the most perfect,” because, if changes come into being 

according to a structural program, and if change is directed to the actualization and 
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manifestation of an intrinsic program of ontological development and perfection, then change 

refers to and is guided by that which is most perfect. Thus, as Proclus argues in his Elements 

of Theology (Proposition 32), every change that comes into being according to a program of 

ontological development and perfection that is intrinsic to being “is brought to completion 

through the likeness” of those beings or things that change to that which they become. 

Proclus’s aforementioned reasoning can help one to philosophically understand why quantum 

mechanics cannot be a complete model of the physical reality.  

In line with Proclus’s principle of “likeness,” the dialectic of rational dynamicity implies 

that our encounter with pure potentiality and, hence, with “chance” can be interpreted as our 

encounter with the specific structure of a sequence of causes and consequences that are 

interrelated due to a particular class of homomorphisms that underpin the synthetic 

organization of homomorphic groups into specific systems (these concepts will be rigorously 

studied in Chapter 2). Organization and structure are possible only when there exist 

homomorphisms, namely, relationships of structural likeness (or even isomorphisms, namely, 

bijective homomorphisms, which imply sameness). The existence of homomorphisms 

between different groups depends on whether the corresponding groups are suitably 

structured and on whether the behavior of these groups has an attractor, namely, a state in 

which most of the given groups’ particular tendencies and orientations settle (I explained the 

concept of an attractor in section 1.2.3). In addition, according to the dialectic of rational 

dynamicity, the aforementioned sequence of causes and consequences is governed by the 

Aristotelian principle of the reduction to the first cause (“prime mover”), and it underpins a 

universal sequence of homomorphisms, giving rise to a worldview that is similar to Pierre 

Teilhard de Chardin’s model of the world. 

Conclusively, neither philosophical realism nor idealism can stand as a general theory of 

reality, but, as I argued earlier in this section, particular aspects of realism and particular 

aspects of idealism tend to approach truth. Philosophical realism is corroborated by the 

indisputable awareness that the world is different from consciousness, for which reason 

consciousness has to try hard in order to grasp the reality of the world. Idealism is 

corroborated by the indisputable awareness that, from a certain perspective, the structure of 

the world is not fundamentally different from the structure of consciousness, for which reason 

consciousness can partially and increasingly grasp the reality of the world. Consequently, 

reality consists of both the world and consciousness, and, thus, consciousness refers to both 

itself and the world. This is the reason why, if we want to be philosophically (and 

scientifically) rigorous, then we should not discourse on the relationship between “reality” 

and “consciousness,” but we should discourse on the relationship between the “reality of the 

world” and the “reality of consciousness.” The difference between the reality of a being 𝐴 and 

the reality of a being 𝐵 is determined by each of these beings’ degree of ontological 

integration and completion. Thus, the manner in which the philosophy of rational dynamicity 

interprets history is based on Robert W. Cox’s argument that “three categories of forces 

(expressed as potentials) interact in a structure: material capabilities, ideas and institutions”; 

and, in particular: (i) “material capabilities are productive or destructive potentials”; (ii) ideas 

are either “intersubjective meanings” or “collective images of social order held by different 

groups of people”; and (iii) “institutionalization is a means of stabilizing and perpetuating a 

particular order.”234 

 
234 Cox, “Social Forces, States and World Orders,” p. 218–19.  
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In view of the foregoing, the dialectic of rational dynamicity, as a method for the 

operation of consciousness and as a model of the operation of reality in general, consists of 

the following five stages (i.e., it is a five-fold dialectic): 

 

Stage I: Vision and Orientation: Consciousness forms a clear intellectual image of an 

existential state that it wants to achieve, or, in Bloch’s terms, a “utopia,” and it is 

clearly oriented toward that intellectual image. Thus, in this stage, consciousness 

determines the teleology of its action.  

Stage II: Strategy: In general, “strategy” refers to “the orientation of the organization in 

the long term, within its environment.”235 Consciousness makes the strategic decision 

to act upon the reality of the world and upon itself in accordance with its teleology, 

that is, in order to bring about intended changes.  

Stage III: Planning: Consciousness articulates a plan, namely, a method of deliberate, 

self-conscious activity, involving the consideration of outcomes before choosing 

among alternatives. The primary functions of planning are the following: (i) 

optimization (i.e., improving efficiency of outcomes); (ii) balancing the agent’s 

teleology (which is aimed at restructuring reality) and the goal of maintaining the 

continuity of existence (i.e., counterbalancing systemic failures); (iii) widening the 

range of decision-making (i.e., enhancing the consciousness of choice); and (iv) 

organizing and enriching codes and networks of communication. 

Stage IV: Control: Consciousness continuously tries to maintain control over its action 

(and its consequences) in two ways: first, by intensifying its action (namely, its 

intervention in the reality of the world and in itself) whenever its action is 

unreasonably sub-optimal (namely, whenever it can improve its existential conditions 

even more, according to its strategic plan); second, by counterbalancing its original 

action (specifically, by reversing its original action and by following alternative paths 

of action) whenever the “negative externalities” of its original action, namely, the 

costs of its original action for the world (or the “environment”), in general, and/or for 

itself, in particular, tend to exceed a critical value that represents the maximum 

existential risks that consciousness is determined to undertake in order to continue 

acting in the same way.236 Additionally, it should be mentioned that the term 

“dialectic,” in general, implies a transition from one state to another without the total 

elimination of the previous state, in the sense that the previous state leaves its traces 

in the new one, and, therefore, according to the dialectic of rational dynamicity, an 

agent of change does not bring about a totally new state, which would be 

uncontrolled by the agent of change. In general, change cannot go beyond certain 

limits without running the risk of systemic collapse, and, for this reason, the dialectic 

of rational dynamicity highlights the importance of preventing uncontrolled systemic 

turbulence and of continuously maintaining control over the consequences of our 

actions. Furthermore, the aforementioned reasoning is exemplified in economics by 

 
235 Schwaninger, “Governance for Intelligent Organizations,” p. 36. 
236 For instance, every serious research paper that proposes the emission of extra aerosols (i.e., suspensions of 

liquid, solid, or mixed particles with highly variable chemical composition and size distribution) to the 

atmosphere in order to reflect a larger portion of the Sun’s energy back to space is accompanied by the remark 

that, because there are many things that are not fully understood or fully controlled by scientists, we should try 

this type of intervention in the atmosphere on such a scale that allows us to reverse it in case anything goes 

wrong.  
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the investment strategy that is called hedging, and it consists in securing oneself 

against a loss on an investment “by investing on the other side,” that is, hedging is 

insuring or protecting against adverse changes in the market (often using financial 

derivatives, through which a loss on one investment is mitigated or offset by a gain in 

a comparable derivative).237 

Stage V: Development: Consciousness seeks to ensure and enhance its capabilities and to 

create favorable conditions for the continuation of its action in the future. However, 

consciousness realizes that the achievement of its ultimate goals is a work in 

progress. Thus, consciousness seeks to restructure the world according to the 

intentionality of consciousness without, however, jeopardizing the possibility of 

future interventions in the reality of the world.  

 

Finally, it is worth mentioning that, as a method of historical action, the dialectic of 

rational dynamicity is inextricably linked to and essentially in consonance with the twelve 

basic characteristics of the personality of a “normal person” that I mentioned in section 1.1. 

Thus, in line with Plato’s philosophy, the philosophy of rational dynamicity emphasizes the 

significant yet elusive interplay between intellectual development and psychological health.  

 

 

1.3.4. Matter, Life, and Consciousness 

 

Before inquiring into conscious life and into the functioning of philosophizing and 

scientific consciousness, we must have a clear understanding of life and of the major 

philosophical and biological perceptions of life, which is one of the most important 

manifestations of existence. The term “life” refers to a set of phenomena (such as 

reproduction, development, and homeostasis or maintenance) that characterize organisms. 

The term “organism” refers to any entity that embodies the properties of life, and it is 

contrasted to those objects which, lacking an organic constitution, are characterized by inertia 

and apparent stability. 

It goes without saying that life contains organic matter. However, life restructures organic 

matter in an organic way, thus differentiating it from inorganic matter. In other words, life is 

entwined with inanimate matter and consciousness, and it underpins the structural continuity 

between them. For this reason, there are both differences and similarities between organic 

matter and inorganic matter.  

Even though there is a structural continuity between inorganic matter and organic matter, 

life—by transforming inorganic matter into organic matter—implies an important 

differentiation in matter. Thus, the differences between inorganic matter and organic matter 

can be summarized as follows238: 

Inorganic matter is governed by inertia, which is the resistance of any inorganic body to 

any change in its velocity (see section 1.2.3). On the other hand, organically structured living 

beings sense things, react to external stimulus, and move on their own. 

Inorganic matter reacts according to Newton’s third law of motion (see section 1.2.3). In 

other words, the reaction of an inorganic body is quantitatively determined by external 

 
237 Arditti, Derivatives. 
238 See: Raven and Johnson, Understanding Biology. 
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mechanical forces (specifically, by tensile force, compressive force, and shear force) that are 

applied to it. On the other hand, the reactions of organically structured living beings manifest 

peculiar qualitative features that are not strictly analogous to the stimuli that cause reaction, 

and they depend on organic relations that govern each living being according to its structural 

program. 

According to the Standard Model of particle physics, the minimal constituent matter 

elements of inorganic bodies are uniform, that is, subatomic particles are identical (so that no 

exchange of two identical particles, such as electrons, can lead to a new microscopic state). 

Thus, all the atoms of which any inorganic body is composed are identical to each other. By 

contrast, the minimal constituent matter elements of organic matter (such as the DNA) are 

subject to differentiations, which underpin the actualization and the manifestation of the 

structural program of an organic being. In fact, due to their differentiation, the cells of an 

organic being underpin its organic constitution, which determines the corresponding organic 

being’s unity and cohesion (i.e., the attraction of molecules for other molecules of the same 

kind). Furthermore, it is important to mention that eukaryotes (that is, organisms whose cells 

have a nucleus enclosed within a nuclear envelope), such as the human being, have two types 

of DNA: the DNA of the cells (namely, the agent of the genetic information of the cells) and 

the mitochondrial DNA (namely, the DNA located in mitochondria, which are double 

membrane-bound organelles supplying cellular energy and controlling the cell cycle and the 

cell growth; mitochondrial proteins, that is, proteins transcribed from mitochondrial DNA, 

vary depending on the tissue and the species).  

Inorganic bodies are connected with each other under specific conditions in order to form 

chemical compounds, which are always characterized by the same quantitative data, 

described and explained by Antoine Laurent Lavoisier’s “law of conservation of matter” 

(“matter is neither lost nor gained during a chemical reaction”239), Joseph Louis Proust’s “law 

of constant composition” (“in a compound, the constituent elements are always present in a 

definite proportion by weight”240), and John Dalton’s “law of multiple proportions” (“in the 

formation of two or more compounds from the same elements, the weights of one element 

that combine with a fixed weight of a second element are in a ratio of small whole numbers 

(integers), such as 2 to 1, 3 to 1, 3 to 2, or 4 to 3”241). On the other hand, organically 

structured living beings exchange some of their constituent elements with some of their 

environment’s constituent elements in the context of a dynamic process that is called 

assimilation (in biology, assimilation is the absorption and digestion of food or nutrients by 

an organism). 

Inorganic bodies exist in definite and fixed quantities according to Lavoisier’s “law of 

conservation of matter,” Proust’s “law of constant composition,” and Dalton’s “law of 

multiple proportions.” On the other hand, organically structured living beings (“parents”) 

create new living beings (“offsprings”) similar to them in the context of the reproductive 

process.  

With few exceptions (such as radioactive nuclides (nuclear species), which “are unstable 

structures that decay to form other nuclides by emitting particles and electromagnetic 

radiation”242), inorganic bodies are incapable of self-transformation. On the other hand, 

 
239 See: Jones, Johnston, Netterville, and Wood, Chemistry, Man and Society, p. 21. 
240 Ibid. p. 23. 
241 Ibid.  
242 Sears, Zemansky, and Young, College Physics, p. 1031.  
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organically structured living beings follow life cycles (developmental stages that occur during 

an organism’s lifetime).  

Furthermore, consciousness is a state in which a being can understand, process, and 

modify one’s internal and external environment, and, therefore, it can be described as a 

complex system of concepts. Consciousness is manifested by the creation of multiple 

feedback loops whereby a conscious being can create models in order to pursue certain goals. 

Animals can understand their position in space, and many of them can also understand their 

relationships with other beings, but only humans can understand the future and restructure 

their spatio-temporal existential conditions according to their intentionality, thus creating 

history. 

The continuity of living organisms is ensured by the succession of generations. On the 

one hand, each living organism is organically self-contained, but, on the other hand, the 

succession of generations ensures the continuity of the corresponding species. Intimately 

related to the study of the continuity of living organisms are the neo-Darwinian concept of a 

mutation (namely, an abrupt jump in the continuity of living organisms, specifically, an 

alteration in the nucleotide of the genome of an organism), the classical Darwinian theory of 

natural selection, and biological structuralism, which I explained in section 1.2.3.  

However, the aforementioned scientific approaches to the properties of life cannot 

sufficiently address the issue of the nature and the substance of life, because, as I have already 

argued, “scientific explanation” is founded on experience. Therefore, ontology is necessary in 

order to inquire into the nature and the substance of life. It goes without saying that 

materialist ontological theories have formulated over-statements and over-simplifications by 

arguing that the properties of life are reducible to chemical reactions, while spiritualist 

ontological theories have formulated over-statements and over-simplifications by articulating 

interpretations that are founded on mere intellectual speculation and ignore empirical data. 

Nevertheless, the careful study of the history of philosophy with regard to the issue of the 

nature and the substance of life can provide us with useful information and ideas. 

According to ancient philosophy, there is a kind of continuity between life and spirit. 

Inspired by pre-Socratic philosophy, Epicurus formulated a theory of hylozoism that is 

founded on the concept of a primal breath animating matter. This hylozoist perspective is 

similar to the Biblical Jews’ and the Kabbalists’ teachings about God’s “ruach,” namely 

breath and spirit (in fact, Greek philosophy exerted a significant influence on ancient Judaism 

and the Kabbalah of the Jews243). The Stoics’ hylozoism is founded on the concept of a divine 

fire animating matter, and this hylozoist perspective is similar to several Biblical passages, 

such as Acts 2, where the divine spirit is symbolized by fire. Furthermore, the conception of a 

principle that animates the body underpins both Plato’s philosophy and Aristotle’s 

philosophy. In Plato’s philosophy, the soul is placed between spirit (whose energies are the 

 
243 See: Gruen, Heritage and Hellenism: The Reinvention of Jewish Tradition. In particular, the spirituality of the 

Kabbalah is a synthesis of Pythagoreanism, Neoplatonism, and Biblical mysticism. Moreover, the Renaissance 

saw the birth of Christian Kabbalah (often transliterated as Cabalah to be distinguished from the Jewish 

Kabbalah). Christian Kabbalah reinterpreted Kabbalistic texts and symbols from a distinctly Christian 

perspective, and Ramon Llull (1232–1316), a philosopher, logician, Franciscan tertiary, and writer from the 

Kingdom of Majorca, was the first Christian scholar to acknowledge and appreciate the Kabbalah as a tool of 

conversion. Among the first and most important systematic propagators of Kabbalistic studies beyond 

exclusively Jewish circles were the Italian philosopher Giovanni Pico della Mirandola (1463–94), the Venetian 

Franciscan friar Francesco Giorgi (1466–1540), the German scholar Johann Reuchlin (1455–1522), and Paolo 

Riccio (1480–1541), a German Jewish convert to Christianity who became a professor of Philosophy at the 

University of Pavia, and, subsequently, he was physician to Emperor Maximilian I. 
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ideas) and matter, and, in Aristotle’s philosophy, the ontological differentiation of the 

principle that animates matter underpins Aristotle’s argument that this principle is the 

organizing form of the body and governs the entire body. In line with Plato’s arguments 

regarding the placing of the soul between spirit and matter, Neoplatonism has articulated its 

own ontological hierarchies. The aforementioned arguments regarding the existence of an 

external principle that animates matter are based on a sense of logical necessity, and, 

therefore, they deal with the ontological component of the issue of life more in terms of 

logical reduction than in terms of ontology itself. 

In the seventeenth century, and in relation to important advances in the scientific 

discipline of medicine, the philosophical inquiry into the nature and the substance of life was 

systematized, and it started considering clearly scientific data. Thus, in the context of modern 

philosophy, the philosophical inquiries into the problem of life can be distinguished into two 

general categories: mechanism (known also as mechanical philosophy) and dynamism 

(known also as dynamical philosophy).244 According to mechanism, which is largely inspired 

by ancient atomism, the constitution of reality, including life, is a result of random physical-

chemical phenomena. However, Descartes’s philosophy replaced the previous materialist 

variety of mechanism with a spiritualist variety of mechanism, according to which, in contrast 

to animals, the human being is governed by spirit, which makes the human being a cognizing 

organism.  

As I have already explained, Descartes’s attempt to explain the life of animals by means 

of a monist philosophy and the life of the human being by means of a dualist philosophy is 

characterized by important flaws. In the twentieth century, several distinguished 

representatives of mechanism, such as Daniel Auger, Jacques Loeb, and John Searle, while 

endorsing an anti-materialist (“anti-physicalist”) perspective, argue that there is a kind of 

continuity between matter and life, including consciousness as an outgrowth of life. In 

addition, such careful and thorough proponents of mechanism reject the argument that life is a 

transcendent principle by maintaining that―in spite of the continuity between organic matter 

and inorganic matter, and in spite of the fact that both organic matter and inorganic matter are 

subject to the same natural laws―life consists in the set of the differences between organic 

matter and inorganic matter. According to John Searle, in particular, consciousness is a higher 

state of the brain just as ice is a higher state of water, and the brain can be in a conscious state 

just as liquidity and solidity are states in which water can be.245 However, as I have already 

argued, the scientific corroboration of the aforementioned arguments of mechanism does not 

imply their definitive confirmation, either in the context of philosophy or in the context of 

science itself. Even though mechanical philosophy can provide epistemologically satisfactory 

propositions, it cannot properly address the fact that there exists a substantial difference 

between life and matter. Moreover, mechanical philosophy analyzes the data of life in a way 

that cannot give rise to a synthetic study of the principle of life and of structural questions.  

The argument of classical mechanism according to which any living organism is merely a 

set of physical-chemical phenomena contradicts the second law of thermodynamics, 

specifically the minimum energy principle (see section 1.2.3). The attempt to reconcile the 

aforementioned argument of classical mechanism with the second law of thermodynamics by 

arguing that the world is in a state of maximal entropy, consisting of beings that are imperfect 
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and weak manifestations of life, is also unsuccessful, because it contradicts both the 

continuity and the dynamism of life itself.  

In contrast to mechanism (mechanical philosophy), dynamism (dynamical philosophy) 

highlights the differences between matter and life. The major representative of the first 

historical phase of dynamism was Leibniz. Leibniz founded his variety of dynamism on the 

Stoics’ hylozoism, thus departing from Descartes’s mechanism. The major representative of 

the second historical phase of dynamism was the French physician, physiologist, and 

encyclopedist Paul Joseph Barthez (1734–1806). Barthez employed the expression “vital 

principle” as a convenient term for the cause of the phenomena of life, distinguishing it from 

both the principle of matter and the principle of spirit, and, thus, refusing to commit himself 

to either spiritualism or materialism. The major representative of the third historical phase of 

dynamism was the French anatomist and pathologist Marie François Xavier Bichat, the 

acknowledged father of modern histology (1771–1802). In his famous physiological research 

works, Bichat, rejecting reductionism, recognized three essential “vital systems,” namely, 

animal life, sensible organic life, and insensible organic life; he located the primary seat of 

animal life in the brain, of sensible organic life in the heart, and of insensible organic life in 

the lungs; and he argued that various physical-chemical factors tend to destroy organic life. 

The aforementioned varieties of dynamism converge to the argument that there is a 

discontinuity between physical-chemical phenomena and life, but, in the end of the nineteenth 

century, dynamism started following an alternative intellectual path, according to which 

physical-chemical phenomena constitute the basis of life, but, apart from them, life has also a 

final cause (or purpose), which consists in the preservation of the unity of each and every 

organism through which life is manifested. The aforementioned teleological approach to life 

has been called “neofinalism” (in French, “néo-finalisme”) by the French philosopher 

Raymond Ruyer (1902–87).246 

Every rigorous inquiry into the phenomenon of life and every rigorous attempt to 

understand the significance of a being are necessarily dependent on the study of the structure 

of a being. As I argued in section 1.3.3, the most important components of the dialectic of 

rational dynamicity consist in preserving and changing structures. From the perspective of the 

dialectic of rational dynamicity, “development” signifies a smooth growth and expansion of 

an organically structured living being according to the given being’s structure, whereas 

“evolution” signifies a sequence of smooth and rather slow transformations according to a 

procedural logic, and, in its pure form, the notion of evolution is associated with the passive 

role that British empiricism assigns to consciousness. Thus, “development” signifies a 

deliberately organized process of amelioration, which can be studied in terms of a model of 

constrained optimization (see Chapter 2). 

Intimately related to the study of life is the study of consciousness. In accordance with 

the dialectic of rational dynamicity, consciousness proceeds from life, but it is not 

ontologically posterior to life, because consciousness exists potentially within the tendency of 

a being to exist, and it is intrinsic to instinct, which is a condensed form of logic. Moreover, 

consciousness underpins the adaptation of the organically structured living beings to their 

environment. Finally, as Bergson has correctly pointed out, consciousness is inextricably 

linked to action. When the human being ascends to the highest levels of consciousness, which 

correspond to reason and morality, it spiritualizes matter. Three characteristic, easily 
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understood ways in which human consciousness spiritualizes matter are art, technology, and 

political action, which signify the integration of ideas into matter and the restructuring of 

matter according to the intentionality of consciousness. It is worth pointing out, for instance, 

that the American economist Robert Solow (who was awarded the Nobel Prize in Economics 

in 1987) has found that, in the United States, during the period 1909–49, about one-eighth of 

the increment in labor productivity could be attributed to increased capital per man hour, and 

the remaining seven-eighths to a factor that is called “Solow residual” and consists of 

technological progress and other cultural factors that improve efficiency.247 Moreover, the 

American economist Edward F. Denison has studied the contribution of different elements to 

growth in real Gross National Product in the United States during the period 1929–82, and he 

has shown that advancements in knowledge, education, and other cultural-institutional factors 

play the most important role in economic growth.248 

Classical political economy is founded on the hypothesis that resources are limited, and it 

leads to the conclusion that we should expect a “limit to growth.” In 1972, the Club of Rome 

published a book entitled The Limits to Growth, according to which, within a time span of 

less than one hundred years with no major change in the physical, economic, or social 

relations that have traditionally governed world development, society will run out of the non-

renewable resources on which the industrial economy depends.249 However, the dialectic of 

rational dynamicity implies that consciousness can rearrange the resources and create an 

additional resource base. Even if resources are limited, rational dynamicity enables us to get 

more from the existing resources by transforming them. Energy transitions from wood to 

coal, from coal to oil, and from oil to other energy resources provide important examples of 

the contribution of the dialectic of rational dynamicity to economic growth. Indeed, Paul M. 

Romer, an American economist and entrepreneur associated with the New York University 

Stern School of Business and with Stanford University, has argued that “economic growth 

occurs whenever people take resources and rearrange them in ways that are more valuable,” 

and that “a useful metaphor for production in an economy comes from the kitchen,” in the 

sense that “economic growth springs from better recipes, not just from more cooking,” and 

“new recipes generally produce fewer unpleasant side effects and generate more economic 

value per unit of raw material.”250 

Finally, the dialectic of rational dynamicity, as I expound and defend it in the present 

book, extricates human consciousness from the intellectual and the material shackles of 

capitalism. As I have already mentioned, Marx’s social philosophy is one of the components 

of my philosophy of rational dynamicity, since Marx’s analysis of capitalism helps one to 

understand that capitalism is not only an exploitative system, but also one that is 

characterized by self-complacent nihilism and by an attitude that constrains human 

consciousness to the established, systemic mechanism.  

Karl Marx has pointedly emphasized the difference between “use-value” and “exchange-

value” in order to explain the essence of the capitalist system. The difference between the 

“use-value” and the “exchange-value” of a commodity corresponds to the difference between 

the usefulness of a commodity and the exchange equivalent in terms of which a commodity is 

compared to other objects traded in a market. In particular, Marx argues that use-value is 
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inextricably linked to “the physical properties of the commodity,”251 namely, to the human 

needs that it fulfills, whereas the exchange-value (i.e., the “exchange relation”) of a 

commodity is characterized precisely by its “abstraction” from its use-value.252 In capitalism, 

money takes the form of the aforementioned equivalence, and it conceals the real equivalent 

behind the exchange, namely, labor. Given that the more labor (physical and/or mental) it 

takes in order to produce a product, the greater its value, Marx concludes that, “as exchange-

values, all commodities are merely definite quantities of congealed labor-time.”253 In fact, the 

fundamental difference between the political economy of traditional, pre-capitalist societies 

and the political economy of capitalist ones is that the political economy of traditional, pre-

capitalist societies gives primacy to use-value over exchange-value, and, in particular, it 

refuses to valorize usury,254 whereas the political economy of capitalist societies valorizes 

usury, and it gives primacy to exchange-value over use-value. In this way, in the capitalist 

system, “money” is transformed into “capital,” and labor is fully commodified.  

Furthermore, Marx has clarified the manner in which capital transforms the simple 

circulation of commodities: In commodity trading, money is a medium of exchange, a store of 

value, and a unit of account, and economic actors exchange commodities for money, and then 

they exchange money for some other commodities. In other words, in commodity trading, 

economic actors sell something in order to buy something else that they need. Hence, 

according to Marx, the structure of commodity trading can be described by the formula 

 

𝐶 → 𝑀 → 𝐶, (1) 

 

namely, 𝐶𝑜𝑚𝑚𝑜𝑑𝑖𝑡𝑦 → 𝑀𝑜𝑛𝑒𝑦 → 𝐶𝑜𝑚𝑚𝑜𝑑𝑖𝑡𝑦. However, Marx has observed that financial 

speculation, which consists in buying in order to sell at a higher price, allows money to 

transform formula (1) into the following formula: 

 

𝑀 → 𝐶 → 𝑀, (2) 

 

namely, 𝑀𝑜𝑛𝑒𝑦 → 𝐶𝑜𝑚𝑚𝑜𝑑𝑖𝑡𝑦 → 𝑀𝑜𝑛𝑒𝑦. According to Marx, formula (2) is the general 

formula for capital. In the context of capitalism, which is governed by formula (2), “the 

circulation of money as capital is an end in itself, for the valorization of values takes place 

only within this constantly renewed movement,” and “the movement of capital is therefore 

limitless.”255 In this context, as Marx argues in his 1844 Manuscripts, capitalism essentially 

negates and aims to nullify the role of labor as self-realization or as a self-affirmative process, 

and to bring about the transformation of the human individual into an economic object shaped 

by external, alien forces. In particular, explaining Marx’s thought on the issue of labor, the 

German-American philosopher and sociologist Herbert Marcuse has argued that, within the 

historical facticity of capitalism, “labor is not ‘free activity’ or the universal and free 

realization of man, but his enslavement and loss of reality,” in the sense that “the worker is 

not man in the totality of his life-expression, but something unessential, the purely physical 
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subject of ‘abstract’ activity,” and “the objects of labor are not expressions and confirmations 

of the human reality of the worker, but alien things . . . ‘commodities.’”256 It is worth 

mentioning that Adam Smith, one of the acknowledged founders of classical political 

economy, has conceded that, “in the process of division of labor,” on which the industrial 

development of the capitalist world has been based, the worker “whose whole life is spent in 

performing a few simple operations . . . generally becomes as stupid and ignorant as it is 

possible for a human creature to become.”257 

Moreover, Marx has observed that, ultimately, the aim of the capitalist becomes “the 

unceasing movement of profit-making,”258 and, due to usury (namely, the act of lending 

money at a significant interest rate) and the growth of financial speculation, formula (2) 

reduces to 

 

𝑀 → 𝑀, (3) 

 

namely, 𝑀𝑜𝑛𝑒𝑦 → 𝑀𝑜𝑛𝑒𝑦. Formula (3) expresses the culmination of nihilism under 

capitalism. In particular, the mathematical formula of compound interest is the following: 

Assume that you borrow an amount 𝑃 of money (the “principal”) at an (annual) interest rate 

of 𝑟 > 0, and that, at the end of each year, you have to pay back a fixed amount (a “deposit”) 

𝑑. Let 𝐴𝑛 be the total amount of money owed after 𝑛 years. The formula for computing 𝐴𝑛 in 

terms of 𝑃 (the principal of the loan), 𝑟 (the interest rate of the loan), and 𝑑 (the loan deposits) 

is the following: 

 

𝐴𝑛 = 𝐴𝑛−1(1 + 𝑟) − 𝑑 = 𝑃(1 + 𝑟)
𝑛 − 𝑑(1 + 𝑟)𝑛−1 − 𝑑(1 + 𝑟)𝑛−2 −⋯− 𝑑 

= 𝑃(1 + 𝑟)𝑛 − 𝑑
(1+𝑟)𝑛−1

(1+𝑟)−1
⇔ 𝐴𝑛 = 𝑃(1 + 𝑟)

𝑛 −
𝑑

𝑟
[(1 + 𝑟)𝑛 − 1], 𝑟 ≠ 0; 

 

so that the initial condition is 𝐴0 = 𝑃; at the end of the first year, you owe 𝑃 (the principal) 

plus an interest equal to 𝑟𝑃 minus the deposit you have agreed to pay each year, and, 

therefore, 𝐴1 = 𝑃 + 𝑟𝑃 − 𝑑 = 𝑃(1 + 𝑟) − 𝑑; by analogy, at the end of the second year, you 

owe 𝐴2 = 𝐴1(1 + 𝑟) − 𝑑 = 𝑃(1 + 𝑟)
2 − 𝑑(1 + 𝑟) − 𝑑, etc. By allowing the owners of large 

sums of money to lend (that is, trade) money on interest, we give them power to immunize 

themselves against loss (in fact, this is the ultimate purpose of charging interest on loans: to 

immunize the lender of money against loss), while socializing loss and risks, and, thus, to 

create an exceptionally privileged financial oligarchy. In general, “financial fascism” consists 

in socializing loss and privatizing profits; and the most extreme form of financial fascism is 

an economic system dominated by usurers.  

According to an old adage, originally attributed to the German statesman Otto von 

Bismarck, “there are two things you don’t want to see being made, sausage and legislation.” It 

is a telling statement in many ways. In general, this adage means that one’s established 

consumption, trading, working, and entertainment practices as well as various established 

mentalities would be spoiled by intimate familiarity with the underlying principles and the 

very fabric of the actual state of affairs in political economy. Furthermore, it is worth 

mentioning that, in 1893, the German philosopher Friedrich Engels, in a letter that he wrote to 
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the German historian and politician Franz Mehring, used the term “false consciousness” in 

order to refer to the deliberate manipulation of one’s awareness of reality and to anyone 

suffering the burden of an established ideological “monopoly” or “oligopoly.” 

Nevertheless, even though Marx and Engels managed to articulate a thorough criticism of 

capitalism, the fact that, as I have already mentioned, Marx’s thought was imbued with the 

prophetism of Hegel’s philosophy, the fact that, as I have already mentioned, Marx has not 

clarified whether his theoretical work should be interpreted as a general method or as a model 

of particular objective processes that he seeks to interpret and evaluate, and the fact that Marx 

has written very little about the exact structure of the regime that should be established after a 

socialist revolution and about the exact structure of his ideal communist society can lead to 

the use of Marx’s thoughts and political visions by slicker and devious persons in order to 

establish a system of state capitalism (or bureaucratic socialism) as an end-in-itself and in 

order to implement an expansionist policy under the pretense of cosmopolitanism. For 

instance, in the 1930s and in the 1940s, the Soviet leader Joseph Stalin created and imposed a 

peculiar amalgam of Marxism, nationalism, and authoritarian statism, and, in the 1970s, 

under the leadership of Deng Xiaoping, China officially adopted a model of state 

capitalism/bureaucratic socialism, so that, in the 1970s, it became clear that the ruling elite of 

the Chinese Communist Party, like the Communist Party of the former Soviet Union, 

established a system of state capitalism/bureaucratic socialism not as a transitional phase 

toward socialism proper, but as an end-in-itself, primarily serving and reflecting the selfish 

calculations and expediencies of a ruling coalition between professedly “communist” 

politicians, state bureaucrats, and private speculators.  

As regards the destiny of Marx’s thought in China, it should be mentioned that, during 

Mao Zedong’s “Cultural Revolution,” the major ideas and the major visions of socialism and 

communism were replaced by a hybrid system of state capitalism/bureaucratic socialism and 

Confucianism, thus, in essence, maintaining and prolonging China’s political tradition of 

autocracy, totalitarianism, and dictatorial rule, and, in the aftermath of Deng Xiaoping’s 

reformations, the established Chinese system of state capitalism/bureaucratic socialism was 

combined with higher levels of economic speculation and institutionalized corruption and 

with a plan for the total algorithmization and, hence, dehumanization of social organization. 

In his best-selling book Wolf Totem, Jiang Rong (which is the pseudonym of the Chinese 

dissident author Lü Jiamin) explains that the regime of the People’s Republic of China wants 

people to become sheep, and, from this perspective, it follows Confucianism, whose central 

tenet was obedience to the emperor and the established social order, while, simultaneously, in 

the economic sphere, the prevailing character of the Chinese so-called “communist” 

businessmen is that of a fierce wolf.259 In particular, Han Fei Tzu’s Legalism (or “school of 

the method”), of which Tung Chung-shu (179–04 B.C.) is the preeminent representative, 

grafted Confucian political and ethical notions on an organic conception of society, and, 

additionally, it adopted an eclectic attitude toward the incorporation of legalist practices in the 

administration of the empire. As Robert Spalding (retired U.S. Air Force Brigadier General) 

has explained, in the economic sphere, the CCP (Chinese Communist Party) has embraced the 

speculative aspects and dynamics of Western capitalism, given that, in China, capitalism is 

strictly controlled by the CCP’s ruling elite, but, in the political sphere, CCP wants to 

dissociate Western capitalism from bourgeois liberalism, and, being imbued with fundamental 
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loathing of the United States’ Bill of Rights, the CCP, especially during the presidency of Xi 

Jinping, aims to impose a system whose major constituent components are state 

capitalism/bureaucratic socialism and totalitarianism.260 

Regarding imperialism, in particular, it should be stressed that, as the German-American 

political theorist Hannah Arendt has thoroughly explained, imperialism is an anti-

cosmopolitan variety of universalism, since it is an attempt of a particular political actor to 

universally impose one’s own selfish interests and perceptions, whereas genuine 

cosmopolitanism is based on intrinsically universal values and norms, which transcend every 

particular actor’s own political and economic expediencies.261 In particular, in the 1950s and 

in the 1960s, in the United States of America, a group of American intellectuals associated 

with or influenced by social democracy and/or Trotskyism transformed themselves into 

“neoconservatives” by isolating the socialist notion of cosmopolitanism and Trotsky’s theory 

of “continuous revolution” from their socialist context and fusing them with Leo Strauss’s 

political conservatism, thus transforming them into underpinnings of an imperialist ideology, 

which became very influential during the Republican presidential administrations of Ronald 

Reagan (1981–89) and George Walker Bush (2001–09). In terms of political culture, 

neoconservatism is a product of the fusion of fundamentalist Evangelical American 

organizations, the selfish expediencies of the Euroatlantic military-industrial complex, and 

right-wing Zionist currents (the latter—as Hannah Arendt has pointed out—representing an 

updated version of neo-imperialism and neo-colonialism262). Thus, neoconservatism 

semantically equates “cosmopolitanism” with “Pax Americana,” and it semantically equates 

“continuous revolution” with a strategy of continuous geostrategic military interventions.263 

Even though the capitalist West’s imperialist dynamic did not characterize the former 

Soviet Union, the latter was decisively characterized by a bureaucratic-militaristic dynamic. 

Hence, even though the economic structures of the former Soviet Union did not give rise to 

an imperialist dynamic, the former Soviet Union was characterized by an expansionist 

dynamic, which expressed the former Soviet social establishment’s need to stabilize its global 

position irrespective of ideological principles and without pursuing a substantial socialist-

communist transformation of the former Soviet society. The declared teleology of the former 

Soviet Union’s policy of stabilizing its global position may differ from Western imperialism, 

but the fundamental mentalities and the practices of the former Soviet Union’s political 

system were not essentially different from those of Western imperialism (this mentality of 

selfish pragmatism, bureaucratism, conformity to capitalist norms, and power politics 

divested of any philosophical and/or ideological principles became the official political 

doctrine of the post-Soviet Russian establishment during the presidency of Vladimir Putin).  

Let us recall an old adage according to which “the best defense is a good offense,” 

implying that offensive expansionist tendencies, plans, and intentions may constitute integral 

parts of a defensive strategy. In the beginning of the twenty-first century, a current of Russian 

political scientists exemplified by Sergey Karaganov, invoking Realpolitik and pragmatism, 

simply exchanged Stalin’s model of authoritarian statism for a Bismarckian model of 

authoritarian statism (i.e., one inspired by the Prussian statesman Otto von Bismarck and his 

policies) and endorsed Henry Kissinger’s ethos (thus establishing a reflexive relation between 

the Kremlin and the White House). To put it succinctly, just as the American 

neoconservatives developed an imperialist political theory by separating Trotsky’s 
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internationalism and theory of revolution from Trotsky’s socialist vision (espousing the 

former while dismissing the latter), so too Karaganov and the like developed their own 

variety of authoritarian statism and expansionism by espousing the authoritarian, statist, and 

expansionist aspects of the Stalinist legacy while dismissing the declared socialist 

commitments of Stalinism. In this way, the global capitalist establishment, in general, and the 

ruling Euroatlantic (NATO-EU) elites, in particular, achieved a subtle yet significant victory 

over Russia, in the following sense: they managed to assimilate Russia into the established 

capitalist-euroatlantic “World Order.” Hence, Karaganov has been Presidential Advisor to 

both Boris Yeltsin and Vladimir Putin while being simultaneously a member of the Trilateral 

Commission (since 1998); and he served on the International Advisory Board of the Council 

on Foreign Relations from 1995 until 2005.  

Whereas the Soviet Union was, at least in principle, an international-political actor trying 

to establish and promote (and even globalize) a substantially different socio-political model, 

post-Soviet Russia, officially and explicitly, became part of the dominant Western capitalist 

system, irrespective of the fact that Putin’s Russia may often exhibit higher levels of 

nationalism, conservativism, and competitiveness than particular Western capitalist elites 

would wish. However, since the era of the Cold War, what matters most to the Western 

capitalist elites is the extent to which the Kremlin elites conform to the logic and the ethos of 

capitalism and to the Western capitalist bourgeoisie’s theories of geopolitics and Realpolitik. 

In other words, what matters most to the Western capitalist elites is the manipulation of the 

ruling Soviet/Russian elites’ mentality and intellectual and moral horizons, in order to make 

the ruling Soviet/Russian elites think and act mainly according to methods that belong to the 

Western capitalist establishment’s political and economic “toolbox,” which includes both 

“liberal-internationalist” varieties of capitalism and “conservative-nationalist” varieties of 

capitalism. In fact, a military faction of the Soviet Union, indoctrinated with Western theories 

of geopolitics and Realpolitik and seeking to partner with Western military elites for the 

management of world affairs, managed to impose itself on the KGB and bargained socialism 

away, thus playing a decisive role in the dissolution of the Soviet Union.  

During the Cold War, the language of strategic studies was given to euphemism, jargon, 

and oxymoron, and the political establishment, both in the Euroatlantic “bloc” and the Soviet 

“bloc,” looked at every attempt to promote free thought and rigorous political discourse with 

a jaundiced eye.264 This Cold War legacy was preserved during the first decades of the post-

Cold War era in the form of propaganda operations that manipulate the concept of 

democracy. To put it succinctly, during the end of the twentieth century and during the 

beginning of the twenty-first century, it became amply clear that—even though democracy 

originated in ancient Greece encouraging the constant and never-ending reflective re-

evaluation of social institutions—Euroatlantic elites abusively and selfishly invoke European 

theories of democracy in order to justify and disguise their geostrategic and financial 

ambitions, thus, in essence, identifying “democracy” with “liberal oligarchy,” while Eurasian 

and Asian elites castigate the deviousness of the aforementioned Euroatlantic elites in order to 

justify their own (Eurasian/Asian) models of authoritarianism by dismissing the European 

democratic tradition outright as a phenomenon of only local (modern Western) relevance and 

as a pretense on the part of imperialist Euroatlantic elites. Regarding post-Soviet Russia under 

Vladimir Putin’s government, in particular, it should be mentioned that, however capable and 
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skillful a tactician he may be, Vladimir Putin has failed to realize that his government cannot 

get around the substantial problems of noopolitics, ideology, and, ultimately, philosophy by 

means of ordinary power politics and propaganda.  

Regarding Realpolitik, in general, it should be mentioned that, from the perspective of the 

philosophy of rational dynamicity, it should be criticized on the following levels: The 

advocates of Realpolitik, such as Hans J. Morgenthau, regard the “will-to-power” as the 

defining characteristic of politics and as the element with respect to which one can distinguish 

politics from other spheres of social life (e.g., economics, law, morality, religion, etc.), and 

they assert the autonomy of politics as a distinct form of social life, which is characterized by 

the “will-to-power.”265 By abstracting the “political man” from the “real man,” by abstracting 

“political life” from “real life,” by identifying political action with power politics, and by 

confining political science within the realm of such abstractions and one-sided attempts at 

explaining politics, the advocates of Realpolitik lapse into a form of political idealism that 

also makes it difficult to distinguish between explanation and prescription. In other words, 

the pursuit of unitary understanding (“power politics”) and the tension between the abstracted 

(necessity in the form of power politics) and the unabstracted (the realm of freedom and 

morality, which have been separated from politics by the advocates of Realpolitik) undermine 

the empirical relevance of the theory of Realpolitik and the cognitive significance of the 

theorems that have been formulated by the advocates of Realpolitik, such as Morgenthau. For 

instance, the espousal of the claim that the national interest of the “modern nation-state” 

could be defined independently of any consideration of a nation-state’s dominant culture and 

independently of the dynamics of a nation-state’s elites undermines the empirical significance 

of any foreign-policy analysis.266 It is worth pointing out that, according to the eminent 

American sociologist Charles Wright Mills, societies should be studied in terms of what he 

has called the “sociological imagination,” which has the following three components: (i) 

History: why society is what it is, how it has been changing for a long time, and how history 

is being made in it. (ii) Biography: what is the “human nature” in society, and what kinds of 

people constitute a society. (iii) Social structure: how the various institutional orders in a 

society function, which ones are dominant, how they are kept together, how they change, 

etc.267 Furthermore, as Stanley H. Hoffmann has argued, “it is impossible to subsume under 

one word variables as different as: power as a condition of policy and power as a criterion of 

policy; power as a potential and power in use; power as a sum of resources and power as a set 

of processes.”268 

Analyzing the “modern world system” as an evolving, interlocking world capitalist 

economy that emerged in its discernible modern form in the sixteenth century, the 

distinguished American sociologist and economic historian Immanuel Wallerstein has argued 

that the former Soviet Union and all the professedly socialist states should be characterized as 

parts of the established capitalist system by virtue of the fact that they traded in a world 

market and reproduced capitalist relationships.269 In the post-Soviet era, the Euroatlantic 

model of active and overt imperialism is primarily based on and primarily guided by the 

intention and the plans of a capitalist elite to maximize its profits (manipulating politics), and 

 
265 Morgenthau, Politics among Nations. 
266 Hoffmann, ed., Contemporary Theory in International Relations; Seabury, Power, Freedom, and Diplomacy.  
267 Mills, The Sociological Imagination.  
268 Hoffmann, ed., Contemporary Theory in International Relations, p. 32. 
269 Wallerstein, Unthinking Social Science; Wallerstein, The Modern World-System. 
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the Russian-Eurasian model of passive and covert imperialism is primarily based on and 

primarily guided by the intention and the plans of a political and bureaucratic elite to maintain 

and maximize its power and authority (manipulating capitalism). 

In the twentieth century, the three major conceptual and institutional frameworks within 

which and due to which the most repellent and the most extreme phenomena of “false 

consciousness” were manifested were private capitalism, state capitalism (or bureaucratic 

socialism), and geopolitics. Regarding geopolitics, in particular, the distinguished French 

economist and political geographer Yves-Marie Goblet (1881–1955) timely diagnosed that it 

was essentially “political alchemy” and “metaphysics,” and he scornfully contrasted 

“géographie politique” with “Geopolitik spagyrique.”270 

By contrast, the dialectic of rational dynamicity helps one to understand, rationally and 

creatively criticize, and avoid the structural defects of both private capitalism and state 

capitalism/bureaucratic socialism. From the perspective of the dialectic of rational 

dynamicity, the term “market” should mean a free social space. Even though the advocates of 

capitalism talk of “free trade,” the underlying ethos of capitalism does not consist in the 

sacredness of human freedom, but it consists in the sacredness of the logic of money power 

(represented by banks and financial oligopolies), which breaks any rule pertaining to noble 

traditional aspirations until humanity’s spiritual life, “culture,” is systematically dragged 

through the mire under deceptive notions, such as “prosperity,” “stability,” “mutual 

understanding,” “dialogue,” and, of course, “security,” and it is ultimately sacrificed on the 

altar of Mammon. The underlying ethos of capitalism renders stillborn any attempt to 

establish a really free market, because, in essence, a free market is a free social space (such as 

the ancient “agorā” of Athens), whereas the underlying ethos of capitalism gives rise to 

“cartelism” (i.e., the control of production and prices through agreements between/among big 

corporations)271 and various types of “mafiocracy” (i.e., rule by organized crime).272 The 

concept of a free-market-as-a-free-social-space (originally exemplified by the “agorā” of 

classical Athens) implies that human persons possess certain rights and liberties because of 

the very fact that they are humans, namely, by nature, and, therefore, they have the right to 

band together and form and reform their social institutions. However, the aforementioned 

concept should not be confused with the concept of a free-market-as-a-capitalist-institution, 

because, in the latter case, corporations—having become persons in law—gradually usurp the 

rights and the liberties that naturally belong to human persons, and they tend to impose 

themselves as superior persons vis-à-vis the human persons. 

As a conclusion, rational dynamicity is substantially different from both the underlying 

reasoning of private capitalism and the underlying reasoning of state capitalism (or 

 
270 Goblet, The Twilight of Treaties. 
271 See, for instance: Tepper and Hearn, The Myth of Capitalism. 
272 It is important to mention that, as the French Professor of Legal History and literary critic Jacques de Saint 

Victor has argued, mafia (specifically, the European and American transnational system of organized crime) 

was born in the “décombres” (rubble) of the feudal regime, and it was developed further as a consequence of 

the advent of bourgeois democracy and capitalism from the nineteenth century onward (Victor, Un Pouvoir 

Invisible). In fact, the essence of modern mafia is the result of the merger between a rotten nobility and a 

criminal bourgeoisie, and various secret/“esoteric” societies (such as the notorious Italian Masonic Lodge 

“P2”) and private exclusive membership clubs operate as front organizations for the mafia, often in 

collaboration with state bureaucracies. Moreover, in the context of the Cold War, a notorious and powerful 

alliance was formed between the CIA, the Vatican, and the Mafia, ostensibly, in order to conduct covert 

operations against communism in general and against the Soviet Union in particular; see: Williams, Operation 

Gladio. Finally, regarding the Russian Mafia, in particular, see: Friedman, Red Mafiya. 
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bureaucratic socialism). Additionally, rational dynamicity is primarily a philosophy, and, for 

this reason, it transcends action itself, since its purpose is to operate as an ideal type and a 

guiding principle of action (rather than as a particular set of concrete actions). As a 

philosophy, rational dynamicity is inextricably linked to a continuous evaluation of the way 

in which humanity expresses its freedom and historical creativity vis-à-vis cosmic necessity. 

The rationality and the dynamism that characterize the philosophy of rational dynamicity 

stem from and presuppose, more than anything else, a deep trust in humanity’s creative 

presence. In view of the foregoing, rational dynamicity can also operate as a method of 

judging and evaluating civilizations. In my book Taking the Bull by the Horns: Causes, 

Consequences and Perspectives in Politology and Political Econοmy, originally published in 

Greek by the Greek scholarly publisher ΚΨΜ (https://kapsimi.gr/), I propose an alternative, 

integral political and economic theory, which I have called “critical rational socialism.” 

 

 

 

 

 

“One must divide one’s time between politics and equations. But our equations are much 

more important to me, because politics is for the present, while our equations are for eternity.” 

— Theoretical physicist Albert Einstein (1879–1955) speaking to mathematician Ernst 

Strauss (1922–83); quoted in: Joy Hakim, The Story of Science, Washington, D.C.: 

Smithsonian Books, 2007, Chapter 28. 
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Chapter 2 

 

 

 

FORMAL METHODS OF ANALYSIS:  

ALGEBRA, CALCULUS, AND ANALYTIC GEOMETRY 
 

 

2.1. SETS, RELATIONS, AND GROUPS 
 

The history of set theory and, generally, of non-numerical mathematics can be traced 

back to the era of classical Greece, but the first systematic inquiry into the foundations of set 

theory was due to the German mathematician Georg Ferdinand Ludwig Philip Cantor (1845–

1918). However, before Cantor, George Peacock (1791–1858), Augustus De Morgan (1806–

71), and George Boole (1815–64) had already made significant contributions to the 

formalization of non-numerical mathematics.273 Inextricably linked to set theory is algebra. 

Peter J. Cameron has explained the meaning of algebra as follows:  

 

The word “algebra” is derived from the Arabic al-Jabr, meaning “transformation.” It 

refers to a technique derived by Al-Khwarizmi, a Persian mathematician who lived in 

Baghdad early in the Islamic era (and whose name has given us the word “algorithm” for a 

procedure to carry out some operation). Al-Khwarizmi was interested in solving various 

algebraic equations (especially quadratics), and his method involves applying a transformation 

to the equation to put it into a standard form for which the solution method is known.274 

 

However, one of the very influential drivers of the Arabs’ and the Persians’ algebraic 

thinking was ancient Greek number theory, which culminated in the work of the third-century 

A.D. Greek mathematician Diophantus of Alexandria, who published his seminal book 

Arithmetica, which is a collection of one hundred and thirty algebraic problems giving 

numerical solutions of determinate equations (i.e., equations with unique solutions) and 

indeterminate equations (i.e., equations with more than one solutions) and using fractions.  

Before proceeding any further, I would like to clarify that I use the following symbols of 

logic and set theory: 

 

 

˄ or &: conjunction (“and”), 

 
273 For a systematic study of the history of set theory, see: Merzbach and Boyer, A History of Mathematics; Halmos, 

Naive Set Theory; Stoll, Set Theory and Logic. 
274 Cameron, Introduction to Algebra, p. 1. 
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˅: disjunction (“or”), 

¬: negation (“not”), 

→ or ⇒: material implication (“if . . . then . . .”) 

↔ or ⇔: biconditional (“if and only if”), 

∀: universal quantification (“for every”), 

∃: “there exists,” 

∃!: “there exists exactly one,” 

∄: “there does not exist,” 

𝑃(𝑥): predicate letter (meaning that 𝑥 (an object) has property 𝑃), 

|: “such that,” 

⊢: turnstile (𝑥 ⊢ y means that 𝑥 “proves” (i.e., syntactically entails) 𝑦; a sentence 

𝜑 is “deducible” from a set of sentences 𝛴, expressed 𝛴 ⊢ 𝜑, if there exists a 

finite chain of sentences 𝜓0, 𝜓1, 𝜓2, … , 𝜓𝑛 where 𝜓𝑛 is 𝜑 and each previous 

sentence in the chain either belongs to 𝛴, or follows from one of the logical 

axioms, or can be inferred from previous sentences), 

⊨: double turnstile (𝑥 ⊨ y means that 𝑥 “models” (i.e., semantically entails) 𝑦; a 

sentence 𝜑 is a “consequence” of a set of sentences 𝛴, expressed 𝛴 ⊨ 𝜑, if 

every model of 𝛴 is a model of 𝜑).  

 

 

2.1.1. Basic Concepts of Set Theory 

 

The difficulty in defining the concept of a set is that it is a fundamental concept, and, 

therefore, it cannot be reduced to simpler concepts. Cantor described a “set” as a well-defined 

gathering together into a whole of definite, distinguishable objects of perception or of our 

thought that are called elements of the set.275 By the term “well-defined,” Cantor means that, 

given any object and any set, the given object is either an element of the given set or not an 

element of the given set, and, by the terms “definite” and “distinguishable,” Cantor means 

that no two elements of a set are the same. Cantor’s definition of a set, though rather vague, 

implies the following properties of sets: 

 

(i) any set 𝐴 contains “elements” or “members” of 𝐴, symbolically:  

𝑥 ∈ 𝐴 ⇔ (𝑡ℎ𝑒 𝑜𝑏𝑗𝑒𝑐𝑡 𝑥 𝑖𝑠 𝑎𝑛 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑜𝑓 𝐴); 
(ii) each set is determined by its elements, symbolically:  

𝐴 = 𝐵 ⇔ (∀𝑥)[𝑥 ∈ 𝐴 ⇔ 𝑥 ∈ 𝐵] for any sets 𝐴 and 𝐵. This property is known 

as the “property of extension.” 

 

The elements of a set may not be related to each other in some way. The “empty set,” 

denoted by ∅, has no elements, and, by the property of extension, it is unique. A set is “finite” 

if the number of its members is finite; otherwise, it is an “infinite” set. For instance, the set 

{1,2,3} is fine, whereas the set {𝑥|𝑥 > 3} is an infinite set. If a set has only one element, then 

it is called a “singleton.”  

However, every collection is not a set. Before the first rigorous axiomatization of set 

theory by the German mathematician and logician Ernst Zermelo (1871–1953), to whose 

 
275 Cantor, “Beiträge zur Begründung der transfiniten Mengenlehre,” p. 481.  
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work I shall refer extensively in section 3.5, Cantor’s set theory was based on his (intuitive) 

definition of a set and on the General Comprehension Principle.  

 

General Comprehension Principle276: For every definite condition 𝑃 of 𝑛 variables 

𝑥1, 𝑥2, … , 𝑥𝑛, there exists a set 

 

𝑋 = {𝑥⃗|𝑃(𝑥⃗)} 

 

whose elements are the 𝑛-tuples 𝑥⃗ of the objects having property 𝑃, so that 

 

𝑥⃗ ∈ 𝑋 ⇔ P(𝑥⃗). 

 

A condition 𝑃 of 𝑛 variables is called “definite” if it is definitely determined whether 

𝑃(𝑥⃗) is true or false for any 𝑛-tuple 𝑥⃗ of objects 𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛. The General 

Comprehension Principle is restricted to definite conditions in order to avoid mathematically 

irrelevant obscurities (e.g., subjective judgments, such “New York is a nice city”).  

The General Comprehension Principle means that, given any condition expressible by a 

formula 𝜑(𝑥), it is possible to form the set of all sets 𝑥 meeting that condition. Cantor 

endorsed the General Comprehension Principle mainly because it was in agreement with his 

intuition about sets. Nevertheless, the British philosopher and mathematician Bertrand 

Russell (1872–1970) proved that the General Comprehension Principle is not valid by putting 

forward “Russell’s paradox.”  

 

Russell’s Paradox277: Let 𝑈 be the collection of all sets: 

 

𝑈 = {𝑥|𝑥 𝑖𝑠 𝑎 𝑠𝑒𝑡}. 

 

Then 𝑈 is not a set. We can prove Russell’s Paradox by reductio ad absurdum. Assume, 

for the sake of contradiction, that 𝑈 is a set. However, any ordinary mathematical set (e.g., of 

numbers, functions, etc.) is not a member of itself and can be naturally regarded as a member 

of a smaller universe of sets that can be obtained again by the General Comprehension 

Principle. In particular, let 𝑉 be an arbitrary set and 𝑉 ∉ 𝑉. Then, by the definition of 𝑈,  

 

𝑉 ∈ 𝑈.                                                                                                                                 (i) 

 

Moreover, because 𝑈 is a set, either 𝑈 ∈ 𝑈 or 𝑈 ∉ 𝑈. If 𝑈 ∉ 𝑈, then, by statement (i), 

𝑈 ∈ 𝑈. But, if 𝑈 ∈ 𝑈, then, again by (i), 𝑈 ∉ 𝑈. Therefore, in both of these cases, we reach a 

contradiction, and, in this way, we prove that 𝑈 is not a set. The class 𝑈 is known as 

“Russell’s class,” and the aforementioned contradictory situation is known as “Russell’s 

paradox” (i.e., the “universal set” is not a set). According to Russell, the problem in the 

aforementioned paradox is that we confuse a description of sets of numbers with a description 

of sets of sets of numbers. In order to overcome such difficulties, Russell and Alfred North 

Whitehead introduced a hierarchy of objects, which they called “types,” namely: numbers, 

 
276 Cantor, Gesammelte Abhandlungen.  
277 Russell, “Mathematical Logic as Based on the Theory of Types.” 
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sets of numbers, sets of sets of numbers, etc. In particular, Russell has described the concept 

of a type in the following way:  

 

Every propositional function 𝜑(𝑥)—so it is contended—has, in addition to its range of 

truth, a range of significance, i.e., a range within which 𝑥 must lie if 𝜑(𝑥) is to be a 

proposition at all, whether true or false. This is the first point in the theory of types; the second 

point is that ranges of significance form types, i.e., if 𝑥 belongs to the range of significance of 

𝜑(𝑥), then there is a class of objects, the type of 𝑥, all of which must also belong to the range 

of significance of 𝜑(𝑥), however 𝜑 may be varied; and the range of significance of 𝜑(𝑥) is 

always either a type or a sum of several whole types.278 

 

Thus, having objects of type 0 (individuals, i.e., any object that is not a range), 1 (classes 

of individuals), 2 (classes of classes of individuals), etc., relations among them are acceptable 

under specific conditions. For instance, inclusion, ⊆, is an acceptable relation when it relates 

objects of type 1 to objects of type 1; belonging, ∈, is an acceptable relation when, on its left, 

there is an object of type 0 and, on its right, there is an object of type 1.  

Almost simultaneously with Russell and Whitehead, Ernst Zermelo proposed a different 

way to overcome the antinomies of Cantor’s set theory, namely, to replace Cantor’s intuitions 

with axioms; thus, the development of modern set theory was initiated (see also section 3.5). 

In Zermelo’s axiomatic system, it is assumed that there exist a “universe of objects” 𝑈, some 

of which are sets, and some “definite conditions and operators” in 𝑈, the basic of which are 

the following: 

 

𝑥 = 𝑦 ⇔ 𝑡ℎ𝑒 𝑜𝑏𝑗𝑒𝑐𝑡 𝑥 𝑖𝑠 𝑖𝑑𝑒𝑛𝑡𝑖𝑐𝑎𝑙 𝑡𝑜 𝑦, 

𝑆𝑒𝑡(𝑥) ⇔ 𝑥 𝑖𝑠 𝑎 𝑠𝑒𝑡, 

𝑥 ∈ 𝑦 ⇔ 𝑆𝑒𝑡(𝑦) & 𝑥 𝑏𝑒𝑙𝑜𝑛𝑔𝑠 𝑡𝑜 𝑦. 

 

The objects that are not sets are called “atoms.” In fact, in order to overcome Russell’s 

paradox, Zermelo replaced the axiom that, “for every formula 𝜑(𝑥), there exists a set 𝑦 =
{𝑥|𝜑(𝑥)}” with the axiom that, “for every formula 𝜑(𝑥) and every set 𝑣, there exists a set 

𝑦 = {𝑥|𝑥 ∈ 𝑣&𝜑(𝑥)}.” 

If every element of a set 𝐵 is an element of a set 𝐴, then 𝐵 is said to be a “subset” of 𝐴, 

and we write 𝐵 ⊆ 𝐴. Every set is a subset of itself. If 𝐴 is an arbitrary set, then ∅ ⊆ 𝐴, that is, 

the empty set is a subset of every set. Two sets 𝐴 and 𝐵 are “equal” if and only if 𝐴 ⊆ 𝐵 and 

𝐵 ⊆ 𝐴, and then we write 𝐴 = 𝐵. If two sets 𝐴 and 𝐵 satisfy the condition 𝐵 ⊆ 𝐴 and there is 

at least one element of 𝐴 that is not an element of 𝐵, then 𝐵 is said to be a “proper subset” of 

𝐴, and we write 𝐵 ⊂ 𝐴. If 𝐵 ⊆ 𝐴 or 𝐵 ⊂ 𝐴, then 𝐴 is said to be a “superset” of 𝐵. When in a 

particular situation all the sets under consideration are subsets of a fixed set, this fixed set, 

which is the superset of every set under consideration, is called the “universal set,” or the 

“universe of discourse.” 

If the elements of a set are sets themselves, then the set is called a “set of sets,” or a 

“family of sets,” or a “collection of sets,” or a “class of sets.” For instance, 𝒞 = {{𝑥}, {𝑦, 𝑧}} is 

a class of sets (notice that 𝑥 is something different from {𝑥}).  

 
278 Russell, The Principles of Mathematics, p. 523. 
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Let 𝐴 be an arbitrary set. Consider a class 𝑋 of sets such that to each element of 𝐴 

corresponds an element of 𝑋. Then 𝑋 is called an “indexed class of sets,” and the set 𝐴 is 

called an “index set.” For instance, let 𝑋 = {𝐴𝑛|𝑛 = 1,2,3,… } and 𝐴𝑛 =
{𝑥|𝑥 𝑖𝑠 𝑎 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒 𝑜𝑓 𝑛, 𝑎𝑛𝑑 𝑛 = 1,2,3,… }. Then 𝐴1 = {1,2,3,… }, 𝐴2 = {2,4,6,… }, etc., 

are the indexed sets, and 𝑋 is the indexed class of sets.  

Let 𝐴 be any set. The “power set” of 𝐴 is defined to be the set composed of all the subsets 

of 𝐴, and it is denoted by ℘(𝐴), symbolically: 

 

℘(𝐴) = {𝐵|𝐵 ⊆ 𝐴}. 

 

If a set 𝐴 has 𝑛 elements (where 𝑛 is a finite number), then ℘(𝐴) = 2𝑛, since each 

element has two possibilities, namely, present or absent (and, hence, the possible subsets are 

2 × 2 × 2 × …𝑛 times, that is, 2𝑛). For instance, if 𝐴 = {𝑥, 𝑦}, then ℘(𝐴) = 22 = 4, 

specifically, ℘(𝐴) = {∅, {𝑥}, {𝑦}, {𝑥, 𝑦}}.  

 

 

2.1.2. Basic Operations on Sets 

 

If 𝐴 and 𝐵 are two arbitrary sets, then we define their 

 

i. “union”: 𝐴 ∪ 𝐵 = {𝑒𝑣𝑒𝑟𝑦 𝑥 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑥 𝑏𝑒𝑙𝑜𝑛𝑔𝑠 𝑡𝑜 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝑜𝑛𝑒 𝑜𝑓𝐴𝑎𝑛𝑑 𝐵}; 

ii. “intersection”:  

𝐴 ∩ 𝐵 = {𝑒𝑣𝑒𝑟𝑦 𝑥 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑥 𝑏𝑒𝑙𝑜𝑛𝑔𝑠 𝑡𝑜 𝑏𝑜𝑡ℎ 𝐴 𝑎𝑛𝑑 𝐵}; 

iii. “difference”:  

𝐴 − 𝐵 = 𝐴 ∩ 𝐵∼, where 𝐵∼ is the “complement” of 𝐵, that is: if 

𝐵 𝑏𝑒𝑙𝑜𝑛𝑔𝑠 𝑡𝑜 𝑡ℎ𝑒 𝑝𝑜𝑤𝑒𝑟 𝑠𝑒𝑡 ℘(𝑋) of a certain set 𝑋, then  

𝐵∼ = {𝑒𝑣𝑒𝑟𝑦 𝑥 𝑡ℎ𝑎𝑡 𝑏𝑒𝑙𝑜𝑛𝑔𝑠 𝑡𝑜 𝑋 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑥 𝑑𝑜𝑒𝑠 𝑛𝑜𝑡 𝑏𝑒𝑙𝑜𝑛𝑔 𝑡𝑜 𝐵}; 

iv. “symmetric difference”:  

𝐴 △ 𝐵 = (𝐴 − 𝐵) ∪ (𝐵 − 𝐴) = (𝐴 ∪ 𝐵) − (𝐴 ∩ 𝐵). 

 

Two sets are called “(relatively) disjoint” if their intersection is the empty set. A class of 

sets is “pairwise disjoint” if the intersection of any two sets in the class is empty. A class 

𝐶(𝑋) of subsets of a set 𝑋 is called a “partition” of 𝑋 if 𝐶(𝑋) is pairwise disjoint and the 

union of the sets in 𝐶(𝑋) is the set 𝑋; for instance, the class {{4,8}, {2,6,10}, {12}} is a 

partition of the set {2,4,6,8,10,12}.  

In mathematics, the following notation is used:  

 

ℕ = {0,1,2,3,… , 𝑛, 𝑛 + 1,… } = 𝑡ℎ𝑒 𝑠𝑒𝑡 𝑜𝑓 𝑎𝑙𝑙 𝑛𝑎𝑡𝑢𝑟𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟𝑠 (these are the so-

called “counting numbers”); ℕ∗ ≡ ℕ− {0}.  

ℤ = {… ,−𝑛 − 1,−𝑛,… ,−2,−1,0,1,2,… , 𝑛, 𝑛 + 1,… } = 𝑡ℎ𝑒 𝑠𝑒𝑡 𝑜𝑓 𝑎𝑙𝑙 𝑖𝑛𝑡𝑒𝑔𝑒𝑟𝑠; in 

this case, ℤ∗ ≡ ℤ − {0}.  

ℚ = {
𝑝

𝑞
𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑝, 𝑞 ∈ ℤ, 𝑞 ≠ 0, (𝑝, 𝑞) = ±1} = 𝑡ℎ𝑒 𝑠𝑒𝑡 𝑜𝑓 𝑎𝑙𝑙 𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟𝑠. 

In this case, (𝑝, 𝑞) denotes the greatest common divisor of two integers 𝑝 and 𝑞; 
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since (𝑝, 𝑞) = ±1, it follows that 𝑝 and 𝑞 are relatively prime integers (an integer 𝑥 

is called prime if its only divisors are ±1 and ±𝑥); ℚ∗ ≡ ℚ− {0}.  

ℚ∼ = 𝑡ℎ𝑒 𝑠𝑒𝑡 𝑜𝑓 𝑎𝑙𝑙 𝑖𝑟𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟𝑠,  

 

namely, the set of all numbers that cannot be written as the quotient of two relatively prime 

integers. For instance, we can prove that √2 ∈ ℚ∼ by reductio ad absurdum as follows: 

suppose that √2 =
𝑝

𝑞
 where 𝑝, 𝑞 ∈ ℤ, 𝑞 ≠ 0, 𝑎𝑛𝑑 (𝑝, 𝑞) = ±1, so that  

 

√2 =
𝑝

𝑞
⇒ 2 =

𝑝2

𝑞2
⇒ 𝑝2 = 2𝑞2 ⇒ 𝑝 = 2𝑘 

 

for an appropriate integer 𝑘, and, therefore, 4𝑘2 = 2𝑞2 ⇒ 𝑞2 = 2𝑘2, meaning that (𝑝, 𝑞) =

2, which contradicts the hypothesis. The history of the irrational numbers goes back to the 

Pythagorean mathematicians, who had demonstrated that there exist lengths incommensurable 

with a given unit of length; for instance, the diagonal of a square whose side is the unit length. 

Obviously, ℚ∼ is the complement of ℚ in the set ℝ of all real numbers. Hence, 

 

ℝ = ℚ∪ℚ∼ = 𝑡ℎ𝑒 𝑠𝑒𝑡 𝑜𝑓 𝑎𝑙𝑙 𝑟𝑒𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟𝑠; ℝ∗ ≡ ℝ− {0}.  

 

Two important theorems related to set operations involving intersections, unions, and 

taking absolute complements are known as De Morgan’s Laws (they are named after the 

nineteenth-century English mathematician Augustus De Morgan, even though these theorems 

were known to Aristotle and medieval logicians).  

De Morgan’s Laws279: For any two sets 𝐴 and 𝐵 such that 𝐴 ∪ 𝐵 ⊆ 𝑋, the following 

complementation laws hold: 

 

i. (𝐴 ∪ 𝐵)∼ = 𝐴∼ ∩ 𝐵∼, 

ii. (𝐴 ∩ 𝐵)∼ = 𝐴∼ ∪ 𝐵∼. 

 

Proof: 

i. 𝑥 ∈ (𝐴 ∪ 𝐵)∼ ⇔ 𝑥 ∉ 𝐴 ∪ 𝐵(𝑖. 𝑒. , 𝑥 ∉ 𝐴&𝑥 ∉ 𝐵) ⇔ 𝑥 ∈ 𝐴∼ ∩ 𝐵∼.  

This theorem can be expressed as a rule of inference as follows: the negation 

of a disjunction is the conjunction of the negations. In terms of propositional 

logic (which I shall systematically study in Chapter 3), (i) can be expressed as 

follows: 

𝑛𝑜𝑡 (𝐴 𝑜𝑟 𝐵) = 𝑛𝑜𝑡 𝐴 𝑎𝑛𝑑 𝑛𝑜𝑡 𝐵.  

ii. It can be proved analogously to (i). This theorem can be expressed as a rule of 

inference as follows: the negation of a conjunction is the disjunction of the 

negations. In terms of propositional logic, (ii) can be expressed as follows: 

𝑛𝑜𝑡(𝐴𝑎𝑛𝑑𝐵) = 𝑛𝑜𝑡𝐴𝑜𝑟𝑛𝑜𝑡𝐵.■ 

Moreover, notice that (𝐴~)~ = 𝐴 (i.e., a double negation implies an affirmation), and 

𝐴 ⊆ 𝐵 ⇔ 𝐵~ ⊆ 𝐴~.  

 
279 De Morgan, Formal Logic. 
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The algebra of sets is governed by the following laws, which were systematically studied 

by the English mathematician and philosopher George Boole in the nineteenth century280: 

 

i. “Commutative Law”:  

A ∪ B = B ∪ A, 

A ∩ B = B ∩ A. 

ii. “Associative Law”: 

(A ∪ B) ∪ C = A ∪ (B ∪ C), 
(A ∩ B) ∩ C = A ∩ (B ∩ C). 

iii. “Distributive Law”: 

𝐴 ∪ (𝐵 ∩ 𝐶) = (𝐴 ∪ 𝐵) ∩ (𝐴 ∪ 𝐶), 

𝐴 ∩ (𝐵 ∪ 𝐶) = (𝐴 ∩ 𝐵) ∪ (𝐴 ∩ 𝐶). 

 

Let 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵. Then the “ordered pair” (𝑎, 𝑏) is defined (according to the Polish 

mathematician and logician Kazimierz Kuratowski) as the set {{𝑎}, {𝑎, 𝑏}}, whereas the 

(unordered) “pair” is {𝑎, 𝑏} = {𝑎} ∪ {𝑏}. Moreover, (𝑎, 𝑎) = {𝑎}, the singleton of 𝑎.  

By a “tuple,” we mean a finite ordered list of elements. The 0-tuple (i.e., the empty tuple) 

is the empty set ∅. An 𝑛-tuple, where 𝑛 > 0, namely, (𝑎1, 𝑎2, 𝑎3, … , 𝑎𝑛) is a collection of 𝑛 

objects 𝑎1, 𝑎2, 𝑎3, … , 𝑎𝑛 in which 𝑎1 is the first element, 𝑎2 is the second element, . . ., and 

𝑎𝑛is the 𝑛th element, and it can be defined as an ordered pair of its first element and an (𝑛 −

1)-tuple, namely, (𝑎1, (𝑎2, 𝑎3, … , 𝑎𝑛)). This definition can be applied recursively to the (𝑛 −

1)-tuple, so that we obtain 

 

(𝑎1, 𝑎2, 𝑎3, … , 𝑎𝑛) = (𝑎1, (𝑎2, (𝑎3, (… , (𝑎𝑛, ∅)… )))).  

 

The Fundamental Property of Ordered Pairs281: For any ordered pairs, (𝑤, 𝑥) 𝑎𝑛𝑑 (𝑦, 𝑧), 
it holds that:  

 

(𝑤, 𝑥) = (𝑦, 𝑧) ⇔ 𝑤 = 𝑦 & 𝑥 = 𝑧, 

 

and then two ordered pairs are called “equal.” 

The “Cartesian product” (known also as the “direct product”) 𝐴 × 𝐵 of two sets 𝐴 and 𝐵 

is the set of all ordered pairs (𝑎, 𝑏) such that 𝑎 ∈ 𝐴 𝑎𝑛𝑑 𝑏 ∈ 𝐵, symbolically: 

 

𝐴 × 𝐵 = {(𝑎, 𝑏)|𝑎 ∈ 𝐴 & 𝑏 ∈ 𝐵}.  

 

For instance, if 𝐴 = {1,2} and 𝐵 = {1,3}, then the Cartesian product 𝐴 × 𝐵 is the set 

{(1,1), (1,3), (2,1), (2,3)}. In general, the Cartesian product of the sets 𝐴1, 𝐴2, … , 𝐴𝑛, denoted 

by 𝐴1 × 𝐴2 ×…× 𝐴𝑛 is the set of all ordered 𝑛-tuples of the form (𝑎1, 𝑎2, … , 𝑎𝑛), where 𝑎𝑖 is 

an element of 𝐴𝑖(𝑖 = 1,2,… , 𝑛). 

Remark: It is easily checked that, for any sets 𝐴, 𝐵, and 𝐶, we have: 

 

 
280 Boole, An Investigation of the Laws of Thought. 
281 Kuratowski, Topology, vol. 1. 
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𝐴 × (𝐵 ∪ 𝐶) = (𝐴 × 𝐵) ∪ (𝐴 × 𝐶), 

𝐴 × (𝐵 ∩ 𝐶) = (𝐴 × 𝐵) ∩ (𝐴 × 𝐶). 

 

If 𝐴 = ∅ or 𝐵 = ∅, then 𝐴 × 𝐵 = ∅.  

 

𝐴 × 𝐵 = 𝐵 × 𝐴 ⇔ 𝐴 = 𝐵. 

 

Let 𝐴 × 𝐵 = {(𝑎, 𝑏)|𝑎 & 𝑏 𝑎𝑟𝑒 𝑟𝑒𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟𝑠}. Then 𝐴 × 𝐵 is the set of all points in a 

plane whose coordinates are (𝑎, 𝑏). Thus, 𝐴 × 𝐵 is the Cartesian plane 

 

ℝ2 = ℝ ×ℝ, 

 

as shown, for instance, in Figure 2.1: in this case, each point 𝑃 in the plane represents an 

ordered pair (𝑎, 𝑏) of real numbers and vice versa. In other words, the vertical line through 𝑃 

meets the 𝑥-axis at 𝑎, and the horizontal line through 𝑃 meets the 𝑦-axis at 𝑏. Thus, we can 

understand the relationship between set theory, mathematical analysis, and geometry.  

 

 

Figure 2.1. The Cartesian Plane. 

Let 𝐴 consist of all real numbers, and let 𝐵 consist of all integers. Then 𝐴 × 𝐵 is the set 

consisting of all those points which lie on the straight line 𝑦 = 𝑚, where 𝑚 ∈ 𝐵.  

 

Applications of Set Theory to Probability Theory 

Probability theory is primarily concerned with the issue of uncertainty.282 In fact, 

“probability” is a quantitative measure of uncertainty, and it is a number between 0 and 1, 

where 0 indicates impossibility and 1 indicates certainty. According to Chrystal’s formal 

definition of a probability, “if on taking any very large number 𝑁 out of a series of cases in 

which an event 𝐴 is in question, 𝐴 happens on 𝑝𝑁 occasions, the probability of the event 𝐴 is 

said to be 𝑝”283 (the certainty of the corresponding proposition increases as the number 𝑁 of 

specimen cases selected increases). Furthermore, according to Chrystal, the following 

corollaries and extensions may be added to the aforementioned definition of a probability: (i) 

 
282 See: Gnedenko, The Theory of Probability.  
283 Chrystal, Algebra, vol. 2, p. 567. 
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“If the probability of an event be 𝑝, then out of 𝑁 cases in which it is in question it will 

happen 𝑝𝑁 times, 𝑁 being any very large number.”284 (ii) “If the probability of an event be 𝑝, 

the probability of its failing is 1 − 𝑝.”285 

Probability theory is based on set theory. By the term “experiment,” we mean a process 

that leads to one of several possible outcomes. By the term “outcome,” we mean an 

observation or measurement. The “sample space” is the set of all possible outcomes of an 

experiment. An “event” is a subset of a sample space, or, in other words, a set of basic 

outcomes. Thus, we say that the event “occurs” if the corresponding experiment gives rise to 

a basic outcome belonging to the event. Therefore, we obtain the following formula: 

 

𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑒𝑣𝑒𝑛𝑡 𝐴 =
𝑛(𝐴)

𝑛(𝑆)
, 

 

where 𝑛(𝐴) is the number of elements in the set of the event 𝐴, and 𝑛(𝑆) is the number of 

elements in the sample space 𝑆. For instance, roulette as it is played in Las Vegas or Atlantic 

City consists of a wheel that has 36 numbers, numbered 1 through 36, and the number 0 as 

well as the number 00 (double zero). Therefore, in this case, the sample space, 𝑆, consists of 

38 numbers, and the probability of winning a single number that you bet is 𝑃 = 1/38.  

When the sets corresponding to two events are disjoint (that is, their intersection is the 

empty set), then these events are called “mutually exclusive.” 

The axiomatic definition of probability is the following: Let 𝐸 be a space of elementary 

events. Then the “probability of an event” 𝐴 ⊆ 𝐸 is denoted by 𝑃(𝐴), and it is defined as a 

single number that corresponds to 𝐴 and has the following properties: 

 

(P1) 𝑃(𝐴) ≥ 0; 

(P2)  for each pair of mutually exclusive events, 𝐴,𝐵 ⊆ 𝐸, it holds that 

𝑃(𝐴 ∪ 𝐵) = 𝑃(𝐴) + 𝑃(𝐵); 

(P3) 𝑃(𝐸) = 1. 

 

Remark: For each 𝐴,𝐵 ⊆ 𝐸, 𝑃(𝐴 ∪ 𝐵) = 𝑃(𝐴) + 𝑃(𝐵) − 𝑃(𝐴 ∩ 𝐵); in case, 𝐴 and 𝐵 are 

mutually exclusive, 𝑃(𝐴 ∩ 𝐵) = 0, and we obtain (P2).  

By the term “conditional probability,” we mean the probability of event 𝐴 conditional 

upon the occurrence of event 𝐵. Assume that we investigate the probability of an event 𝐴 

given that we know that an event 𝐵 has occurred and that event 𝐵 influences the probability 

of event 𝐴. Then the probability of event 𝐴 given the occurrence of event 𝐵 is defined as the 

quotient of the probability of the intersection of 𝐴 and 𝐵 over the probability of event 𝐵; 

symbolically: 

The “conditional probability” of event 𝐴 given the occurrence of event 𝐵 is 

 

𝑃(𝐴|𝐵) =
𝑃(𝐴∩𝐵)

𝑃(𝐵)
, 

 

assuming that 𝑃(𝐵) ≠ 0. The aforementioned formula for the computation of conditional 

probability is known as Bayes’s Law, since it was originally formulated by the eighteenth-

 
284 Ibid, p. 569. 
285 Ibid. 
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century English statistician and philosopher Thomas Bayes.286 According to Bayes’s Law, 

two events 𝐴 and 𝐵 are independent of each other if and only if  

 

𝑃(𝐴 ∩ 𝐵) = 𝑃(𝐴)𝑃(𝐵). 

 

Bayes’s Law provides a method of revising existing predictions or theories (specifically, 

updating probabilities) given new additional evidence. As Matthew Large has pointed out, 

Bayes’s Law implies that “the interpretation of any risk assessment must involve an estimate 

of the base rate,” and “this base rate, which is never known with complete certainty at the 

time of the assessment, is a Bayesian ‘prior probability.’”287 

In general, probability theory underpins the scientific study of risk and uncertainty. One 

of the most important methods that are used to discover, describe, and explain “typical” 

behavior of mass data is the “arithmetic mean.” The formula is 

 

𝑋̅ =
∑ 𝑋𝑖
𝑁
𝑖=1

𝑁
 

 

where 𝑋̅ denotes the arithmetic mean, ∑ 𝑋𝑖
𝑁
𝑖=1  denotes the summation of the values of the 

individual observations 𝑋𝑖 under consideration (𝑖 = 1,2,… ,𝑁), and 𝑁 is the total number of 

items in the series that has been summated.288 It is worth noticing that arithmetic means are 

often “weighted” averages, in the sense that, when averaging values, it is sometimes logically 

necessary to assign more importance to some than to others (by multiplying each value with a 

suitable statistical weight), so that particular values may be more influential in determining 

the “typical” value than others.  

One of the most important methods that are used to discover, describe, and explain “risk” 

or “uncertainty” is the “standard deviation,” which is a quantity expressing by how much the 

members of a database (i.e., the data under consideration) differ from the arithmetic mean of 

the given database. The formula is: 

 

𝜎 = √
∑ 𝑥𝑖

2𝑁
𝑖=1

𝑁
 

 

where: first, we calculate the arithmetic mean 𝑋̅ of the values 𝑋𝑖 (𝑖 = 1,2,… ,𝑁) under 

consideration; second, we record the deviation of each value 𝑋𝑖 from the arithmetic mean, 

namely, 𝑥𝑖 = 𝑋𝑖 − 𝑋̅; third, we square these deviations, namely, we compute 𝑥𝑖
2; fourth, we 

summate the squared deviations and divide by 𝑁 (this is the “variance” of our data); and, 

fifth, we extract the square root to obtain 𝜎.289 

 

 

 
286 See: Moivre, The Doctrine of Chances. 
287 Large, “The Relevance of the Early History of Probability Theory to Current Risk Assessment Practices in 

Mental Health Care,” p. 432. 
288 See: Neiswanger, Elementary Statistical Methods, pp. 256–57.  
289 Ibid, p. 311. 
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2.1.3. Relations  

 

Let 𝐴 and 𝐵 be two arbitrary sets. Then a “relation” between 𝐴 and 𝐵, denoted by 𝑅, is 

defined to be a subset of the Cartesian product 𝐴 × 𝐵, symbolically: 𝑅 ⊆ 𝐴 × 𝐵. The 

“domain” of relation 𝑅 is defined by 𝐷𝑅 = {𝑎|(𝑎, 𝑏) ∈ 𝑅}, and the “range” of relation 𝑅 is 

defined by 𝑅𝑅 = {𝑏|(𝑎, 𝑏) ∈ 𝑅}. If 𝑅 is a relation from 𝐴 to 𝐵, then the relation from 𝐵 to 𝐴 

is called the “inverse” of 𝑅, and it is defined by 𝑅−1 = {(𝑏, 𝑎)|(𝑎, 𝑏) ∈ 𝑅}. A relational 

proposition is often denoted by 𝑎𝑅𝑏, where 𝑅 relates a term 𝑎 to a term 𝑏. According to 

Bertrand Russell, “it is characteristic of a relation of two terms that it proceeds, so to speak, 

from one to the other.”290 

If 𝑅1 is a relation from a set 𝐴 to a set 𝐵, and if 𝑅2 is a relation from 𝐵 to a set 𝐶, then 

their “composition,” denoted by 𝑅2  ⃘ 𝑅1, is a relation from 𝐴 to 𝐶, symbolically: 

 

𝑅2  ⃘ 𝑅1 = {(𝑎, 𝑐)|𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑏 ∈ 𝐵, (𝑎, 𝑏) ∈ 𝑅1& (𝑏, 𝑐) ∈ 𝑅2 𝑤𝑖𝑡ℎ 𝑎 ∈ 𝐴, 𝑐 ∈ 𝐶}. 

 

If 𝑅1 and 𝑅2 are relations such that 𝑅1 ⊆ 𝑅2, then 𝑅2 is said to be an “extension” of 𝑅1, 

and 𝑅1 is said to be a “restriction” of 𝑅2. 

A relation 𝑅 on a set 𝐴 is “reflexive” if (𝑎, 𝑎) is an element of 𝑅 for every 𝑎 ∈ 𝐴; it is 

“symmetric” if (𝑎, 𝑏) is an element of 𝑅 whenever (𝑏, 𝑎) is an element of 𝑅; and it is 

“transitive” if (𝑎, 𝑐) is an element of 𝑅 whenever (𝑎, 𝑏) and (𝑏, 𝑐) are elements of 𝑅. A 

relation 𝑅 on a set 𝐴 is “antisymmetric” if, whenever 𝑎 and 𝑏 are distinct, then (𝑎, 𝑏) is an 

element of 𝑅 only if (𝑏, 𝑎) is not an element of 𝑅. For instance, if 𝐴 = {𝑢, 𝑣, 𝑤} and 𝑅 is a 

relation on 𝐴, then: 

 

𝑅 = {(𝑢, 𝑣), (𝑣, 𝑢), (𝑢, 𝑢), (𝑣, 𝑣), (𝑣,𝑤), (𝑤,𝑤)} is a reflexive relation on 𝐴; 

𝑅 = {(𝑢, 𝑣), (𝑣, 𝑢), (𝑤, 𝑤)} is a symmetric relation on 𝐴;  

𝑅 = {(𝑢, 𝑣), (𝑣, 𝑤)(𝑢,𝑤), (𝑣, 𝑣)} is a transitive relation on 𝐴; 

𝑅 = {(𝑢,𝑤), (𝑣, 𝑣), (𝑢, 𝑣), (𝑢, 𝑢)} is an antisymmetric relation on 𝐴. 

 

A relation 𝑅 on a set 𝐴, namely, a subset of 𝐴 × 𝐴, is said to be an “equivalence relation,” 

and it is denoted by ~, if it is reflexive (i.e., 𝑎~𝑎 ∀𝑎 ∈ 𝐴), symmetric (i.e., 𝑎~𝑏 implies that 

𝑏~𝑎 ∀𝑎, 𝑏 ∈ 𝐴), and transitive (i.e., 𝑎~𝑏 and 𝑏~𝑐 imply that 𝑎~𝑐 ∀𝑎, 𝑏, 𝑐 ∈ 𝐴). For instance, 

since an integer 𝑎 is said to be “congruent to an integer 𝑏 modulo 𝑚,” symbolically 𝑎 ≡

𝑏(𝑚𝑜𝑑𝑚), if 𝑚 divides the difference 𝑎 − 𝑏, it is evident that congruence is an equivalence 

relation on ℤ. In general, an equivalence relation measures equality with regard to some 

attribute. 

Let 𝑅 be an equivalence relation on a non-empty set 𝐴. Then the “equivalence class” of 

any element 𝑎 ∈ 𝐴 is denoted by 𝑎̅ or [𝑎], and it is defined as the set of all elements of 𝐴 to 

which 𝑎 is related, namely: 

 

𝑎̅ = {𝑥 ∈ 𝐴|(𝑎, 𝑥) ∈ 𝑅}. 

 

 
290 Russell, The Principles of Mathematics, p. 95. 
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Any element in an equivalence class is called a “representative” of that class. If 𝑅 is an 

equivalence relation on a set 𝐴, then the set whose elements are the 𝑅-equivalent classes is 

called the “quotient set” of 𝐴 by 𝑅, and it is denoted by 𝐴 𝑅⁄ , namely: 

 

𝐴 𝑅 = {𝑎̅|𝑎 ∈ 𝐴}⁄ . 

 

For instance, for the equivalence relation  

 

𝑅 = {(𝑥, 𝑦)|𝑥 ≡ 𝑦(𝑚𝑜𝑑2),𝑤ℎ𝑒𝑟𝑒 𝑥, 𝑦 ∈ ℤ}, 

 

there are two equivalence classes: the set of even numbers and the set of odd numbers (we 

assume that zero is an even number, because 0 is a multiple of 2, since 0 × 2 = 0, and, thus, 0 

shares all the properties that characterize even numbers: 0 is neighbored on both sides by odd 

numbers in the set of all integers, positive and negative; any decimal integer has the same 

parity as its last digit, and, indeed, since 10 is even, 0 is even; if 𝑦 is even, then 𝑦 + 𝑥 has the 

same parity as 𝑥, and, indeed, 𝑥 and 0 + 𝑥 always have the same parity).  

 

The Fundamental Theorem of Equivalence Relations291: If ~ is an equivalence relation 

on a set 𝐴, then 𝐴 =∪ 𝑎̅, where this union runs over one element from each class, and 𝑎1̅̅ ̅ ≠

𝑎2̅̅ ̅ ⇒ 𝑎1̅̅ ̅ ∩ 𝑎2̅̅ ̅ = ∅. In other words, an equivalence relation on a non-empty set 𝐴 partitions 𝐴 

into equivalence classes, and, conversely, a partition of 𝐴 induces an equivalence relation on 

𝐴 (the concept of a partition was defined in section 2.1.2). 

 

Proof: Given that 𝑎 ∈ 𝑎̅, it holds that ∪𝑎∈𝐴 𝑎̅ = 𝐴. The proof of the second assertion is 

also straightforward, because we can show that, 𝑎1̅̅ ̅ ≠ 𝑎2̅̅ ̅ ⇒ 𝑎1̅̅ ̅ ∩ 𝑎2̅̅ ̅ = ∅, or, equivalently, 

that 𝑎1̅̅ ̅ ∩ 𝑎2̅̅ ̅ ≠ ∅ ⇒ 𝑎1̅̅ ̅ = 𝑎2̅̅ ̅ as follows: Let 𝑎1̅̅ ̅ ∩ 𝑎2̅̅ ̅ ≠ ∅ and 𝑐 ∈ 𝑎1̅̅ ̅ ∩ 𝑎2̅̅ ̅. By the definition 

of an equivalence class, 𝑐~𝑎 because 𝑐 ∈ 𝑎̅, and 𝑐~𝑏 because 𝑐 ∈ 𝑏̅. Therefore, due to the 

symmetry of ~, 𝑎~𝑐, and, because 𝑎~𝑐 and 𝑐~𝑏, it holds that 𝑎~𝑏. Hence, 𝑎 ∈ 𝑏̅. If 𝑥 ∈ 𝑎̅, 

then 𝑥~𝑎, and 𝑎~𝑏 ⇒ 𝑥~𝑏, so that 𝑥 ∈ 𝑏̅. Therefore, 𝑎̅ ⊂ 𝑏̅. Because the argument is 

symmetric in 𝑎 and 𝑏, it also holds that 𝑏̅ ⊂ 𝑎̅. Consequently, 𝑎̅ = 𝑏̅, which proves the 

theorem.■ 

 

Let 𝐴 and 𝐵 be two arbitrary sets. A relation 𝑓 ⊆ 𝐴 × 𝐵 is called a “function,” or 

“mapping,” or “transformation,” denoted by 𝑓: 𝐴 → 𝐵, if it assigns to each element 𝑎 ∈ 𝐴 

exactly one element 𝑏 ∈ 𝐵. The set 𝐴 is called the “domain” of the function 𝑓 and is denoted 

by 𝐷𝑓, while the set 𝐵 is called the “codomain” of the function 𝑓. The set of all elements of 𝐵 

that are related to the elements of 𝐴 via 𝑓 is called the “range” of the function 𝑓, and it is 

denoted by 𝑅𝑓, meaning that the range of 𝑓 is the image of 𝐴 by 𝑓: 

 

𝑓(𝐴) = {𝑓(𝑎)|𝑎 ∈ 𝐴}. 

 

By the term “graph” of a function 𝑓: 𝐴 → 𝐵, we mean the set {𝑥, 𝑓(𝑥)}, where 𝑥 ∈ 𝐴.  

 
291 See: Herstein, Abstract Algebra, p. 67. 
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Two functions 𝑓: 𝐴 → 𝐵 and 𝑔: 𝐴 → 𝐵 are called “equal” if 𝑓(𝑥) = 𝑔(𝑥), ∀𝑥 ∈ 𝐴, and 

they are called “different” if there is at least one 𝑥0 ∈ 𝐴 such that 𝑓(𝑥0) ≠ 𝑔(𝑥0). 

If 𝑓 is a function from 𝑋 to 𝑌, then, for any subset 𝐴 of 𝑋, we have: 

 

𝐴 ≠ ∅ ⇔ 𝑓(𝐴) ≠ ∅. 

𝑓({𝑥}) = {𝑓(𝑥)}, ∀𝑥 ∈ 𝑋. 

𝐴 ⊆ 𝐵 ⇔ 𝑓(𝐴) ⊆ 𝑓(𝐵). 

𝑓(𝐴 ∪ 𝐵) = 𝑓(𝐴) ∪ 𝑓(𝐵). 

 

𝑓(𝐴 ∩ 𝐵) ⊆ 𝑓(𝐴) ∩ 𝑓(𝐵); since: if 𝑦 ∈ 𝑓(𝐴 ∩ 𝐵), then, by definition, 𝑦 = 𝑓(𝑥) for 

some 𝑥 ∈ 𝐴 ∩ 𝐵, and, therefore, 𝑓(𝑥) ∈ 𝐴 and 𝑓(𝑥) ∈ 𝐵, so that 𝑦 = 𝑓(𝑥) ∈ 𝑓(𝐴) ∩ 𝑓(𝐵); 

for instance, given 𝑓: {1,2} → {0} with 𝐴 = {1} and 𝐵 = {2}, it holds that 𝑓(𝐴 ∩ 𝐵) =

𝑓(∅) = ∅, and 𝑓(𝐴) ∩ 𝑓(𝐵) = {0}. 

A function 𝑓 is said to be “odd” if 𝑓(−𝑥) = −𝑓(𝑥) for every 𝑥 in the domain of 𝑓. A 

function 𝑓 is said to be “even” if 𝑓(−𝑥) = 𝑓(𝑥).  

A function 𝑓: 𝑋 → 𝑌 is called “one-to-one” (or “injective,” or an “injection,” or a 

“monomorphism”) if  

 

𝑓(𝑥1) = 𝑓(𝑥2) ⇒ 𝑥1 = 𝑥2, ∀𝑥1, 𝑥2 ∈ 𝑋. 

 

If more than one elements of 𝑋 have the same 𝑓-image in 𝑌, then the function 𝑓:𝑋 → 𝑌 

is said to be “many-to-one.” 

A function 𝑓: 𝑋 → 𝑌 is called “into” if there exists at least one element of 𝑌 that is not the 

𝑓-image of an element of 𝑋. In other words, for any into function 𝑓: 𝑋 → 𝑌, the range set 

𝑓(𝑋) is a proper subset of 𝑌, symbolically, 𝑓(𝑋) ⊂ 𝑌.  

If the range of a function 𝑓 is the whole codomain of 𝑓, then 𝑓 is said to be “onto” (or 

“surjective,” or a “surjection,” or an “epimorphism”). In other words, for any onto function 

𝑓:𝑋 → 𝑌, 𝑓(𝑋) = 𝑌.  

If a function is both one-to-one and onto, then it is called “bijective,” or a “bijection,” or 

an “one-to-one correspondence.”  

For instance: 

 

i. If 𝐴 is a subset of 𝑋, then the restriction to 𝐴 of the identity mapping 𝑖𝑑𝑥, defined by 

𝐴 ∋ 𝑥 → 𝑥 ∈ 𝐴, is an injection 𝑗𝐴, called the “natural injection.” 

ii. The identity mapping of any set is bijective. 

iii. The function 𝑓: 𝑋 × 𝑌 → 𝑌 × 𝑋 defined by (𝑥, 𝑦) → (𝑦, 𝑥), where 𝑥 ∈ 𝑋 𝑎𝑛𝑑 𝑦 ∈ 𝑌, 

is bijective. 

iv. The function 𝑓(𝑥) = 𝑥2, where 𝑥 ∈ ℝ, is not injective, since 𝑓(−𝑥) = 𝑓(𝑥) = 𝑥2, 

but the restriction to ℝ+ (the set of all positive real numbers) of 𝑓is injective.  

v. 𝑓:ℝ → ℝ defined by 𝑓(𝑥) = 𝑥3 is an one-to-one and onto mapping, that is, a 

bijection from ℝ to ℝ.  

 

Let 𝑓: 𝑋 → 𝑌 be a bijection. Because of the fact that 𝑓 is surjective, it follows that, for 

every 𝑦 ∈ 𝑌, ∃𝑥 ∈ 𝑋|𝑦 = 𝑓(𝑥), and, since 𝑓 is injective, this 𝑥 is unique. Therefore, there 
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exists an “inverse function” 𝑓−1: 𝑌 → 𝑋 such that 𝑓−1(𝑓(𝑥)) = 𝑥, ∀𝑥 ∈ 𝑋, and𝑓(𝑓−1(𝑦)) =

𝑦, ∀𝑦 ∈ 𝑌. 

A function whose domain 𝑋 and codomain 𝑌 are subsets of the set ℝ of all real numbers 

is “strictly increasing” if 𝑓(𝑥1) < 𝑓(𝑥2) 𝑤ℎ𝑒𝑛𝑒𝑣𝑒𝑟 𝑥1 < 𝑥2 (in case 𝑓(𝑥1) ≤ 𝑓(𝑥2), then it 

is simply “increasing”), and it is “strictly decreasing” if 𝑓(𝑥1) > 𝑓(𝑥2) 𝑤ℎ𝑒𝑛𝑒𝑣𝑒𝑟 𝑥1 < 𝑥2 

(in case 𝑓(𝑥1) ≥ 𝑓(𝑥2), then it is simply “decreasing”). By definition, it follows that both 

strictly increasing functions and strictly decreasing functions are injective. 

For any subset 𝐴′ of𝑌, the subset of 𝑋 defined by 𝑓(𝑥) ∈ 𝐴′ is called the “inverse image” 

of 𝐴′ by 𝑓 and is denoted by 𝑓−1(𝐴′).  

Let 𝑔: 𝑋 → 𝑌 and 𝑓: 𝑌 → 𝑍 be two functions. The “composition” of 𝑓 and 𝑔, denoted by 

𝑓  ⃘ 𝑔, is a function from 𝑋 to 𝑍 defined by (𝑓  ⃘𝑔)(𝑥) = 𝑓(𝑔(𝑥)). In other words, the function 

𝑓  ⃘ 𝑔 assigns to an element 𝑥 ∈ 𝑋 that unique element assigned by 𝑓 to 𝑔(𝑥). In case 𝑔: 𝑋 →

𝑌 and 𝑓: 𝑌 → 𝑍 are two bijections, then 𝑓  ⃘ 𝑔: 𝑋 → 𝑍 is a bijection; and (𝑓  ⃘𝑔)−1 = 𝑔−1 ⃘𝑓−1, 

since: 

 

𝑥 ∈ (𝑓  ⃘𝑔)−1(𝐴) ⇔ (𝑓  ⃘g)(𝑥) ∈ 𝐴 ⇔ 𝑔(𝑥) ∈ 𝑓−1(𝐴) ⇔ 𝑥 ∈ 𝑔−1(𝑓−1(𝐴)), 𝐴 ⊆ 𝑍.  

 

As I mentioned in section 2.1.1, an index set is a set whose members label, or index, 

members of another set. If 𝐴 and 𝑋 are two sets, then a function from 𝐴 to 𝑋 is sometimes 

also called a “family of elements of 𝑋 having 𝐴 as a set of indices,” and it is written as ℎ →

𝑥ℎ , or (𝑥ℎ)ℎ∈𝐴 , or simply (𝑥ℎ) when no confusion is possible. A characteristic case of such 

a function is a “sequence,” where 𝐴 is a finite or an infinite subset of the set ℕ of all natural 

numbers; in other words, a “sequence” is a function whose domain is a set of consecutive 

natural numbers. If 𝑓:𝑋 → 𝑌 is a sequence, then the image 𝑓(𝑖) of the natural number 𝑖 is 

sometimes written as 𝑓𝑖 and is called the “𝑖th” term of the sequence.”  

Two functions 𝑓: 𝑋 → 𝑌 and 𝑔:𝑋 → 𝑌 are defined to be “equal” if 𝑓(𝑥) = 𝑔(𝑥) ∀𝑥 ∈ 𝑋. 

A function 𝑓: 𝑋 → 𝑌 is defined to be “constant” if 𝑓(𝑥) = 𝑐 ∀𝑥 ∈ 𝑋 where 𝑐 ∈ 𝑌.  

According to the great German mathematician Richard Dedekind (1831–1916), a set 𝐴 is 

“infinite” if and only if it is in one-to-to-one correspondence with at least one proper subset of 

it.292 Equivalently, we can say that a set 𝐴 is “infinite” if and only if there exists an one-to-one 

function 𝑓: 𝐴 → 𝐴 that is not onto. 

Consider a non-empty family of non-empty sets, say Â = {𝐴𝑖 , 𝑖 ∈ 𝐼}, where to each 𝑖 

corresponds a non-empty set 𝐴𝑖. Additionally, let 𝑝𝑟 be a function with domain 𝐼 such that 

𝑝𝑟(𝑖) = 𝑎𝑖 ∈ 𝐴𝑖. The range of a function of this kind is a subset of the set ∪𝑖∈𝐼 𝐴𝑖. The 

collection of all functions 𝑝𝑟: 𝐼 →∪𝑖∈𝐼 𝐴𝑖 with 𝑝𝑟(𝑖) = 𝑎𝑖 ∈ 𝐴𝑖 is the Cartesian product 𝑋𝑖 =

𝛱𝑖∈𝐼𝐴𝑖. If 𝑓 is an arbitrary element of the product set 𝑋𝑖, and if 𝑗 is an arbitrary index, then 𝑓𝑗 

is called the “𝑗th coordinate” of 𝑓, and the set 𝐴𝑗 is called the “𝑗th factor set” (or the “𝑗th 

coordinate set”) of the product. For each index 𝑗, the “𝑗thprojection” is defined by 

𝑝𝑟𝑗: 𝛱𝑖∈𝐼𝐴𝑖 → 𝐴𝑗 with 𝑝𝑟𝑗(𝑓) = 𝑓𝑗 , ∀𝑓 ∈ 𝛱𝑖∈𝐼𝐴𝑖. For instance, if 𝑋 and 𝑌 are non-empty sets, 

then the function 𝑝𝑟1: 𝑋 × 𝑌 → 𝑋 defined by (𝑥, 𝑦) → 𝑥 is the projection onto the first 

coordinate, while 𝑝𝑟2: 𝑋 × 𝑌 → 𝑌 defined by (𝑥, 𝑦) → 𝑦 is the projection onto the second 

coordinate.  

 

 
292 Dedekind, Gesammelte mathematische Werke. 
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2.1.4. Groups 

 

As I explained in Chapter 1, “abstraction” means getting rid of what we consider 

unnecessary details (so that, after getting rid of unnecessary details, things that were different 

because of unnecessary details become identical), and, therefore, we have a non-trivial 

concept of “identity,” on the basis of which we study the “sameness” of certain things, or we 

look at certain things as if they were the same. “Composition” means that we combine certain 

abstract objects into bigger abstract objects, so that, when we have to deal with complex 

problems, we need to be able to divide (“analyze”) the bigger problem into smaller problems, 

solve them separately, and then combine the solutions together. These concepts underpin 

“operational structuralism,” which, in turn, underpins “abstract algebra.” This new attitude 

toward mathematics was initiated in the 1930s by the “Bourbaki school”293 in France. 

In the context of “abstract algebra,” we start with a collection of objects, say 𝑆, and 

endow this collection with an algebraic structure by assuming that we can combine, in one or 

more ways (usually two), elements of 𝑆 in order to obtain one or more elements of 𝑆. These 

ways of combining elements of 𝑆 are called “operations” on 𝑆. Furthermore, we try to 

regulate the nature of 𝑆 by imposing certain rules on the manner in which these operations 

behave on 𝑆, and these rules are called the “axioms” that define the particular structure on𝑆. 

Thus, we obtain the basic algebraic structures, such as that of a group.294 The abstract-

algebraic structure that is called “group” can be used in several different settings, including 

number theory, geometry, computer science, etc. 

Group theory is an outgrowth of number theory and the theory of equations, and it 

developed in the nineteenth century on the basis of the principle that groups control 

symmetries and associated geometries. The major pioneers of group theory were the French 

mathematician Camille Jordan (1838–1922), the German mathematician Felix Klein (1849–

1925), and the Norwegian mathematician Sophus Lie (1842–99). From the perspective of 

group theory, any system that has the following attributes can be called a “group”: (i) it 

contains a set of objects, called the elements of the system under consideration; (ii) it contains 

an operation, namely, a rule according to which we can combine any two elements of the 

given system; (iii) the corresponding set (the set of the elements of the system) is closed 

under the operation, meaning that, if you pick any two elements of the given set and combine 

them (according to the established operation), then you get another element of the given set; 

(iv) it has an identity (or neutral) element, namely, an element that has no effect when it is 

combined with other elements; (v) for every element, there exists an opposite element, which 

is called the inverse (so that, if you combine any element with its inverse according to the 

established operation, then you get the identity element); and (vi) it satisfies the associative 

property, according to which, when combining three elements, it does not matter how you 

group them. Therefore, the general, formal definition of a group is the following: A “group” 

is a non-empty set 𝐺 with an operation (i.e., a law of composition), denoted by ∗, that 

associates with each pair (𝑔1, 𝑔2) ∈ 𝐺 an element 𝑔1 ∗ 𝑔2 ∈ 𝐺 so that: 

 

 
293 “Nicolas Bourbaki” is the collective pseudonym of a group of mathematicians founded in the 1930s. The 

Bourbaki group’s core founders were the prominent French mathematicians Henri Cartan, Claude Chevalley, 

Jean Delsarte, Jean Dieudonné, and André Weil.  
294 See: Gallian, Contemporary Abstract Algebra; Herstein, Abstract Algebra; Saracino, Abstract Algebra. 
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(i) composition is associative, namely: 

𝑔1 ∗ (𝑔2 ∗ 𝑔3) = (𝑔1 ∗ 𝑔2) ∗ 𝑔3 ∀𝑔1, 𝑔2, 𝑔3 ∈ 𝐺; 

(ii) there exists an identity element 𝑒 in 𝐺 such that 

𝑒 ∗ 𝑔 = 𝑔 ∗ 𝑒 = 𝑔 ∀𝑔 ∈ 𝐺; 

(iii) to any 𝑔 ∈ 𝐺 corresponds another element 𝑔−1 (the inverse of 𝑔) such that 𝑔 ∗
𝑔−1 = 𝑔−1 ∗ 𝑔 = 𝑒. 

 

A group structure is a formal expression of the degree of symmetry of the underlying 

object. A subset of a group 𝐺 is a subgroup if it is a group under the operation defined on 𝐺. 

Every group has two standard subgroups: itself and the trivial group {𝑒}, the singleton of its 

identity element.  

If 𝑔1 ∗ 𝑔2 = 𝑔2 ∗ 𝑔1 ∀𝑔1, 𝑔2 ∈ 𝐺, then 𝐺 is said to be an “Abelian group,” or a 

“commutative group” (in honor of the nineteenth-century Norwegian mathematician Niels 

Henrik Abel, who pioneered the study of such groups).  

For instance: 

 

i. The set ℤ of all integers forms a group under the operation of addition, and, in this 

case, the identity element is 0, and the inverse of an element is called its negative. 

ii. The set ℚ− {0} of all non-zero rational numbers forms a group under the operation 

of multiplication, and, in this case, the identity element is 1, and the inverse of an 

element is called its reciprocal. 

iii. Whereas the set ℚ+ of all positive rational numbers forms a group under 

multiplication, the set ℚ− of all negative rational numbers does not form a group 

under multiplication (since it is not closed under multiplication, and it does not 

contain an identity element).  

iv. The set ℝ of all real numbers forms a group under addition, and the set ℝ− {0} of all 

non-zero real numbers forms a group under multiplication. 

v. The “Euclidean group”: it consists of all the transformations of the plane that do not 

alter distances (I shall rigorously study the concept of distance in a subsequent 

section). If the distance between the transformed versions of two points (“image”) is 

the same as the distance between the original two points (“pre-image”), then such a 

transformation is said to be an “isometry.” The isometries of the Euclidean plane 

form a group under composition of transformations; this is the so-called “Euclidean 

group.” The four major types of isometries are: translation (figure slides in any 

direction), reflection (figure flips over a line; i.e., a reflection in the plane moves an 

object into a new position that is a mirror image of the original position, and the 

“mirror” is a line called the axis of reflection), rotation (figure turns about a fixed 

point; i.e., a rotation keeps one point, called the center of the rotation, fixed, and it 

moves all other points a certain angle relative to the fixed point), and glide reflection 

(it consists of a translation followed by a reflection, and the axis of reflection must be 

parallel to the direction of the translation). 

 

A group 𝐺 is said to be a “finite group” if it has a finite number of elements. The number 

of elements in 𝐺 is called the “order” of 𝐺, and it is denoted by |𝐺|. If 𝐺 is a group with an 

identity element 𝑒, then the “order of an element” 𝑥 ∈ 𝐺 is the smallest positive integer 𝑛 

such that 𝑥𝑛 = 𝑒, and it is denoted by |𝑥|. If there is no such 𝑛, then 𝑥 is said to have “infinite 
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order.” For instance, ℝ∗ ≡ ℝ− {0} forms a group under multiplication (we omit zero, 

because it does not have a multiplicative inverse), and the identity element in this group is 1: 

the order of 1 is 1, symbolically, |1| = 1, since 11 = 1, and, in general, the order of the 

identity element in any group is 1; the order of −1 is 2, symbolically, |−1| = 2, since 

(−1)2 = 1 (except for 1 and −1, no other non-zero real number can be raised to a positive 

integral power to get 1, and, therefore, all other real numbers have infinite order in this 

group). 

As I have already mentioned, when we work with groups, we typically use additive 

notation (+) or multiplicative notation (×), and, when we use additive notation, the identity 

element is denoted by 0, whereas, when we use multiplicative notation, the identity element is 

denoted by 1. Let us consider an arbitrary group 𝐺 with operation ×, and let us pick any 

element 𝑥 ∈ 𝐺. Then we may study the following problem: what is the smallest subgroup of 

𝐺 that contains 𝑥? First, any subgroup of 𝐺 that contains 𝑥 must also contain the inverse of 𝑥, 

namely, 𝑥−1; second, such a subgroup must contain the identity element, namely, 1; third, this 

subgroup must contain all powers of 𝑥, namely, 𝑥, 𝑥2, 𝑥3, … (in order to be closed under the 

group operation); and, fourth, this subgroup must also contain all powers of the inverse of 𝑥, 

namely, 𝑥−1, 𝑥−2, 𝑥−3, … (again in order to be closed under the group operation). In fact, this 

set of all integral powers of 𝑥, namely, 

 

{… , 𝑥−3, 𝑥−2, 𝑥−1, 1, 𝑥, 𝑥2, 𝑥3, … }, 

 

is the smallest subgroup of 𝐺 that contains 𝑥, it is called the group “generated by 𝑥,” and it is 

denoted by 〈𝑥〉. If 𝐺 contains an element 𝑥 such that 𝐺 equals the group generated by 𝑥, 

symbolically, 𝐺 = 〈𝑥〉, then 𝐺 is said to be a “cyclic group.” The aforementioned definition 

can be reformulated using additive notation as follows: Let us consider an arbitrary group 𝐻 

with operation +, and let us pick any element 𝑦 ∈ 𝐻. The group generated by 𝑦 is the 

smallest subgroup of 𝐻 containing 𝑦, and it must contain: 𝑦, its inverse, namely, −𝑦, the 

identity element 0, as well as all positive and negative multiples of 𝑦, so that 

 

〈𝑦〉 = {… ,−3𝑦, −2𝑦, −𝑦, 0, 𝑦, 2𝑦, 3𝑦, … }. 

 

If 𝐻 can be generated by an element 𝑦, symbolically, 𝐻 = 〈𝑦〉, then 𝐻 is said to be a “cyclic 

group.” For instance, the group of integers (ℤ) under addition (+) is a cyclic group, since the 

integers are generated by the number 1, symbolically, ℤ = 〈1〉.  

As I mentioned in section 2.1.3, ~ denotes an equivalence relation (namely, a relation 

that satisfies the properties of reflexivity, symmetry, and transitivity). Then, given a group 𝐺, 

a subgroup 𝐻 of 𝐺, and any elements 𝑔1, 𝑔2 ∈ 𝐺, we define the equivalence relation 𝑔1~𝑔2 if 

𝑔1 ∗ 𝑔2
−1 ∈ 𝐻. Notice that, because 𝑒 ∈ 𝐻 and 𝑒 = 𝑔 ∗ 𝑔−1, it holds that 𝑔~𝑔. Moreover, if 

𝑔1 ∗ 𝑔2
−1 ∈ 𝐻, then, because 𝐻 ≤ 𝐺, (𝑔1 ∗ 𝑔2

−1)−1 ∈ 𝐻. But (𝑔1 ∗ 𝑔2
−1)−1 = (𝑔2

−1)−1 ∗

𝑔1
−1 = 𝑔2 ∗ 𝑔1

−1, and, therefore, 𝑔2 ∗ 𝑔1
−1 ∈ 𝐻, which, in turn, implies that 𝑔2~𝑔1. 

Consequently, 𝑔1~𝑔2 implies that 𝑔2~𝑔1. Finally, if 𝑔1~𝑔2 and 𝑔2~𝑔3, then 𝑔1 ∗ 𝑔2
−1 ∈ 𝐻 

and 𝑔2 ∗ 𝑔3
−1 ∈ 𝐻. But (𝑔1 ∗ 𝑔2

−1)(𝑔2 ∗ 𝑔3
−1) = 𝑔1 ∗ 𝑔3

−1, and, therefore, 𝑔1 ∗ 𝑔3
−1 ∈ 𝐻, 

which, in turn, implies that 𝑔1~𝑔3. As a conclusion, ~ is an equivalence relation on 𝐺. Notice 

that, if 𝐺 is the group of integers under addition, and if 𝐻 is the subgroup consisting of all 

multiples of 𝑛, where 𝑛 > 1 is a fixed integer, then 𝑔1 ∗ 𝑔2
−1 can be interpreted as 𝑔1 ≡
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𝑔2(𝑛), which means that congruence modulo 𝑛 is a particular case of the aforementioned 

equivalence relation. 

Let 𝐻 be a subgroup of a group 𝐺, symbolically, 𝐻 ≤ 𝐺. Then, given an arbitrary element 

𝑔 of 𝐺, the “right coset” of 𝐻 is the set 𝐻𝑔 = {ℎ ∗ 𝑔|ℎ ∈ 𝐻}, and the “left coset” of 𝐻 is the 

set 𝑔𝐻 = {𝑔 ∗ ℎ|ℎ ∈ 𝐻}. 

 

Theorem295: Let 𝐻 be a subgroup of a group 𝐺. Then the right cosets 𝐻𝑔 form a partition 

of 𝐺. 

 

Proof: Given that 𝑒 ∈ 𝐻, 𝑔 = 𝑒 ∗ 𝑔 ∈ 𝐻𝑔, and, therefore, every element belongs to a 

coset. In fact, 𝑔 ∈ 𝐻𝑔. Suppose that 𝐻𝑔1 and 𝐻𝑔2 are not disjoint, and that 𝑘 ∈ 𝐻𝑔1 ∩ 𝐻𝑔2. 

In order to prove the theorem, it suffices to prove that, in this case, 𝐻𝑔1 = 𝐻𝑔2. Because 𝑘 

belongs to both 𝐻𝑔1 and 𝐻𝑔2, it holds that 𝑘 = ℎ1 ∗ 𝑔1 and 𝑘 = ℎ2 ∗ 𝑔2, where ℎ1, ℎ2 ∈ 𝐻. 

Thus, ℎ1 ∗ 𝑔1 = ℎ2 ∗ 𝑔2, and we obtain 𝑔1 = ℎ1
−1 ∗ ℎ2 ∗ 𝑔2. If 𝑥 ∈ 𝐻𝑔1, then 𝑥 = ℎ3 ∗ 𝑔1 =

ℎ3 ∗ ℎ1
−1 ∗ ℎ2 ∗ 𝑔2, where ℎ3 ∈ 𝐻. Because 𝐻 ≤ 𝐺, ℎ3 ∗ ℎ1

−1 ∗ ℎ2 ∈ 𝐻, and, hence, 𝑥 ∈ 𝐻𝑔2. 

Given that 𝑥 was chosen to be an arbitrary element of 𝐻𝑔1, it follows that 𝐻𝑔1 ≤ 𝐻𝑔2. 

Similarly, it can be shown that 𝐻𝑔2 ≤ 𝐻𝑔1. As a conclusion, 𝐻𝑔1 = 𝐻𝑔2, which proves the 

theorem.■ 

 

Theorem296: Let 𝐻 be a finite subgroup of a group 𝐺. Then 𝐻 and any coset 𝐻𝑔 have the 

same number of elements. 

 

Proof: Let 𝐻 = {ℎ1, ℎ2, … , ℎ𝑛}, where 𝐻 has 𝑛 elements. Then 𝐻𝑔 = {ℎ1 ∗ 𝑔, ℎ2 ∗

𝑔, … , ℎ𝑛 ∗ 𝑔}. The fact that ℎ𝑖 ∗ 𝑔 = ℎ𝑗 ∗ 𝑔 implies that ℎ𝑖 = ℎ𝑗, and, therefore, the 𝑛 

elements listed in 𝐻𝑔 are distinct.■ 

In general, we can study groups by analyzing them into subgroups, and this process is 

based on the analysis of cosets. The Italian-French mathematician Joseph-Louis Lagrange 

(1736–1813) has proved a theorem, known as “Lagrange’s Theorem,” which narrows down 

the possible list of subgroups into which a group can be analyzed.  

 

Lagrange’s Theorem297: If 𝐻 is a subgroup of a finite group 𝐺, then the order of 𝐻 

divides the order of 𝐺 (where the order of a group is the number of elements in the group), 

symbolically: 

 

𝐻 ≤ 𝐺 ⇒ |𝐻| 𝑑𝑖𝑣𝑖𝑑𝑒𝑠 |𝐺|. 

 

Proof: Suppose that 𝐻 has 𝑟 elements, i.e., |𝐻| = 𝑟, and that there exist 𝑠 distinct right 

cosets. As we have already proved, the cosets partition 𝐺, and the order of each coset (i.e., the 

number of its elements) is 𝑟. Therefore, |𝐺| = 𝑟𝑠, which proves that |𝐻| 𝑑𝑖𝑣𝑖𝑑𝑒𝑠 |𝐺|.■ 

Let us consider two arbitrary groups 𝐺1 and 𝐺2. In order to compare these two groups, 

that is, in order to determine how similar these groups are, and in order to clarify the meaning 

 
295 See: Herstein, Abstract Algebra, pp. 67–68.  
296 Ibid.  
297 Ibid. 
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of “similarity,” we use a conceptual tool that is called a “homomorphism.”298 Let us denote 

the group operation in 𝐺1 by ∗ and the group operation in 𝐺2 by ⋄ (in both cases, the operation 

sign is pronounced “times,” but it should not be confused with regular multiplication). Then a 

“homomorphism” is a function 𝑓 from 𝐺1 to 𝐺2 such that 𝑓(𝑥 ∗ 𝑦) = 𝑓(𝑥) ⋄ 𝑓(𝑦) ∀𝑥, 𝑦 ∈

𝐺1;where the operation on the left is the group operation in 𝐺1, and the group operation on the 

right is the group operation in 𝐺2.  

For instance: 

 

i. Consider the function 𝑓: ℤ → ℤ from the set of all integers to itself defined by 

𝑓(𝑥) = 2𝑥. Assume that, in this case, the group operation is regular addition +. Then 

𝑓 is a homomorphism, since 𝑓(𝑥 + 𝑦) = 2(𝑥 + 𝑦) = 2𝑥 + 2𝑦 = 𝑓(𝑥) + 𝑓(𝑦). 

ii. Let 𝐺 be a group of integers under regular addition +, and 𝐻 = {1,−1} be the 

subgroup of the real numbers under multiplication. We define 𝑓(𝑥) = 1 if 𝑥 is even, 

and 𝑓(𝑥) = −1 if 𝑥 is odd. Then the statement that 𝑓 is a homomorphism is 

equivalent to the statement that:  

iii. 𝑒𝑣𝑒𝑛 + 𝑒𝑣𝑒𝑛 = 𝑒𝑣𝑒𝑛, 𝑒𝑣𝑒𝑛 + 𝑜𝑑𝑑 = 𝑜𝑑𝑑, 𝑎𝑛𝑑 𝑜𝑑𝑑 + 𝑜𝑑𝑑 = 𝑒𝑣𝑒𝑛. 

iv. If 𝐺 is the group of real numbers under addition, and if 𝐻 is the group of positive real 

numbers under multiplication, then the function 𝑓: 𝐺 → 𝐻 defined by 𝑓(𝑥) = 2𝑥 is a 

homomorphism, since 𝑓(𝑥 + 𝑦) = 2𝑥+𝑦 = 2𝑥2𝑦 = 𝑓(𝑥)𝑓(𝑦). Furthermore, because 

𝑓 is also bijective, 𝑓 is an isomorphism.  

 

A homomorphism 𝑓: 𝐺1 → 𝐺2 is called a “monomorphism” if 𝑓 is one-to-one. A 

monomorphism that is onto is called an “isomorphism” (i.e., of equal form). If two groups, 𝐺1 

and 𝐺2, are isomorphic, then we write 𝐺1 ≅ 𝐺2. An isomorphism from a mathematical object 

to itself is called an “automorphism,” and it is, in some sense, a symmetry of a given object 

and a way of mapping a given object to itself while preserving its entire structure.  

A homomorphism between two groups may not be an one-to-one function. If it is not 

one-to-one, then there exists a group that is associated with the given homomorphism and 

measures the degree to which the function is not one-to-one. This group is called the “kernel.” 

Consider a group 𝐺1 with the operation ∗ and a group 𝐺2 with the operation ⋄. Suppose that 

the homomorphism 𝑓: 𝐺1 → 𝐺2 is not one-to-one, and that, therefore, there exist more than 

one elements 𝑥1, 𝑥2, … of 𝐺1 that map to the element 𝑦 of 𝐺2, so that 

 

𝑓(𝑥1) = 𝑦 

𝑓(𝑥2) = 𝑦 

⋮ 

 

If we multiply each one of the aforementioned equalities by 𝑓(𝑥1
−1), then we obtain: 

 

𝑓(𝑥1) = 𝑦 ⇒ 𝑓(𝑥1) ⋄ 𝑓(𝑥1
−1) = 𝑦 ⋄ 𝑓(𝑥1

−1) = 𝑦 ⋄ 𝑦−1 

𝑓(𝑥2) = 𝑦 ⇒ 𝑓(𝑥2) ⋄ 𝑓(𝑥1
−1) = 𝑦 ⋄ 𝑓(𝑥1

−1) = 𝑦 ⋄ 𝑦−1 

⋮ 

 

 
298 See: Gallian, Contemporary Abstract Algebra; Herstein, Abstract Algebra; Saracino, Abstract Algebra. 
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since homomorphisms send inverses to inverses. We can simplify the right-hand side of the 

aforementioned equalities as follows: 

 

𝑓(𝑥1) = 𝑦 ⇒ 𝑓(𝑥1) ⋄ 𝑓(𝑥1
−1) = 𝑖𝑑𝐺2 

𝑓(𝑥2) = 𝑦 ⇒ 𝑓(𝑥2) ⋄ 𝑓(𝑥1
−1) = 𝑖𝑑𝐺2 

⋮ 

 

where 𝑖𝑑𝐺2is the identity element in 𝐺2. Moreover, given that 𝑓 is a homomorphism, the left-

hand side of the aforementioned equalities can be rewritten as follows:  

 

𝑓(𝑥1) = 𝑦 ⇒ 𝑓(𝑥1 ∗ 𝑥1
−1) = 𝑖𝑑𝐺2 

𝑓(𝑥2) = 𝑦 ⇒ 𝑓(𝑥2 ∗ 𝑥1
−1) = 𝑖𝑑𝐺2 

⋮ 

 

and, therefore, there are several elements of 𝐺1 that all map to the identity element of 𝐺2. 

These elements are called the “kernel” of the homomorphism 𝑓: 𝐺1 → 𝐺2. The formal 

definition of a kernel for groups is the following: If 𝑓 is a homomorphism from a group 𝐺1 to 

a group 𝐺2, then the “kernel” of 𝑓 is defined by ker (𝑓) = {𝑥 ∈ 𝐺1|𝑓(𝑥) = 𝑒2}, where 𝑒2 is 

the identity element of 𝐺2. In other words, ker (𝑓) measures the degree to which 𝑓 fails to be 

one-to-one at one point, 𝑒2. Moreover, notice that, if 𝑒1 is the identity element of group 𝐺1, 

and if 𝑒2 is the identity element of group 𝐺2, then 𝑓(𝑒1) = 𝑒2 ⇒ 𝑒1 ∈ ker (𝑓), and, given 

that, for any homomorphism 

𝑓: 𝐺1 → 𝐺2, the identity element of 𝐺1 maps to the identity element of𝐺2, the kernel of 𝑓 

is never empty, since it contains at least one element, 𝑒1. If the kernel contains only 𝑒1, then 𝑓 

is one-to-one, symbolically, ker(𝑓) = {𝑒1} ⇒ 𝑓𝑖𝑠 𝑎 𝑚𝑜𝑛𝑜𝑚𝑜𝑟𝑝ℎ𝑖𝑠𝑚. 

 

 

2.2. NUMBER SYSTEMS, ALGEBRA, AND GEOMETRY 
 

Numbers are abstract objects, concepts, and, simultaneously, they are intimately related 

to the world, since we organize the world with them (i.e., we count, we measure, and we form 

scientific theories with numbers). In order to understand the concept of a number, we have to 

keep in mind that what we count are not “things,” but “sets of things.” The German 

mathematician, logician, and philosopher Friedrich Ludwig Gottlob Frege (1848–1925) has 

explained that any number 𝑛 can be used in order to count any 𝑛-membered set. For instance, 

the number two can be thought of as the set of all 2-membered sets, namely, as the set of all 

pairs, independently of the nature of the objects that constitute each pair. Similarly, the 

number three can be thought of as the set of all triples, the number four can be thought of as 

the set of all quadruples, etc.  

In particular, in order to define the concept of a natural number, Frege defined, for every 

2-place relation 𝑅, the concept “𝑥 is an ancestor of 𝑦 in the 𝑅-series,” and this new relation is 

known as the “ancestor relation on 𝑅.”299 The underlying idea can be easily grasped if we 

interpret Frege’s 2-place relation 𝑅 as “𝑥 is the father of 𝑦 in the 𝑅-series.” For instance, if 

 
299 Frege, Begriffsschrift, Section 26, Proposition 76. 
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𝑎is the father of 𝑏, 𝑏 is the father of 𝑐, and 𝑐 is the father of 𝑑, then Frege’s definition of “𝑥 is 

an ancestor of 𝑦 in the fatherhood-series” ensures that 𝑎 is an ancestor of 𝑏, 𝑐, and 𝑑, that 𝑏 is 

an ancestor of 𝑐 and 𝑑, and that 𝑐 is an ancestor of 𝑑. More generally, given a series of facts 

of the form 𝑎𝑅𝑏, 𝑏𝑅𝑐, and 𝑐𝑅𝑑, Frege showed that we can define a relation 𝑅∗ as “𝑦 follows 

𝑥 in the 𝑅-series.” Thus, Frege formulated a rigorous definition of “precedes,” and he 

concluded that a “natural number” is any number of the predecessor-series beginning with 0.  

Using the concept of a “predecessor,” the American mathematician John von Neumann 

(1903–57) has proposed an even more accurate definition of a “natural number.” According 

to von Neumann, instead of defining a natural number 𝑛 as the set of all 𝑛-membered sets, a 

natural number 𝑛 should be defined as a particular 𝑛-membered set, namely, as the set of its 

predecessors.300 For instance, the number two having two predecessors, namely, zero and one, 

we can think of the number two as the set {0,1}, where zero has no predecessor, and, 

therefore, it can be thought of as the empty set, denoted by ∅, and the number one has only 

one predecessor, namely, zero, and, therefore, we can think of the number one as {∅}. Thus, 

von Neumann formulated the modern definition of “ordinal numbers.” In particular, given the 

“successor operation,” which is defined as  

 

𝑠𝑢𝑐𝑐𝑒𝑠𝑜𝑟(𝑛) = 𝑛 ∪ {𝑛}, 

 

the set of von Neumann natural numbers, namely, of the ordinal numbers, denoted by 𝜔, is 

defined as follows: 

 

i. ∅ ∈ 𝜔. 

ii. If 𝑛 ∈ 𝜔, then 𝑠𝑢𝑐𝑐𝑒𝑠𝑜𝑟(𝑛) ∈ 𝜔. 

iii. Nothing belongs to 𝜔 unless it can be constructed using the preceding rules. 

 

Thus, we obtain the following definitions: 

 

0 = ∅. 

1 = 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟(0) = ∅ ∪ {∅} = {∅} = {0}. 

2 = 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟(1) = {∅} ∪ {{∅}} = {∅, {∅}} = {0,1}. 

3 = 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟(2) = {∅, {∅}} ∪ {{∅, {∅}}} = {∅, {∅}, {∅, {∅}}} = {0,1,2}. 

⋮ 

 

 

2.2.1. Axiomatic Number Theory 

 

The System of Natural Numbers 

By the expression “the system of natural numbers,” we mean a structured set (ℕ, 0, 𝑆) =

(ℕ, (0, 𝑆)) that satisfies the “Peano Axioms,”301 namely: 

 
300 Neumann, “Zur Einführung der transfiniten Zahlen.”  
301 Peano, Formulaire de Mathématiques. In the aforementioned book, the Italian mathematician and glottologist 

Giuseppe Peano (1858–1932) expressed fundamental theorems of mathematics in a symbolic language 

developed by him.  
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i. 0 is a number, symbolically: 0 ∈ ℕ. 

ii. If 𝑛 is a number, then the successor of 𝑛 is also a number, namely, 𝑆 is a function on 

ℕ, symbolically 𝑆:ℕ → ℕ. 

iii. If two numbers have the same successor, then the two numbers are identical, that is, 

𝑆 is a monomorphism, symbolically 𝑆𝑛 = 𝑆𝑚 ⇒ 𝑛 = 𝑚.  

iv. 0 is not the successor of any number, symbolically 𝑆𝑛 ≠ 0 ∀𝑛 ∈ ℕ. 

v. “Induction Axiom”: If 𝑋 is a set containing both 0 and the successor of every number 

belonging to 𝑋, then every number belongs to 𝑋, symbolically: 

(∀𝑋 ⊆ ℕ)[0 ∈ 𝑋& (∀𝑛 ∈ ℕ)[𝑛 ∈ 𝑋 ⇒ 𝑆𝑛 ∈ 𝑋]] ⇒ 𝑋 = ℕ.  

 

Remark: In (ℕ, 0, 𝑆), we have: 

 

i. 𝑛 ≠ 0 ⇒ (∃𝑚 ∈ ℕ)[𝑛 = 𝑆𝑚].  

ii. (∀𝑛 ∈ ℕ)[𝑆𝑛 ≠ 𝑛].  

 

For (i), notice that, by the Induction Axiom, the set 

 

𝑋 = {𝑛 ∈ ℕ|𝑛 = 0 &(∃𝑚 ∈ ℕ)[𝑛 = 𝑆𝑚]} 

 

is ℕ. Moreover, for (ii), notice that 𝑆0 ≠ 0 (since 𝑆𝑛 ≠ 𝑛 ∀𝑛 ∈ ℕ) and 𝑆𝑛 ≠ 𝑛 ⇒ 𝑆𝑆𝑛 ≠ 𝑆𝑛 

(since 𝑆 is one-to-one). 

Intimately related to the development of axiomatic number theory and logic is the 

development of algorithmic proof procedures. By the term “algorithm,” we mean a step-by-

step procedure that defines a set of instructions to be executed in a certain order to get the 

desired output. One of the most useful, elegant, and simple algorithmic proof procedures is 

“mathematical induction.” The origins of this technique can be traced back to the era of 

classical Greece (and, in fact, Aristotle was one of its first rigorous exponents), but the term 

“induction” was coined by De Morgan in the nineteenth century.  

 

Principle of Mathematical Induction302 

Suppose that 𝑃 is a proposition defined on the natural numbers ℕ, such that: 

 

i. 𝑃(1) is true. 

ii. 𝑃(𝑛 + 1) is true whenever 𝑃(𝑛) is true.  

 

Then 𝑃 is true for every natural number. In this case, 𝑃 is the “inductive hypothesis.” By 

completing the aforementioned two steps of mathematical induction, we prove that 𝑃 is true 

for every natural number. Another equivalent form of mathematical induction is the 

following: 

Suppose that 𝑃 is a proposition defined on the natural numbers ℕ, such that: 

 

i. 𝑃(1) is true. 

ii. 𝑃(𝑛) is true whenever 𝑃(𝑘) is true for all 1 ≤ 𝑘 < 𝑛. 

 
302 See: Balakrishnan, Introductory Discrete Mathematics; Kleene, Introduction to Meta-Mathematics; 

Moschovakis, Notes on Set Theory; Ram, Discrete Mathematics. 
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Then 𝑃 is true for every natural number. 

 

Remark: The aforementioned formulation of the principle of mathematical induction 

begins at 𝑛0 = 1 and proves that 𝑃(𝑛) is true for all 𝑛 ≥ 1. Alternatively, one can begin at 

any natural number 𝑛0 = 𝑚 and prove that 𝑃(𝑛) is true for all 𝑛 ≥ 𝑚.  

 

Example 1: Let 𝑃 be the proposition that the sum of the first 𝑛 odd numbers is 𝑛2, 

namely: 𝑃(𝑛) = 1 + 3 + 5 +⋯+ (2𝑛 − 1) = 𝑛2. We can prove that 𝑃 is true for every 

natural number 𝑛 ∈ ℕ using mathematical induction as follows: 

 

Basis step: 1 = 12, and, thus, 𝑃(1) is true. 

 

Induction step: The 𝑛th odd number is 2𝑛 − 1, and the next odd number is 2𝑛 + 1. We 

assume that 𝑃(𝑛) is true, and we add 2𝑛 + 1 to both sides of𝑃(𝑛), obtaining  

 

1 + 3 + 5 +⋯+ (2𝑛 − 1) + (2𝑛 + 1) = 𝑛2 + (2𝑛 + 1) = (𝑛 + 1)2, 

 

which is 𝑃(𝑛 + 1). Hence, 𝑃(𝑛 + 1) is true whenever 𝑃(𝑛) is true. By the principle of 

mathematical induction, 𝑃 is true for every natural number 𝑛 ∈ ℕ.  

 

Example 2: Let 𝑃 be the proposition that the sum of the first 𝑛 natural numbers is 

 
1

2
𝑛(𝑛 + 1), namely: 𝑃(𝑛) = 1 + 2 + 3 +⋯+ 𝑛 =

1

2
𝑛(𝑛 + 1). We can prove that 𝑃 is 

true for every natural number 𝑛 ∈ ℕ using mathematical induction as follows: 

Basis step: The proposition holds for 𝑛 = 1, because 1 =
1

2
(1)(1 + 1). Hence, 𝑃(1) is 

true. 

Induction step: We assume that 𝑃(𝑛) is true, and we add 𝑛 + 1 to both sides of𝑃(𝑛), 

obtaining  

 

1 + 2 + 3 +⋯+ 𝑛 + (𝑛 + 1) =
1

2
𝑛(𝑛 + 1) + (𝑛 + 1) =

1

2
[𝑛(𝑛 + 1) + 2(𝑛 + 1)] =

1

2
[(𝑛 + 1)(𝑛 + 2)], 

 

which is 𝑃(𝑛 + 1). Hence, 𝑃(𝑛 + 1) is true whenever 𝑃(𝑛) is true. By the principle of 

mathematical induction, 𝑃 is true for every natural number 𝑛 ∈ ℕ.  

 

Recursion 

Before proceeding with the study of axiomatic number theory, we shall explain the 

meaning of recursion, which is parallel to the concept of induction, and it plays a very 

important role in computer science. In particular, V. K. Balakrishnan has clearly explained 

recursion as follows: 

 

[Recursion] is the process of solving a large problem by decomposing it into one or more 

subproblems such that each subproblem is identical in structure to the original problem but 

more or less simpler to solve. So in both situations, one must (1) decide a set of simple cases 
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for which the proof or computation is easily handled, and (2) obtain an appropriate rule that 

can be applied repeatedly until the end. This concept underlying both induction and recursion 

can be used to justify the definition of some collection of objects in stages.303 

 

For instance, let us consider the recursive definition of a set 𝐴 of natural numbers 

divisible by the number 5. In general, a number 𝑎 is said to be “divisible” by another number 

𝑏 when a third number 𝑘 can be found such that 𝑎 = 𝑘𝑏; and, if this the case, then 𝑎 is called 

a “multiple” of 𝑏, 𝑏 is called a “divisor” of 𝑎, and 𝑘 is called the “quotient” of 𝑎 by 𝑏. The 

recursive definition of a set 𝐴 of natural numbers divisible by the number 5 can be articulated 

as follows304: 

 

a. Basis part: 5 ∈ 𝐴. 

b. Inductive/recursive part: (𝑛 ∈ 𝐴) ⇒ (𝑛 + 5 ∈ 𝐴). 

c. Closure part: for any object 𝑥, 𝑥 ∈ 𝐴 if and only if it is obtained by a repeated 

application of (a) and (b).  

 

Although Richard Dedekind was the first mathematician to put recursion in a rigorous 

setting, the first study of recursive definitions goes back to the German linguist and 

mathematician Hermann Grassmann (1809–77) and the American philosopher and 

mathematician Charles Sanders Peirce (1839–1914). 

 

Properties of the System of Natural Numbers 

 

Theorem305: The set ℕ of all natural numbers is infinite. 

 

Proof: As I have already mentioned, a set is infinite if and only if it is in one-to-to-one 

correspondence with at least one proper subset of it. Let us consider ℕ − {0}, which is a 

proper subset of ℕ = {0,1,2,3,… }. We define a function  

 

𝑓:ℕ → ℕ − {0} 

 

such that 𝑓(𝑥) = 𝑆𝑥 ∀𝑥 ∈ ℕ, where 𝑆𝑥 denotes the successor of 𝑥. 

Due to Peano’s axiom III, if 𝑥1, 𝑥2 ∈ ℕ, then  

𝑓(𝑥1) = 𝑓(𝑥2) ⇒ 𝑆𝑥1 = 𝑆𝑥2 ⇒ 𝑥1 = 𝑥2. Thus, 𝑓 is one-to-one. 

 

Furthermore, due to Peano’s axiom II, if 𝑥2 ∈ ℕ− {0}, then 𝑥2 must be a successor of 

some element 𝑥1 ∈ ℕ. Thus, 𝑓 is onto.  

Because 𝑓:ℕ → ℕ− {0} is one-to-one and onto, ℕ is an infinite set.■ 

The “addition function”: The addition function from ℕ× ℕ to ℕ given by (𝑚, 𝑛) → 𝑚 +

𝑛 is recursively defined by  

 

 
303 Balakrishnan, Introductory Discrete Mathematics, p. 20. 
304 Ibid, p. 21. 
305 Balakrishnan, Introductory Discrete Mathematics; Kleene, Introduction to Meta-Mathematics; Moschovakis, 

Notes on Set Theory; and Ram, Discrete Mathematics. 
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𝑚+ 0 = 𝑚, 

𝑚+ 𝑆𝑛 = 𝑆(𝑚 + 𝑛). 

 

The “multiplication function”: The multiplication function from ℕ × ℕ to ℕ given by 

(𝑚, 𝑛) → 𝑚 ∙ 𝑛 is recursively defined by 

 

𝑚 ∙ 0 = 0, 

𝑚 ∙ 𝑆𝑛 = (𝑚 ∙ 𝑛) + 𝑚. 

 

The “exponentiation function”: The exponentiation function from ℕ × ℕ to ℕ given by 

(𝑚, 𝑛) → 𝑚𝑛 is recursively defined by 

 

𝑚0 = 1, 

𝑚𝑛+1 = 𝑚𝑛 ∙ 𝑚. 

 

Dedekind306 achieved the first explicit formulation of the elementary properties of the 

arithmetic operations from their recursive definitions. In particular, the following laws hold 

(which can be easily proved by the Induction Axiom): 

 

Associative Law of Addition:(𝑥 + 𝑦) + 𝑧 = 𝑥 + (𝑦 + 𝑧). 

Commutative Law of Addition:𝑥 + 𝑦 = 𝑦 + 𝑥. 

Associative Law of Multiplication:(𝑥 ∙ 𝑦) ∙ 𝑧 = 𝑥 ∙ (𝑦 ∙ 𝑧). 

Commutative Law of Multiplication:𝑥 ∙ 𝑦 = 𝑦 ∙ 𝑥. 

Distributive Law of Multiplication:𝑥 ∙ (𝑦 + 𝑧) = 𝑥 ∙ 𝑦 + 𝑥 ∙ 𝑧. 

 

By the term “prime numbers,” we refer to those natural numbers with no factors or no 

divisors other than 1 and themselves (e.g., 2, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, etc. are prime 

numbers). In the books VII–IX of his seminal Elements, Euclid studied number theory in 

general and prime numbers in particular in a scientifically rigorous and systematic way.307 In 

the ninth book of his Elements (Proposition 20), Euclid proved that the set of prime numbers 

is infinite by reductio ad absurdum as follows: Suppose that there exist only finitely many 

prime numbers, say 𝑝1, 𝑝2, … , 𝑝𝑛 for some natural number 𝑛. Consider a number 𝑎 that is the 

product of all these prime numbers plus 1, namely, 𝑎 = 𝑝1 ∙ 𝑝2 ∙ … ∙ 𝑝𝑛 + 1. Then this number 

𝑎 is not divisible by any prime 𝑝𝑖, where 𝑖 = 1,2,… , 𝑛, since, if you divide 𝑎 by a prime 

number, say 𝑝𝑘, then you get a remainder of 1. Hence, there are two possibilities: The first 

possibility is that 𝑎 is a prime number, which is impossible, since it contradicts the 

assumption that the list of all prime numbers is 𝑝1, 𝑝2, … , 𝑝𝑛. The other possibility is that 𝑎 is 

a composite number, and, hence, it must have some prime factors itself, thus leading to a new 

contradiction, because such a prime factor is a new prime factor that is not included in the list 

𝑝1, 𝑝2, … , 𝑝𝑛. Therefore, either way, we get some new prime numbers, and this fact proves 

that there are infinitely many prime numbers.  

 

 
306 Dedekind, Gesammelte mathematische Werke.  
307 Euclid, The Thirteen Books of Elements. 
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The Fundamental Theorem of Arithmetic (known also as the Unique Factorization 

Theorem)308: Every natural number greater than one is either a prime number (i.e., it cannot 

be exactly divided by any other number apart from 1 and itself) or can be written as a unique 

product of prime numbers (up to re-arrangement).  

 

Proof: First, we have to prove that, for any natural number 𝑛 ≥ 2, there exists a 

representation as a product of powers of prime numbers, symbolically:  

 

𝑛 = 𝑝1
𝑎1 ∙ … ∙ 𝑝𝑘

𝑎𝑘,  

 

and next we have to prove that this representation is unique up to reordering. We can prove 

the existence of such a representation by reductio ad absurdum as follows: Suppose that there 

is a natural number without such a representation. Let 𝑚 be the smallest number that cannot 

be factored into a product of powers of prime numbers. Notice that 𝑚 must be composite; 

otherwise, it can be represented as a product of powers of prime numbers. Therefore, by 

definition, 𝑚 = 𝑎 ∙ 𝑏, where 1 < 𝑎, 𝑏 < 𝑚. Since 𝑎 and 𝑏 are strictly smaller than 𝑚, we can 

write 𝑎 and 𝑏 in the form given, namely, as products of powers of prime numbers, and, 

consequently, 𝑚 can be written as a product of powers of prime numbers, too, which is a 

contradiction. In other words, we have just proved that every natural number 𝑛 ≥ 2 can be 

written as a product of powers of prime numbers. Now, we shall show that this representation 

of a natural number 𝑛 ≥ 2 is unique up to reordering. Suppose that  

 

𝑝1
𝑎1 ∙ … ∙ 𝑝𝑘

𝑎𝑘 = 𝑞1
𝑏1 ∙ … ∙ 𝑞𝑙

𝑏𝑙, (∗) 

 

namely, that the same number can be represented as two products of powers of primes. In this 

case, we have to prove that 𝑘 = 𝑙 and that 𝑝𝑖 = 𝑞𝑖  for every 𝑖. Notice that, for every 𝑖, 𝑝𝑖 

divides the left-hand side of equation (∗), and, therefore, 𝑝𝑖 divides the right-hand side of 

equation (∗), too. Hence, 𝑝𝑖 divides 𝑞𝑟
𝑏𝑟 for some 𝑟, and, then, 𝑝𝑖 divides 𝑞𝑟, too. Given that, 

if two primes divide each other, they have to be the same, it follows that 𝑝𝑖 = 𝑞𝑟. 

Consequently, 𝑘 = 𝑙, and 𝑝𝑖 = 𝑞𝑟 for some 𝑟. After some reordering and renaming, we can 

set 𝑝𝑖 = 𝑞𝑖, which implies that 

 

𝑝1
𝑎1 ∙ … ∙ 𝑝𝑘

𝑎𝑘 = 𝑝1
𝑏1 ∙ … ∙ 𝑝𝑘

𝑏𝑘. (∗∗) 

 

By way of contradiction, suppose that 𝑎𝑖 ≠ 𝑏𝑖. Moreover, assume that 𝑎𝑖 > 𝑏𝑖. Now, we 

shall divide each side of equation (∗∗) by 𝑝𝑖
𝑏𝑖, which obviously divides the right-hand side of 

equation (∗∗), and, since 𝑎𝑖 ≠ 𝑏𝑖, it obviously divides the left-hand side of equation (∗∗), too, 

so that we obtain 

 

𝑝1
𝑎1 ∙ … ∙ 𝑝𝑖−1

𝑎𝑖−1 ∙ 𝑝𝑖
(𝑎𝑖−𝑏𝑖) ∙ 𝑝𝑖+1

𝑎𝑖+1 ∙ … ∙ 𝑝𝑘
𝑎𝑘 = 𝑝1

𝑏1 ∙ … ∙ 𝑝𝑖−1
𝑏𝑖−1 ∙ 𝑝𝑖+1

𝑏𝑖+1 ∙ … ∙ 𝑝𝑘
𝑏𝑘. (∗∗∗) 

 

 
308 This theorem appeared in Euclid’s Elements (approx. 300 B.C.). See: Mathews, Theory of Numbers, p.3.  
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Notice that 𝑝𝑖 divides the left-hand side of equation (∗∗∗), since 𝑎𝑖 > 𝑏𝑖, and, therefore, 

𝑝𝑖 divides the right-hand side of equation (∗∗∗), too. Consequently, 𝑝𝑖 divides 𝑝𝑗 for 𝑖 ≠ 𝑗, so 

that we have two primes, 𝑝𝑖 and 𝑝𝑗, and 𝑝𝑖 divides one of them that is not equal to itself, 

which is a contradiction. The aforementioned contradiction implies that 𝑎𝑖 = 𝑏𝑖 (for every 𝑖), 

which, in turn, proves that the representation of any natural number 𝑛 ≥ 2 as a product of 

powers of prime numbers is unique.■  

 

Enumeration 

There is no doubt that numbers are applicable to sets. In case of a finite number, the 

individuals may be enumerated to make up the given number, and such a counting process 

takes place with no appeal to any set-theoretical concept. Since any finite collection of 

individuals forms a set, we obtain a number corresponding to that class. When this number is 

infinite, the individuals cannot be enumerated, but they are determined by means of some 

common property on the basis of which they are regarded as a “whole” (set), specifically, the 

number is a property of the given set. In the theory of infinity, it is highly important to 

determine the conditions under which two sets have the same cardinal number. Cantor was 

the first mathematician to state the basic definitions about the cardinality of sets. 

One way of specifying a finite set is by listing its elements. Obviously, every finite set 

can be enumerated by putting its elements into a list, which has a beginning, and where each 

element of the list other than the first has a unique predecessor. Moreover, some infinite sets 

can also be enumerated, such as the set of ℕ all natural numbers.  

Two sets 𝐴 and 𝐵 are “equinumerous” or “have the same cardinality” if their elements 

can be correlated one-to-one in such a way that each element of either corresponds to exactly 

one of the other, namely, if there exists a bijection from 𝐴 to 𝐵; then we write 𝐴 =𝑐 𝐵.  

Remark: By the above definition, Cantor proposed to accept the existence of an one-to-

one correspondence as a characteristic property of equinumerosity, although the application 

of his intuitions about finite sets to infinite ones may seem to be questionable.309 Thus, the set 

ℕ = {0,1,2,… } of all natural numbers and its proper subset ℕ∗ = ℕ − {0} = {1,2,3,… } are 

equinumerous under the bijection 𝑥 → 𝑥 + 1. Moreover, {𝑥 ∈ ℝ|0 < 𝑥 < 1} =𝑐 {𝑥 ∈ ℝ|0 <

𝑥 < 2} under the bijection 𝑥 → 2𝑥. 

 

Theorem310: For any sets 𝐴, 𝐵, and 𝐶,  

 

i. 𝐴 =𝑐 𝐴, 

ii. 𝐴 =𝑐 𝐵 ⇒ 𝐵 =𝑐 𝐴, 

iii. (𝐴 =𝑐 𝐵&𝐵 =𝑐 𝐶) ⇒ A =c C. 

 

Proof: (i) and (ii) are straightforward. For (iii), we can argue as follows: given the 

bijections 𝑓: 𝐴 → 𝐵 and 𝑔:𝐵 → 𝐶, which show that 𝐴 =𝑐 𝐵 and 𝐵 =𝑐 𝐶, respectively, the 

bijection 𝑔  ⃘ 𝑓: 𝐴 → 𝐶 shows that 𝐴 =𝑐 𝐶.■ 

The cardinality of a set𝐴 is “less than or equal to” that of a set 𝐵 if 𝐴 is equinumerous to 

a subset of 𝐵; then we write 𝐴 ≤𝑐 𝐵.  

 
309 Cantor, Gesammelte Abhandlungen. Moreover, see: Johnstone, Notes on Logic and Set Theory; Moschovakis, 

Notes on Set Theory. 
310 Ibid.  
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Theorem311:𝐴 ≤𝑐 𝐵 if and only if there is a monomorphism (i.e., an one-to-one function) 

𝑓: 𝐴 → 𝐵.  

 

Proof: If 𝐴 =𝑐 𝐶 ⊆ 𝐵 so that 𝑓: 𝐴 → 𝐶 is a bijection, then 𝑓 is a monomorphism from 𝐴 

to 𝐵. Conversely, if 𝑓: 𝐴 → 𝐵 is a monomorphism, then 𝐴 =𝑐 𝑓(𝐴) ⊆ 𝐵.■  

A set 𝐴 is “countable,” or “denumerable,” if it is finite or equinumerous to the set ℕ of all 

natural numbers; otherwise, 𝐴 is “uncountable.” In particular, a set is said to be “countably 

infinite” if it can be put in an one-to-one correspondence with ℕ, and a set is said to be 

“countable” if it is either finite or countably infinite.  

 

Theorem312: A set 𝐴 is countable if and only if either 𝐴 = ∅ or 𝐴 accepts an 

“enumeration,” namely, there exists an epimorphism (i.e., an onto function) 𝜀: ℕ → 𝐴 such 

that 

 

𝐴 = {𝜀(0), 𝜀(1), 𝜀(2),… }.  

 

Proof: Such a function 𝜀 determines an enumeration as defined above: 𝜀(0), 𝜀(1), 𝜀(2),… 

Since 𝜀 is surjective, every element of 𝐴 is guaranteed to be the value of 𝜀(𝑛) for some 𝑛 ∈

ℕ. Hence, every element of 𝐴 appears at some finite position in the list. Since the function 

may not be injective, the list may be redundant, but that is acceptable. On the other hand, 

given a list that enumerates all elements of 𝐴, we can define a surjective function 𝜀:ℕ → 𝐴 by 

letting 𝜀(𝑛) be the 𝑛th element of the list that is not a gap, or the last element of the list if 

there is no 𝑛th element. There is one case in which this does not produce a surjective 

function, namely, if 𝐴 = ∅, and, hence, the list is empty. Therefore, every non-empty list 

determines an epimorphism 𝜀: ℕ → 𝐴.■  

 

Theorem313: The union of a countable collection of countable sets 𝐴 =∪𝑛 𝐴𝑛, where 𝑛 ∈

𝐼 ⊆ ℕ, is a countable set.  

 

Proof: Assume that 𝐼 is infinite (if 𝐼 is finite, then we work analogously), so that 𝐼 can be 

replaced by ℕ. Then the given countable collection of countable sets may be designated by 

 

𝐴 =∪𝑛=0
∞ 𝐴𝑛 = 𝐴0 ∪ 𝐴1 ∪ 𝐴2 ∪ … 

 

Without loss of generality, assume that each 𝐴𝑛 is non-empty. Then we can find an 

enumeration 𝜀𝑛: ℕ → 𝐴𝑛 for each 𝐴𝑛 . Setting  

 

𝑎𝑖
𝑛 = 𝜀𝑛(𝑖), 

 

we obtain 

 

𝐴𝑛 = {𝑎0
𝑛, 𝑎1

𝑛, … }, 

 
311 Ibid. 
312 Ibid.  
313 Ibid.  
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and we can construct a table containing every element of A as follows: 

 

𝐴0: 𝑎0
0𝑎1

0𝑎2
0… 

𝐴1: 𝑎0
1𝑎1

1 𝑎2
1… 

𝐴2: 𝑎0
2𝑎1

2𝑎2
2… 

⋮ 

 

Therefore, collecting the aforementioned elements diagonally, we obtain 

 

𝐴 = {𝑎0
0, 𝑎0

1, 𝑎1
0, 𝑎2

0, 𝑎1
1, … }.■ 

 

Theorem314: If the sets 𝐴1, 𝐴2, 𝐴3, … , 𝐴𝑛 are countable, then their Cartesian product 

𝐴1 × 𝐴2 ×…× 𝐴𝑛 is a countable set.  

 

Proof: By definition, if 𝐴𝑖 , 𝑖 = 1,2,… , 𝑛, is empty, then the corresponding Cartesian 

product is empty. Otherwise, for two sets 𝐴 and 𝐵, we have the enumeration of 𝐵 given by 

 

𝐵 = {𝑏0, 𝑏1, 𝑏2, … }, 

 

so that 

 

𝐴 × 𝐵 =∪𝑛=0
∞ (𝐴 × {𝑏𝑛}), 

 

and each 𝐴 × {𝑏𝑛} is equinumerous to 𝐴 (and, therefore, countable) by the correspondence 

𝑥 → (𝑥, 𝑏𝑛).■  

 

Theorem315: If 𝐴 is an arbitrary set and ℘(𝐴) denotes the power set of 𝐴, then  

 

𝐴 <𝑐 ℘(𝐴).  

 

Proof: We can prove this theorem by reductio ad absurdum as follows: First of all, the 

fact that 𝐴 ≤𝑐 ℘(𝐴) follows directly from the monomorphism  

 

𝐴 ∋ 𝑥 → {𝑥} ∈ ℘(𝐴), 

 

which assigns to each 𝑥 ∈ 𝑋 the singleton {𝑥}.  

Assume that there exists a bijection 

 

𝜀: 𝐴 → ℘(𝐴), 

 

namely, that 𝐴 =𝑐 ℘(𝐴). Notice that, for any 𝑥 ∈ 𝐴, 𝜀(𝑥) ⊆ 𝐴. Let 

 

𝐵 = {𝑥 ∈ 𝐴|𝑥 ∉ 𝜀(𝑥)}, so that 𝑥 ∈ 𝐵 ⇔ 𝑥 ∉ 𝜀(𝑥) ∀𝑥 ∈ 𝐴. (∗) 

 
314 Ibid.  
315 Ibid.  
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Since 𝐵 is a subset of 𝐴 and 𝜀 is surjective, there must exist some 𝑏 ∈ 𝐴 such that 𝐵 =

𝜀(𝑏). In (∗), we set 𝑥 = 𝑏 and 𝐵 = 𝜀(𝑏), so that we obtain the contradiction that 𝑏 ∈ 𝐵 ⇔

𝑏 ∉ 𝐵.■  

 

Remark: Since there exists no epimorphism 𝜀: 𝐴 → ℘(𝐴) for any set 𝐴, we realize that 

there exist many orders of infinity, namely: 

 

ℕ <𝑐 ℘(ℕ) <𝑐 ℘(℘(ℕ)) <𝑐 … 

 

The proof of the antisymmetry of the relation ≤𝑐 was a problem that attracted the interest 

of several mathematicians, including Cantor, Richard Dedekind, Felix Bernstein, and Ernst 

Schröder. The proof was given by Cantor’s student Felix Bernstein in 1897 (a slightly 

simplified version of Bernstein’s proof can be found in Émile Borel’s book Leçons sur la 

Théorie des Fonctions, Paris: Gauthier-Villars, 1898). Bernstein’s proof is based on the 

following lemma: 

 

Lemma316: If 𝑋 ⊇ 𝑌 ⊇ 𝑋1 and 𝑋 =𝑐 𝑋1, then 𝑋 =𝑐 𝑌.  

 

Proof: Because 𝑋 =𝑐 𝑋1, there exists an one-to-one correspondence 𝛼: 𝑋 → 𝑋1. But 𝑋 ⊇

𝑌, so that the restriction to 𝑌 of 𝛼 is one-to-one. Thus, 𝑌 is equinumerous to a subset, say 𝑌1, 

of 𝑋1, where 𝑋 ⊇ 𝑌 ⊇ 𝑋1 ⊇ 𝑌1, and 𝛼: 𝑌 → 𝑌1 is one-to-one and onto. By analogy, we obtain 

𝑋 ⊇ 𝑌 ⊇ 𝑋1 ⊇ 𝑌1 ⊇ 𝑋2, where 𝑋1 =𝑐 𝑋2, and 𝛼:𝑋1 → 𝑋2 is one-to-one and onto. Repeating 

the same process, we realize that there exist equinumerous sets 𝑋1, 𝑋2, 𝑋3, … and 

equinumerous sets 𝑌1, 𝑌2, 𝑌3, … such that 

 

𝑋 ⊇ 𝑌 ⊇ 𝑋1 ⊇ 𝑌1 ⊇ 𝑋2 ⊇ 𝑌2 ⊇ ⋯ 

 

Let 𝐵 = 𝑋 ∩ 𝑌 ∩ 𝑋1 ∩ 𝑌1 ∩ 𝑋2 ∩ 𝑌2 ∩ …, 

 

so that 

 

𝑋 = (𝑋 − 𝑌) ∪ (𝑌 − 𝑋1) ∪ (𝑋1 − 𝑌1) ∪ …∪ 𝐵, 

𝑌 = (𝑌 − 𝑋1) ∪ (𝑋1 − 𝑌1) ∪ (𝑌1 − 𝑋2) ∪ …∪ 𝐵. 

 

Notice that  

 

(𝑋 − 𝑌) =𝑐 (𝑋1 − 𝑌1) =𝑐 (𝑋2 − 𝑌2) =𝑐 … 

 

by the bijection 𝛼: (𝑋𝑛 − 𝑌𝑛) → (𝑋𝑛+1 − 𝑌𝑛+1). 

If we define a function 𝑔 such that  

 

𝑔(𝑥) = {
𝛼(𝑥) 𝑖𝑓 𝑥 ∈ 𝑋𝑖 − 𝑌𝑖 𝑜𝑟 𝑥 ∈ 𝑋 − 𝑌

𝑥 𝑖𝑓 𝑥 ∈ 𝑌𝑖 − 𝑋𝑖  𝑜𝑟 𝑥 ∈ 𝐵
, 

 
316 See: Borel, Leçons sur la Théorie des Fonctions. 
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then 𝑋 =𝑐 𝑌 𝑏𝑦 𝑔.■ 

 

Bernstein’s Equinumerosity Theorem317: If 𝑋 ≤𝑐 𝑌 and 𝑌 ≤𝑐 𝑋, then 𝑋 =𝑐 𝑌. In other 

words, if there exist injections 𝑓:𝑋 → 𝑌 and 𝑔: 𝑌 → 𝑋, then there exists a bijection ℎ:𝑋 → 𝑌.  

 

Proof: Let 𝑓 and 𝑔 be one-to-one functions from 𝑋 to 𝑌 and from 𝑌 to 𝑋, respectively. If 

we let 𝑓(𝑋) = 𝑌1 ⊆ 𝑌, 𝑔(𝑌) = 𝑋1, and 𝑔(𝑌1) = 𝑋2, then 𝑋 ⊇ 𝑋1 ⊇ 𝑋2. Additionally, 

𝑔(𝑓(𝑋)) = 𝑋2, namely, 𝑔  ⃘𝑓, is an one-to-one function from 𝑋 onto 𝑋2. Therefore, 𝑋 =𝑐 𝑋2, 

so that, by the aforementioned lemma, 𝑋 =𝑐 𝑋1. But, since 𝑔 maps 𝑌 one-to-one onto 𝑋1, it 

holds that 𝑋1 =𝑐 𝑌.■ 

Cantor has explained the “cardinal number” of a set 𝑀 as the general concept emanating 

from 𝑀 after a double abstraction: first, we ignore the special nature of the elements 𝑚 of 𝑀, 

and, second, their order in 𝑀.318 This double abstraction gives the cardinal number of 𝑀, 

denoted by 𝑀̿. Since each element 𝑚 of 𝑀 has become an abstract “individual,” the cardinal 

number 𝑀̿ is a set consisting of individuals, and such a number can be understood as an 

intellectual projection of the set 𝑀.  

According to the aforementioned reasoning, Cantor concluded that, for any sets 𝐴 and 𝐵,  

 

𝐴 =𝑐 𝐴̿, 

𝐴 =𝑐 𝐵 ⇔ 𝐴̿ = 𝐵̿. 

 

Moreover, Cantor has argued that, for every family 𝔼 of sets, the class 

 

{𝑋̿|𝑋 ∈ 𝔼} 

 

is a set. According to Cantor, 𝐴̿ is a set of “monads” that is equinumerous to 𝐴.  

In modern notation, Cantor’s theory of cardinal numbers gives rise to the following 

problem: Define an operator |𝐴| on the class of all sets such that the following conditions are 

satisfied: 

 

Condition (C1): 𝐴 =𝑐 |𝐴|, 

Condition (C2): 𝐴 =𝑐 𝐵 ⇔ |𝐴| = |𝐵|, 

Condition (C3): for every set 𝔼, {|𝑋||𝑋 ∈ 𝔼} is a set. 

 

A rigorous solution to the above problem was given by John von Neumann. By a “weak 

cardinality operator,” we mean any definite operator |𝐴| that satisfies the aforementioned 

conditions (C1) and (C3). Thus, “cardinal numbers” are the values of 

 

𝐶𝑎𝑟𝑑(𝜅) ⇔ 𝜅 ∈ 𝐶𝑎𝑟𝑑 ⇔ (∃𝐴)[𝜅 = |𝐴|]. 

 

 
317 Ibid.  
318 Cantor, “Beiträge zur Begründung der transfiniten Mengenlehre,” p. 481. 
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If, in addition, a cardinality operator |𝐴| satisfies the aforementioned condition (C2), 

namely, (∀𝜅 ∈ 𝐶𝑎𝑟𝑑)(∀𝜆 ∈ 𝐶𝑎𝑟𝑑)[𝜅 =𝑐 𝜆 ⇔ 𝜅 = 𝜆], then |𝐴| is said to be a “strong 

cardinality operator.”  

Having a cardinality operator, we define the following operations on cardinal numbers: 

 

𝜅 + 𝜆 = |𝜅 ⊎ 𝜆| =𝑐 𝜅 ⊎ 𝜆, 

𝜅 ∙ 𝜆 = |𝜅 × 𝜆| =𝑐 𝜅 × 𝜆, 

𝜅𝜆 = |(𝜆 → 𝜅)| =𝑐 (𝜆 → 𝜅). 

 

Thus, the following results of cardinal arithmetic are easily established319: 

 

𝜅 + 0 =𝑐 𝜅, 𝜅 ∙ 0 =𝑐 0, 𝜅 ∙ 1 =𝑐 𝜅, 

𝜅 + (𝜆 + 𝜇) =𝑐 (𝜅 + 𝜆) + 𝜇, 

𝜅 ∙ (𝜆 ∙ 𝜇) =𝑐 (𝜅 ∙ 𝜆) ∙ 𝜇, 

𝜅 ∙ 𝜆 =𝑐 𝜆 ∙ 𝜅, 

𝜅 ∙ (𝜆 + 𝜇) =𝑐 𝜅 ∙ 𝜆 + 𝜅 ∙ 𝜇, 

|℘(𝜅)| =𝑐 2
𝜅, 

𝜅0 =𝑐 1, 𝜅
1 =𝑐 𝜅, 𝜅

2 =𝑐 𝜅 ∙ 𝜅, 

(𝜅 ∙ 𝜆)𝜇 =𝑐 𝜅
𝜇 ∙ 𝜆μ, 

𝜅𝜆+𝜇 =𝑐 𝜅
𝜆 ∙ 𝜅𝜇,  

(𝜅𝜆)𝜇 =𝑐 𝜅
𝜆∙𝜇, 

𝜅 ≤𝑐 𝜇 ⇒ κ + λ ≤𝑐 𝜇 + 𝜆,  

𝜅 ≤𝑐 𝜇 ⇒ 𝜅 ∙ 𝜆 ≤𝑐 𝜇 ∙ 𝜆, 

𝜆 ≤𝑐 𝜇 ⇒ 𝜅𝜆 ≤𝑐 𝜅
𝜇, 

𝜅 ≤𝑐 𝜆 ⇒ 𝜅𝜇 ≤𝑐 𝜆
𝜇. 

 

Cantor denoted the cardinal number of ℕ by the first letter of the Hebrew alphabet aleph-

naught: 

 

ℵ0 = |ℕ|. 

 

For every cardinal number 𝜅 and for every 𝑛 ∈ ℕ, 

 

𝜅𝑛 = |𝜅(𝑛)|. 

 

Remarks:ℕ𝑛 =𝑐 ℕ
1, that is, ℵ0

𝑛 = ℵ0, for all 𝑛 ∈ ℕ. The cardinal number of the set of all 

the 𝑛-tuples of natural numbers is ℵ0, because 𝑚 → (𝑚, 0,… ,0) is an one-to-one function 

from ℕ to ℕ𝑛, and, if 2,3,… , 𝑝𝑛 are the first 𝑛 prime numbers, then the Fundamental Theorem 

of Arithmetic implies that (𝑚1, … ,𝑚𝑛) → 2𝑚1 ∙ … ∙ 𝑝𝑛
𝑚𝑛 is an one-to-one function from ℕ𝑛 to 

ℕ. 

 

 
319 See: Schimmerling, A Course on Set Theory, Chapter 4; Suppes, Axiomatic Set Theory, Chapter 4.  
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Order in ℕ and Ordinal Numbers 

If 𝑎, 𝑏 ∈ ℕ, then we say that “𝑎 is less than 𝑏” if and only if there exists an 𝑛 ∈ ℕ such 

that 𝑎 + 𝑛 = 𝑏, and then we write 𝑎 < 𝑏 or, equivalently, 𝑏 > 𝑎, which is read “𝑏 is greater 

than 𝑎.” According to the transitivity of order relation, if 𝑎 > 𝑏 and 𝑏 > 𝑐, then 𝑎 > 𝑐. 

Moreover, according to the compatibility of order relation with addition and multiplication, 

𝑎 > 𝑏 ⇒ 𝑎 + 𝑐 > 𝑏 + 𝑐 and 𝑎 > 𝑏 ⇒ 𝑎𝑐 > 𝑏𝑐, for any 𝑎, 𝑏, 𝑐 ∈ ℕ.  

 

The Law of Trichotomy: For any two natural numbers 𝑎 and 𝑏, one and only one of the 

following holds: 

 

i. 𝑎 = 𝑏, 

ii. 𝑎 < 𝑏, 

iii. 𝑎 > 𝑏. 

 

In general, “order” is one of the most significant concepts in set theory. In order to 

understand the meaning of order, we must study the manner in which order emerges; there 

exist two ways (in fact, the second way is reducible to the first one), namely320: 

 

i. Given three terms, “ordinal elements,” 𝑎, 𝑏, and 𝑐, one of them, say 𝑏, is “between” 

the other two. Then “between” is a relation of one term 𝑏 to two others 𝑎 and 𝑐, and 

it holds whenever there exists some relation from 𝑎 to 𝑏 and from 𝑏 to 𝑐 but not from 

𝑏 to 𝑎, nor from 𝑐 to 𝑏, nor from 𝑐 to 𝑎; that is, if 𝑏 is between 𝑎 and 𝑐, then it is 

impossible to have 𝑎 between 𝑏 and 𝑐 or 𝑐 between 𝑎 and 𝑏. 

ii. Given four terms, “ordinal elements,” 𝑎, 𝑏, 𝑐, and 𝑑, then 𝑎 and 𝑐 are “separated” by 

𝑏 and 𝑑. In this case, there exists an asymmetrical relation that holds between 𝑎 and 

𝑏, 𝑏 and 𝑐, 𝑐 and 𝑑, or between 𝑎 and 𝑑, 𝑑 and 𝑐, 𝑐 and 𝑏, or between 𝑐 and 𝑑, 𝑑 and 

𝑎, 𝑎 and 𝑏. 

 

In order to establish an order, one may work as follows. Consider a finite or an infinite 

collection of terms in such a way that there exists a certain asymmetrical relation from each 

term (with the possible exception of exactly one term) to exactly one other term of the 

collection as well as a relation that is the inverse of the previous relation from every term 

(with one possible exception, different from the previous exceptional term) to exactly one 

other term of the collection. Let us denote such a relation by 𝑅 and its inverse by 𝑅−1. 

Assume that, if 𝑎𝑅𝑏 and 𝑏𝑅𝑐, then 𝑐𝑅𝑎. Thus, with the two mentioned possible exceptions, 

every term of the collection has one relation to a second term, and the inverse relation to a 

third term, but these terms themselves do not have to each other either of these relations. Then 

the first term is between the second and the third terms. The term to which a given term has 

one of the two mentioned relations is called the (“immediate”) “successor” of the given term, 

while the term to which the given term has the inverse relation is called the (“immediate”) 

“predecessor” of the given term. 

 
320 See: Russell, The Principles of Mathematics.  
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Any arrangement of a set of 𝑛 objects in a given order is called a “permutation” of the 

objects (taken all at a time). The number of permutations of 𝑛 objects taken 𝑟 at a time is 

usually denoted by  

 

𝑃(𝑛, 𝑟), 

 

and 𝑃(𝑛, 𝑟) =
𝑛!

(𝑛−𝑟)!
= 𝑛(𝑛 − 1)(𝑛 − 2)… (𝑛 − 𝑟 + 1), 

 

where 𝑛!, called “𝑛 factorial,” is the product of all natural numbers less than or equal to 𝑛 (the 

value of 0! is 1). Obviously, there are 𝑛! permutations of 𝑛 objects taken all at a time.  

As in the case of cardinal numbers, Cantor321 has proposed another kind of abstraction in 

order to define “ordinal numbers.” Each ordered set 𝑈 has an ordinal number 𝑈̅, which may 

be regarded as the general concept that emanates from 𝑈 when we ignore the particular nature 

of the elements 𝑢 ∈ 𝑈 and consider only their order. Thus, 𝑈̅ is also an ordered set whose 

members are individuals that preserve the order of the members of 𝑈 from which they have 

emerged by abstraction. Two ordered sets have the same ordinal number if they are similar, 

so that 

 

𝑈 =𝑜 𝑉 ⇔ 𝑈̅ = V̅. 

 

Consider a “structured set” (or “space”), namely, a pair 𝑈 = (𝐴, 𝑆) where 𝐴 = 𝐹𝑖𝑒𝑙𝑑(𝑈) 

is a set, the field of 𝑈, and 𝑆 is any object, the structure of the space (𝐴, 𝑆). A “well ordered 

set” (or “well ordered space”) is a structured set 

 

𝑈 = (𝐹𝑖𝑒𝑙𝑑(𝑈),≤𝑈), 

 

where ≤𝑈 is the corresponding order on 𝐹𝑖𝑒𝑙𝑑(𝑈), namely, a linear order such that every 

non-empty 𝑋 ⊆ 𝐹𝑖𝑒𝑙𝑑(𝑈) has a minimum element. For instance, the set ℕ of all natural 

numbers is well order under its natural order. The fundamental problem of Cantor’s theory of 

ordinal numbers is to assign a unique well ordered set 𝑈̅ to each well ordered set 𝑈 in such a 

way that  

 

𝑈 =𝑜 𝑈̅ 𝑎𝑛𝑑 𝑈 ≤𝑜 𝑉 ⇒ 𝑈̅ ⊆ 𝑉̅. 

 

The answer given by John von Neumann322 is based on defining 𝑈̅ by recursively substituting 

each member of 𝑈 with a set of its predecessors. 

By the term “transfinite induction,” we refer to an extension of mathematical induction 

(expounded in section 2.2.1) to well ordered sets (e.g., to sets of ordinal numbers or cardinal 

numbers).  

 

Principle of Transfinite Induction323: For every well ordered set 𝑈 and for every definite 

condition 𝑃 in one variable, 

 
321 Cantor, Gesammelte Abhandlungen.  
322 Neumann, “Zur Einführung der transfiniten Zahlen.”  
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(∀𝑦 ∈ 𝑈)[(∀𝑥 < 𝑦)𝑃(𝑥) ⇒ 𝑃(𝑦)] ⇒ (∀𝑦 ∈ 𝑈)𝑃(𝑦). 

 

Division 

For any two natural numbers 𝑎 and 𝑏, there exists a unique natural number 𝑛 such that 𝑎 ∙

𝑛 = 𝑏 if and only if 𝑎 is a divisor of 𝑏, and then we write 𝑛 = 𝑏 ÷ 𝑎. The greatest common 

divisor (denoted by 𝑔𝑐𝑑) of two natural numbers 𝑎 and 𝑏 is the largest natural number that 

divides both 𝑎 and 𝑏, and the Euclidean Algorithm for computing 𝑔𝑐𝑑(𝑎, 𝑏) is as follows: 

 

i. If 𝑎 = 0, then 𝑔𝑐𝑑(𝑎, 𝑏) = 𝑏. 

ii. If 𝑏 = 0, then 𝑔𝑐𝑑(𝑎, 𝑏) = 𝑎. 

iii. If 𝑎 and 𝑏 are both non-zero natural numbers, then we write 𝑎 in quotient remainder 

form, namely, 𝑎 = 𝑏 ∙ 𝑞 + 𝑟, and, subsequently, we compute 𝑔𝑐𝑑(𝑏, 𝑟) using the 

Euclidean Algorithm since 𝑔𝑐𝑑(𝑎, 𝑏) = 𝑔𝑐𝑑(𝑏, 𝑟). For instance, if 𝑎 = 280 and 𝑏 =

120, then we can compute 𝑔𝑐𝑑(𝑎, 𝑏) as follows: first, we use long division to find 

that 
280

120
= 2 𝑤𝑖𝑡ℎ𝑎𝑟𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟𝑜𝑓 40, which can be written as 280 = 120 × 2 + 40; 

second, we compute 𝑔𝑐𝑑(120,40) = 3 𝑤𝑖𝑡ℎ𝑎𝑟𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟𝑜𝑓 0; and, therefore, 

𝑔𝑐𝑑(280,120) = 40.  

 

Let 𝑎 and 𝑏 be both non-zero natural numbers. Moreover, let 𝑙𝑐𝑚(𝑎, 𝑏) denote the least 

common multiple of 𝑎 and 𝑏 (i.e., 𝑙𝑐𝑚(𝑎, 𝑏) is the smallest natural number that is evenly 

divisible by both 𝑎 and 𝑏). Then  

 

𝑔𝑐𝑑(𝑎, 𝑏) =
𝑎∙𝑏

𝑙𝑐𝑚(𝑎,𝑏)
⇔ 𝑙𝑐𝑚(𝑎, 𝑏) =

𝑎∙𝑏

𝑔𝑐𝑑(𝑎,𝑏)
. 

 

 

2.2.2. The Set of Integral Numbers 

 

Let us consider the equation 𝑥 + 3 = 2. This is an example of an equation that has no 

solution in ℕ (in this case, 𝑥 = −1). Therefore, we need a new kind of numbers, that is, we 

need to extend the set ℕ of all natural numbers. The extended system will be the set ℤ of all 

integral numbers.324ℕ is a proper subset of ℤ. Moreover, ℤ is countable, meaning that both ℕ 

and ℤ have the same order of infinity (cardinality). In fact, ℤ can be written as the union of 

two countable sets as follows:  

 

ℤ = ℕ ∪ {−1,−2,−3,… },  

 

and the set of all negative integers is countable under the bijection 𝑥 → −(𝑥 + 1).  

Let us consider the equivalence relation (𝑎, 𝑏)~(𝑐, 𝑑) defined by 𝑎 + 𝑑 = 𝑏 + 𝑐 in 

ℕ× ℕ. Given this equivalence relation and the element(𝑎, 𝑏) ∈ ℕ ×ℕ, we can define the 

corresponding equivalence class (𝑎, 𝑏)̅̅ ̅̅ ̅̅ ̅ = {(𝑥, 𝑦) ∈ ℕ × ℕ|(𝑥, 𝑦)~(𝑎, 𝑏)}. Then the 

 
323 See: Campbell, The Structure of Arithmetic; Dummit and Foote, Abstract Algebra; Gallian, Contemporary 

Abstract Algebra; Mendelson, Number Systems and the Foundations of Analysis; Moschovakis, Notes on Set 

Theory. 
324 Ibid. 



Dr. Nicolas Laos, The Dialectic of Rational Dynamicity 167 

equivalence classes (𝑎, 𝑏)̅̅ ̅̅ ̅̅ ̅, (𝑐, 𝑑)̅̅ ̅̅ ̅̅ ̅,… are called “integral numbers,” or simply “integers,” and 

the quotient set ℕ × ℕ/~ is called the set ℤ of all integers.  

The “equality” of two integers is defined as follows: (𝑎, 𝑏)̅̅ ̅̅ ̅̅ ̅ = (𝑐, 𝑑)̅̅ ̅̅ ̅̅ ̅ if (𝑎, 𝑏)~(𝑐, 𝑑) or if 

𝑎 + 𝑑 = 𝑏 + 𝑐. The “sum” of two integers (𝑎, 𝑏)̅̅ ̅̅ ̅̅ ̅ and (𝑐, 𝑑)̅̅ ̅̅ ̅̅ ̅ is defined as follows: (𝑎, 𝑏)̅̅ ̅̅ ̅̅ ̅ +

(𝑐, 𝑑)̅̅ ̅̅ ̅̅ ̅ = (𝑎 + 𝑐, 𝑏 + 𝑑)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , and their “product” is defined by (𝑎, 𝑏)̅̅ ̅̅ ̅̅ ̅ ∙ (𝑐, 𝑑)̅̅ ̅̅ ̅̅ ̅ =

(𝑎 ∙ 𝑐 + 𝑏 ∙ 𝑑, 𝑎 ∙ 𝑑 + 𝑏 ∙ 𝑐)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅, where + and ∙ denote the standard operations of addition and 

multiplication, respectively, in ℕ. The equivalence class (𝑎, 𝑎)̅̅ ̅̅ ̅̅ ̅ defines 0 ∈ ℤ, that is, (𝑎, 𝑎)̅̅ ̅̅ ̅̅ ̅ =

0 ∀𝑎 ∈ ℕ.  

Because (𝑎, 𝑏)̅̅ ̅̅ ̅̅ ̅ + (𝑏, 𝑎)̅̅ ̅̅ ̅̅ ̅ = (𝑎 + 𝑏, 𝑏 + 𝑎)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = (𝑎 + 𝑏, 𝑎 + 𝑏)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = 0, it follows that the 

equivalence class (𝑏, 𝑎)̅̅ ̅̅ ̅̅ ̅ is the “negative” of (𝑎, 𝑏)̅̅ ̅̅ ̅̅ ̅, that is, (𝑏, 𝑎)̅̅ ̅̅ ̅̅ ̅ = −(𝑎, 𝑏)̅̅ ̅̅ ̅̅ ̅. The equivalence 

class (𝑛 + 𝑏, 𝑏)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ where 𝑛 is a fixed natural number, and 𝑏 is an arbitrary natural number 

denotes a “positive integer.” The equivalence class (𝑎, 𝑛 + 𝑎)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ where 𝑛 is a fixed natural 

number, and 𝑎 is an arbitrary natural number denotes a “negative integer.” Hence, 

(𝑏, 𝑛 + 𝑏)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ = −(𝑛 + 𝑏, 𝑏)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅.  

We can easily verify that the set ℤ of all integers has the following main properties of 

operation (𝑥, 𝑦, 𝑧 ∈ ℤ): 

 

i. Addition in ℤ is 

commutative: 𝑥 + 𝑦 = 𝑦 + 𝑥 and 

associative: 𝑥 + (𝑦 + 𝑧) = (𝑥 + 𝑦) + 𝑧. 

ii. Multiplication in ℤ is 

commutative: 𝑥 ∙ 𝑦 = 𝑦 ∙ 𝑥 and 

associative: 𝑥 ∙ (𝑦 ∙ 𝑧) = (𝑥 ∙ 𝑦) ∙ 𝑧. 

iii. Multiplication in ℤ distributes over addition: 

𝑥 ∙ (𝑦 + 𝑧) = 𝑥 ∙ 𝑦 + 𝑥 ∙ 𝑧. 

iv. Cancellation laws 

for addition: 𝑥 + 𝑧 = 𝑦 + 𝑧 ⇒ 𝑥 = 𝑦 and 

for multiplication: if 𝑧 ≠ 0, then 𝑥 ∙ 𝑧 = 𝑦 ∙ 𝑧 ⇒ 𝑥 = 𝑦.  

 

Furthermore, it is worth pointing out that, if the operation ∗ stands for the ordinary 

addition, denoted by +, in ℤ, then ℤ is a group under ∗ (see section 2.1.4). Indeed, the fact 

that ℤ is closed and associative under ∗ follows directly from the basic properties of integers. 

The identity element 𝑒 of this group (under addition) is 0, since 𝑎 = 𝑎 ∗ 𝑒 = 𝑎 + 𝑒. 

Moreover, in this case, the inverse element is 𝑎−1 = −𝑎, since 𝑒 = 0 = 𝑎 ∗ 𝑎−1 = 𝑎 + 𝑎−1, 

and 𝑎 ∗ (−𝑎) = 𝑎 + (−𝑎) = 0. Obviously, ℤ is not a group under the ordinary multiplication.  

 

Order in ℤ: Let (𝑎, 𝑏)̅̅ ̅̅ ̅̅ ̅ and (𝑐, 𝑑)̅̅ ̅̅ ̅̅ ̅ be two arbitrary integers. Then the “order relation” in ℤ 

is denoted by < (read “less than”), and it is defined as follows: 

 

(𝑎, 𝑏)̅̅ ̅̅ ̅̅ ̅ < (𝑐, 𝑑)̅̅ ̅̅ ̅̅ ̅ 𝑖𝑓 𝑎 + 𝑑 < 𝑏 + 𝑐, 

 

where < is the relation of “less than” as defined in ℕ. The “order relation” in ℤ satisfies the 

following properties: 
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i. < is transitive in ℤ. 

ii. For any two integers 𝑎 and 𝑏, one and only one of the following holds: 𝑎 = 𝑏, or 𝑎 <

𝑏, or 𝑏 < 𝑎. 

iii. 𝑎 < 𝑏 ⇒ 𝑎 + 𝑐 < 𝑏 + 𝑐. 

iv. If 0 < 𝑐, then 𝑎 < 𝑏 ⇒ 𝑎 ∙ 𝑐 < 𝑏 ∙ 𝑐; and, 

if 𝑐 < 0, then 𝑎 < 𝑏 ⇒ 𝑏 ∙ 𝑐 < 𝑎 ∙ 𝑐.  

 

In mathematics, by the term “embedding,” we refer to one instance of some mathematical 

structure contained within another instance, such as a group that is a subgroup.325 When an 

object 𝑋 is said to be embedded in another object 𝑌, then the embedding is defined by an 

injective, structure-preserving function 𝑓:𝑋 → 𝑌, and the precise meaning of “structure-

preserving” depends on the kind of mathematical structure of which 𝑋 and 𝑌 are instances 

(e.g., groups). The set ℕ is embedded in the set ℤ due to the embedding 𝑓:ℕ → ℤ defined by 

𝑓(𝑥) = (𝑥 + 1,1)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ . This function is injective, and it preserves the operations + and ∙ as well as 

the order relation ≤ (i.e., it is “structure-preserving”).  

 

 

2.2.3. The Set of Rational Numbers 

 

Let us consider the equation 𝑚𝑥 = 𝑛 where 𝑚, 𝑛 ∈ ℤ. The solution of this equation, 

namely, 𝑥 =
𝑛

𝑚
, may not belong to ℤ (e.g., in case 𝑥 =

2

3
). Therefore, we need a new kind of 

numbers, that is, we need to extend the set ℤ of all integral numbers. The extended system 

will be the set ℚ of all rational numbers.326 It is constructed from ℤ as follows: Let us 

consider the set 𝑊 = ℤ× ℤ − {0} = {(𝑎, 𝑏)|𝑎, 𝑏 ∈ ℤ, 𝑏 ≠ 0}. Then let us define the 

following equivalence relation in 𝑊: (𝑎, 𝑏)~(𝑐, 𝑑) if 𝑎𝑑 = 𝑏𝑐, where (𝑎, 𝑏), (𝑐, 𝑑) ∈ 𝑊. The 

equivalence relation ~ partitions the set 𝑊 into a set of equivalence classes {(𝑎, 𝑏)̅̅ ̅̅ ̅̅ ̅, (𝑐, 𝑑)̅̅ ̅̅ ̅̅ ̅,… } 

where (𝑎, 𝑏)̅̅ ̅̅ ̅̅ ̅ = {(𝑥, 𝑦) ∈ 𝑊|(𝑥, 𝑦)~(𝑎, 𝑏)}. The equivalence classes (𝑎, 𝑏)̅̅ ̅̅ ̅̅ ̅, (𝑐, 𝑑)̅̅ ̅̅ ̅̅ ̅,… are 

called “rational numbers,” and the quotient set 𝑊/~ is called the set ℚ of all rational 

numbers. 

The “equality” of two rational numbers is defined as follows: (𝑎, 𝑏)̅̅ ̅̅ ̅̅ ̅ = (𝑐, 𝑑)̅̅ ̅̅ ̅̅ ̅ if 

(𝑎, 𝑏)~(𝑐, 𝑑) or if 𝑎𝑑 = 𝑏𝑐. The “sum” of two rational numbers (𝑎, 𝑏)̅̅ ̅̅ ̅̅ ̅ and (𝑐, 𝑑)̅̅ ̅̅ ̅̅ ̅ is defined 

as follows: (𝑎, 𝑏)̅̅ ̅̅ ̅̅ ̅ + (𝑐, 𝑑)̅̅ ̅̅ ̅̅ ̅ = (𝑎𝑑 + 𝑏𝑐, 𝑏𝑑)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅, and their “product” is defined as (𝑎, 𝑏)̅̅ ̅̅ ̅̅ ̅ ∙ (𝑐, 𝑑)̅̅ ̅̅ ̅̅ ̅ =

(𝑎 ∙ 𝑐, 𝑏 ∙ 𝑑)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅. Because (𝑎, 𝑏)̅̅ ̅̅ ̅̅ ̅ + (0, 𝑛)̅̅ ̅̅ ̅̅ ̅ = (𝑎𝑛, 𝑏𝑛)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ = (𝑎, 𝑏)̅̅ ̅̅ ̅̅ ̅ and (𝑎, 𝑏)̅̅ ̅̅ ̅̅ ̅ ∙ (𝑛, 𝑛)̅̅ ̅̅ ̅̅ ̅ = (𝑎𝑛, 𝑏𝑛)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ =

(𝑎, 𝑏)̅̅ ̅̅ ̅̅ ̅, it follows that (0, 𝑛)̅̅ ̅̅ ̅̅ ̅ is the additive identity element, and (𝑛, 𝑛)̅̅ ̅̅ ̅̅ ̅ is the multiplicative 

identity element.  

Because (𝑎, 𝑏)̅̅ ̅̅ ̅̅ ̅ + (−𝑎, 𝑏)̅̅ ̅̅ ̅̅ ̅̅ ̅ = (0, 𝑏𝑏)̅̅ ̅̅ ̅̅ ̅̅ ̅ = (0, 𝑛)̅̅ ̅̅ ̅̅ ̅, namely, the additive identity element, and 

(𝑎, 𝑏)̅̅ ̅̅ ̅̅ ̅ ∙ (𝑏, 𝑎)̅̅ ̅̅ ̅̅ ̅ = (𝑎𝑏, 𝑏𝑎)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ = (𝑛, 𝑛)̅̅ ̅̅ ̅̅ ̅, namely, the multiplicative identity element, it follows that 

the additive inverse of (𝑎, 𝑏)̅̅ ̅̅ ̅̅ ̅ is (−𝑎, 𝑏)̅̅ ̅̅ ̅̅ ̅̅ ̅, and the multiplicative inverse of (𝑎, 𝑏)̅̅ ̅̅ ̅̅ ̅ is (𝑏, 𝑎)̅̅ ̅̅ ̅̅ ̅ with 

𝑎 ≠ 0. The additive inverse of (𝑎, 𝑏)̅̅ ̅̅ ̅̅ ̅ is denoted by – (𝑎, 𝑏)̅̅ ̅̅ ̅̅ ̅, and the multiplicative inverse of 

(𝑎, 𝑏)̅̅ ̅̅ ̅̅ ̅ is denoted by (𝑎, 𝑏)̅̅ ̅̅ ̅̅ ̅−1, and multiplicative inverse exists only in ℚ− {0}.  

 
325 Ibid. 
326 Ibid.  
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It can be easily verified that both addition and multiplication in ℚ are commutative and 

associative, and that multiplication in ℚ distributes over addition.  

“Subtraction” in ℚ is defined as  

 

𝑥 − 𝑦 = 𝑥 + (−𝑦) ∀𝑥, 𝑦 ∈ ℚ. 

 

“Division” in ℚ is defined as 

 

𝑥 ÷ 𝑦 = 𝑥 ∙ 𝑦−1 ∀𝑥 ∈ ℚ 𝑎𝑛𝑑 𝑦 ∈ ℚ − {0}. 

 

If the operation ∗ is the ordinary addition of rational numbers, then it can be easily 

verified that ℚ is a group under ∗. Notice that ℤ ⊂ ℚ, and that both ℤ and ℚ are groups under 

the same operation ∗. Moreover, if the operation ∗ is the ordinary multiplication of rational 

numbers, then it can be easily verified that ℚ− {0} is a group under ∗. 

 

Order in ℚ: Let us denote (𝑎, 𝑏)̅̅ ̅̅ ̅̅ ̅ by 
𝑎

𝑏
 and (𝑐, 𝑑)̅̅ ̅̅ ̅̅ ̅ by 

𝑐

𝑑
. Then the order relation in ℚ is 

defined as follows: 

 
𝑎

𝑏
<

𝑐

𝑑
 𝑖𝑓 𝑎𝑑 < 𝑏𝑐 and 

𝑎

𝑏
>

𝑐

𝑑
 𝑖𝑓 𝑎𝑑 > 𝑏𝑐, 

 

where the relations < and > on the right-hand side are the order relations in ℤ. For every 

rational number (𝑎, 𝑏)̅̅ ̅̅ ̅̅ ̅, namely 
𝑎

𝑏
, one and only one of the following holds: 

𝑎

𝑏
= 0, or 

𝑎

𝑏
> 0, or 

𝑎

𝑏
< 0.  

The set ℤ is embedded in ℚ due to the embedding 𝑓: ℤ → ℚ defined by 𝑓(𝑥) = (𝑥, 1)̅̅ ̅̅ ̅̅ ̅. 

This function is injective, and it preserves the operations + and ∙ as well as the order relation 

≤ (i.e., it is “structure-preserving”).  

The set ℚ of all rational numbers is countable. In fact, ℚ can be written as the union of 

two countable sets as follows: 

 

ℚ = ℚ− ∪ℚ+. 

 

ℚ+ is countable, because ℚ+ =∪𝑛=1
∞ {

𝑚

𝑛
|𝑚 ∈ ℕ}, and each{

𝑚

𝑛
|𝑚 ∈ ℕ} is countable by 

𝑚 →
𝑚

𝑛
; by analogy, we can prove that ℚ− is countable, too. 

 

 

2.2.4. The Set of Real Numbers 

 

Let us consider the equation 𝑥2 = 2. This is an example of an equation that has no 

solution in ℚ (in this case, 𝑥 = ±√2, and, as I showed in section 2.1.2, √2 is not a rational 

number). Therefore, we need a new kind of numbers, that is, we need to extend the set ℚ of 
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all rational numbers. This process leads us to define the set ℚ~ of all “irrational numbers,” 

and, thus, to extend ℚ to the set ℝ of all “real numbers,” where ℝ = ℚ∪ℚ~.  

Dedekind has defined a “real number” as a set of rational numbers that satisfy the 

following properties: 

 

i. If 𝑥 belongs to 𝛼, where 𝛼 is a real number, and 𝑦 is a rational number < 𝑥, then 𝑦 

belongs to 𝛼. 

ii. 𝛼 ≠ ∅. 

iii. 𝛼 ≠ ℚ. 

iv. There exists no maximal element in 𝛼, namely:  

𝑥 ∈ 𝛼 ⇒ (∃𝑦 ∈ 𝛼)[𝑦 > 𝑥]. 

 

For instance, {𝑎 ∈ ℚ|𝑎2 < 2 𝑜𝑟 𝑎 < 0} is the real number denoted by √2; since √2 

partitions ℚinto the following two infinite sets: 

 

𝐴 = {𝑎 ∈ ℚ|𝑎2 < 2 𝑜𝑟 𝑎 < 0} and 𝐵 = {𝑏 ∈ ℚ|𝑏2 > 2 𝑎𝑛𝑑 𝑏 > 0},  

 

so that, according to Dedekind’s terminology, the “cut” (𝐴, 𝐵) defines √2. Actually, once we 

know 𝐴, the complement of 𝐴, namely, 𝐵, is determined, since 𝐴 ∪ 𝐵 = ℚ, and, therefore, the 

information contained in the pair (𝐴, 𝐵) is, in a sense, also contained just in the set 𝐴, for 

which reason √2 can be more economically defined as {𝑎 ∈ ℚ|𝑎2 < 2 𝑜𝑟 𝑎 < 0}. 

 

Dedekind Algebra 

By the term “Dedekind algebra,” we mean a system (𝜔, 𝑠), where the elements of 𝜔 are 

called “natural numbers,” and the function 𝑠 is called the “successor function” on 𝜔.327 

Richard Dedekind,328in his Stetigkeit und irrationale Zahlen (1872), made an in-depth 

study of real numbers and continuity. He began with the following three properties of rational 

numbers:  

 

i. If 𝑎 > 𝑏 and 𝑏 > 𝑐, then 𝑎 > 𝑐. 

ii. If 𝑎 and 𝑐 are two distinct (rational) numbers, then there exist infinitely many distinct 

numbers lying between 𝑎 and 𝑐. 

iii. If 𝑎 is any definite (rational) number, then all numbers of the system ℚ fall into two 

classes, 𝐴1 and 𝐴2, each of which contains infinitely many individuals; 𝐴1 contains 

all numbers 𝑎1 that are < 𝑎, while 𝐴2 contains all numbers 𝑎2 that are > 𝑎; the 

number 𝑎 itself may be assigned at pleasure to 𝐴1 or 𝐴2, being, respectively, the 

greatest number of 𝐴1 or the least number of 𝐴2.  

 

Then Dedekind stated three properties of the points on a straight number line 𝐿: 

 

i. If 𝑝 lies to the right of 𝑞 and 𝑞 to the right of 𝑟, then 𝑝 lies to the right of 𝑟; and 𝑞 is 

said to lie between 𝑝 and 𝑟. 

 
327 See: Potter, Sets, p. 68. 
328 Dedekind, Gesammelte mathematische Werke.  
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ii. If 𝑝 and 𝑟 are two distinct points, then there always exist infinitely many points lying 

between 𝑝 and 𝑟.  

iii. If 𝑝 is a definite point in 𝐿, then all points in 𝐿 fall into two classes, 𝑃1 and 𝑃2, each 

of which contains infinitely many individuals; 𝑃1 contains all the points 𝑝1 that lie to 

the left of 𝑝, while 𝑃2 contains all the points 𝑝2 that lie to the right of 𝑝; the point 𝑝 

itself may be assigned at pleasure to 𝑃1 or 𝑃2. In any case, every point of 𝑃1 lies to 

the left of every point of 𝑃2. 

 

Each such division (or partition) of the set ℚ of all rational numbers defines a “cut,” 

called the “Dedekind’s cut.”  

However, after having observed that every rational number effects a “cut” in the set of 

rationals, Dedekind considered the inverse question, namely: if, by a given criterion, the set of 

rationals is divided into two subsets 𝐴 and 𝐵 so that every number in 𝐴 is less than every 

number in 𝐵, is there always a greatest rational in 𝐴 or a smallest rational in 𝐵? Dedekind 

immediately realized that the number line should be “continuous,” or unbroken, in the 

intuitive sense, and, like Eudoxus and Cantor before him, he developed theoretical concepts 

for the purpose of filling the gaps in the ordered set of rationals so that the final geometric 

picture is a continuous, straight number line. However, the answer to the last question is in 

the negative: when 𝐴 has no maximum rational and 𝐵 has no minimum rational, there is, 

indeed, a gap in the rational series, that is, a puncture in the number line, which must be 

filled. In that case, the cut (𝐴, 𝐵) is said to define (or to be) an irrational number.  

Given a Dedekind’s cut (𝐴, 𝐵), let us consider the aforementioned four possibilities: 

 

i. Let 𝑚 be the greatest rational number in the left-hand class 𝐴, and 𝑛 be the smallest 

rational number in the right-hand class 𝐵. Then either 𝑚 = 𝑛 or 𝑚 < 𝑛. But 𝑚 = 𝑛 

is not possible, because, according to the definition of a Dedekind’s cut, every 

number in the left-hand class 𝐴 is less than every number in the right-hand class 𝐵. 

Moreover, we cannot have 𝑚 < 𝑛, because the rational number 
1

2
(𝑚 + 𝑛), which is 

greater than 𝑚, belongs to 𝐵 and is less than 𝑛, and, therefore, it would also belong 

to 𝐴, which contradicts the definition of a Dedekind’s cut (according to which, every 

rational number is in one class or the other). Hence, there cannot be a greatest 

number in 𝐴 and simultaneously a smallest number in 𝐵. 

ii. Assume that the left-hand class 𝐴 contains the number 
1

3
 and all rational numbers less 

than 
1

3
, and that the right-hand class 𝐵 contains all rational numbers greater than 

1

3
. 

Then 
1

3
 is the greatest number of 𝐴, and 𝐵 has no smallest number. Obviously, the 

number 
1

3
 can be replaced by any other rational number. Hence, it is possible for 𝐴 to 

have a largest number and for 𝐵 to have no smallest number; and, in such a case, the 

cut defines a rational number. 

iii. Assume that the left-hand class 𝐴 contains all rational numbers less than 
1

3
, and that 

the right-hand class 𝐵 contains the number 
1

3
 and all rational numbers greater than 

1

3
. 

Then 𝐴 has no greatest number, and 
1

3
 is the smallest number of 𝐵. Obviously, the 
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number 
1

3
 can be replaced by any other rational number. Hence, it is possible for 𝐴 to 

have no largest number and for 𝐵 to have a smallest number; and, in such a case, the 

cut defines a rational number.  

iv. Assume that the left-hand class 𝐴 contains all negative rational numbers and all those 

positive rational numbers whose squares are less than 2, and that 𝐵 contains all 

positive rational numbers whose squares are greater than 2. Then 𝐴 has no greatest 

number, and 𝐵 has no smallest number (e.g., if 𝑚 is an arbitrary number of 𝐴, then a 

larger number always exists in 𝐴, and, if 𝑚 is a rational number whose square is less 

than 2, then the number 𝑚 +
2−𝑚2

10
 is a number greater than 𝑚 and belonging to 𝐴). 

Hence, it is possible for 𝐴 to have no largest number and for 𝐵 to have no smallest 

number; and, in such a case, the cut defines an irrational number. 

 

Therefore, the partition of the rational number system according to Dedekind’s method 

defines two kinds of numbers: rationals and irrationals. The set of all rationals and all 

irrationals is the set ℝ of all real numbers.  

Dedekind observed that there exist infinitely many points in the straight number line 𝐿 

that correspond to no rational number. Thus, the domain of rational numbers is insufficient if 

we want to arithmetically follow up all phenomena on the straight line. Therefore, new 

numbers must be created in such a way that the domain of all numbers will gain the same 

“completeness” or “continuity” as the straight line. In fact, Dedekind observed that there exist 

infinitely many cuts that are not produced by rational numbers. For instance, construct a 

square 𝑂𝐴𝐵𝐶 on the unit segment 𝑂𝐶 (i.e., the length of 𝑂𝐶 is equal to one) and lay off in the 

positive direction a line segment 𝑂𝐷 equal in length to the diagonal 𝑂𝐵, as shown in Figure 

2.2; then it is clear that 𝐷 is a point that does not correspond to any rational number, and, in 

fact, it corresponds to √2. 

 

 

Figure 2.2: Irrational Numbers 

In modern mathematical notation, the set of all real numbers 𝑥 such that 𝑎 ≤ 𝑥 ≤ 𝑏 is 

said to be a “closed interval,” denoted by [𝑎, 𝑏], of the real line ℝ, while the set of all real 

numbers 𝑥 such that 𝑎 < 𝑥 < 𝑏 (which does not include its endpoints) is said to be an “open 

interval,” denoted by (𝑎, 𝑏), of the real line ℝ. The intervals [𝑎, 𝑏) = {𝑥 ∈ ℝ|𝑎 ≤ 𝑥 < 𝑏} and 

(𝑎, 𝑏] = {𝑥 ∈ ℝ|𝑎 < 𝑥 ≤ 𝑏} are neither open nor closed, but they are sometimes called “half-

open” or “half-closed.” Notice that (𝑎, 𝑎) = ∅, and [𝑎, 𝑎] = {𝑎}. Moreover, we define the 

intervals: 

 

(𝑎,∞) = {𝑥 ∈ ℝ|𝑎 < 𝑥}, 

[𝑎,∞) = {𝑥 ∈ ℝ|𝑎 ≤ 𝑥}, 

(−∞, 𝑎) = {𝑥 ∈ ℝ|𝑥 < 𝑎}, 

(−∞, 𝑎] = {𝑥 ∈ ℝ|𝑥 ≤ 𝑎}.  
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In general, by the term “interval,” we mean a set of points with the property that, if 𝑥 and 

𝑦 are distinct points of the set, then every point between 𝑥 and 𝑦 is also a point of the set (if 

the points 𝑥 and 𝑦 are included, then the interval is closed; otherwise, it is open).  

A real number 𝑏 is said to be an “upper bound” of a non-empty subset 𝑆 of ℝ if every 

member of the set 𝑆 is less than or equal to the number 𝑏, symbolically, if 𝑥 ≤ 𝑏 ∀𝑥 ∈ 𝑆. If 

this is the case, then 𝑆 is said to be “bounded from above.” For instance, if 𝑆 = {2,4,6,8,10}, 

then 10 is an upper bound of 𝑆, and every real number greater than 10 is also an upper bound 

of 𝑆. Notice that, if a set is bounded from above, then it has infinitely many upper bounds, 

and that an upper bound of such a set need not be a member of the given set. For instance, the 

number 10 is an upper bound of the open interval (2,10), but 10 ∉ (2,10). On the other hand, 

the set ℕ of all natural numbers has no upper bound.  

The least of all upper bounds of a set is said to be the “least upper bound” (often denoted 

by 𝑙. 𝑢. 𝑏.), or the “supremum” (often denoted by 𝑠𝑢𝑝). Hence, a real number 𝑏 is defined to 

be the 𝑙. 𝑢. 𝑏. of a set 𝑆 if 𝑏 is an upper bound of 𝑆 (i.e., 𝑥 ≤ 𝑏 ∀𝑥 ∈ 𝑆), and if , given any 

other upper bound 𝑐 of 𝑆, 𝑏 < 𝑐; and then we write sup (𝑆) = 𝑏. For instance, if 𝑆 =
{2,4,6,8,10}, then sup (𝑆) = 10. On the other hand, the set ℕ of all natural numbers has no 

supremum. The supremum, when it exists, is unique for a set. 

A real number 𝑎 is said to be a “lower bound” of a non-empty subset 𝑆 of ℝ if every 

member of the set 𝑆 is greater than or equal to the number 𝑎, symbolically, if 𝑥 ≥ 𝑎 ∀𝑥 ∈ 𝑆. 

If this is the case, then 𝑆 is said to be “bounded from below.” For instance, if 𝑆 =
{2,4,6,8,10}, then 2 is a lower bound of 𝑆, and every real number less than 2 is also a lower 

bound of 𝑆. Notice that, if a set is bounded from below, then it has infinitely many lower 

bounds, and that a lower bound of such a set need not be a member of the given set. For 

instance, the number 2 is a lower bound of the open interval (2,10), but 2 ∉ (2,10). On the 

other hand, the set ℤ of all integral numbers has no lower bound.  

The greatest of all lower bounds of a set is said to be the “greatest lower bound” (often 

denoted by 𝑔. 𝑙. 𝑏.), or the “infimum” (often denoted by 𝑖𝑛𝑓). Hence, a real number 𝑎 is 

defined to be the 𝑔. 𝑙. 𝑏. of a set 𝑆 if 𝑎 is a lower bound of 𝑆 (i.e., 𝑥 ≥ 𝑎 ∀𝑥 ∈ 𝑆), and if , 

given any other lower bound 𝑑 of 𝑆, 𝑎 > 𝑑; and then we write inf (𝑆) = 𝑎. For instance, if 

𝑆 = {2,4,6,8,10}, then inf (𝑆) = 2. On the other hand, the set ℤ of all integral numbers has no 

infimum. The infimum, when it exists, is unique for a set. 

A set is said to be “bounded” if it is both bounded from above and bounded from below. 

In other words, a set 𝑆 is bounded if there exist two real numbers 𝑎 and 𝑏 such that 𝑎 ≤ 𝑥 ≤

𝑏 ∀𝑥 ∈ 𝑆. If this is the case, then 𝑥 ∈ [𝑎, 𝑏] ∀𝑥 ∈ 𝑆, meaning that, for any bounded set 𝑆, 

there exist two real numbers 𝑎 and 𝑏 such that 𝑆 ⊆ [𝑎, 𝑏].  

Notice that the empty set, ∅, is a subset of every set, and, ∀𝑎, 𝑏 ∈ ℝ, ∅ ⊆ [𝑎, 𝑏]. 

Therefore, ∅ is a bounded set. Because of the fact that ∅ ⊆ [𝑎, 𝑏] for any real numbers 𝑎 and 

𝑏, every real number is a lower bound of ∅, and every real number is an upper bound of ∅, 

meaning that ∅ does not have a supremum or an infimum.  

Moreover, notice that, for an arbitrary singleton 𝐴 = {𝑥}, sup (𝐴) = inf (𝐴) = 𝑥. Thus, 

every singleton is a bounded set in which 𝑠𝑢𝑝𝑟𝑒𝑚𝑢𝑚 = 𝑖𝑛𝑓𝑖𝑚𝑢𝑚.  

It can be easily verified that the concept of a supremum and the concept of an infimum 

satisfy the following conditions: 

i. If 𝑏 is the supremum of a set 𝐴, then – 𝑏 is the infimum of the set {−𝑥|𝑥 ∈ 𝐴}. 

ii. If 𝐴 ⊂ 𝐵 ⊂ ℝ, then, if 𝐵 is bounded, it follows that 𝐴 is bounded, and 
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iii. inf (𝐵) ≤ inf (𝐴) ≤ sup (𝐴) ≤ sup (𝐵). 

iv. If 𝑆 is a non-empty bounded subset of ℝ, if 𝐴 is the set of all the upper bounds of 𝑆, 

and if 𝐵 is the set of all the lower bounds of 𝑆, then 𝐴 has an infimum that belongs to 

𝐴, and 𝐵 has a supremum that belongs to 𝐵. 

 

If the supremum of a set belongs to the given set, then it is said to be the “maximum 

element” of the given set. If the infimum of a set belongs to the given set, then it is said to be 

the “minimum element” of the given set. For instance, 5 is the maximum element of the set 

(closed interval) [−3,5], and −3 is the minimum element of this set. However, the set (open 

interval) (−3,5) does not have a maximum element or a minimum element.  

The Completeness Axiom of ℝ: Every non-empty subset of ℝ that is bounded from above 

has its supremum in ℝ. Equivalently, every non-empty subset of ℝ that is bounded from 

below has its infimum in ℝ.  

For instance, the set ℤ− of all negative integers is a subset of ℝ that is bounded from 

above, and its supremum is −1; and the set ℤ+ of all positive integers is a subset of ℝ that is 

bounded from below, and its infimum is 1. On the other hand, the set ℚ of all rational 

numbers does not satisfy the Completeness Axiom, because, for instance, the supremum of 

the set {𝑥 ∈ ℚ|0 < 𝑥2 < 2} is √2, which does not belong to ℚ. Therefore, ℚ is not complete.  

 

ℝ as a Field 

As I mentioned in section 2.1.4, a group is an algebraic structure that has a single binary 

operation, usually called “multiplication,” while sometimes it is called “addition,” especially 

if the group is commutative. On the other hand, a “field” is an algebraic structure that has two 

binary operations, usually called “addition” and “multiplication,” and both of them are always 

commutative. Whereas groups model symmetries (in the sense that the symmetries of an 

object can be constructed one after the other and then composed by the group operation), 

fields model number systems (since numbers can be added or multiplied, and, therefore, 

subtracted and divided, too, and various relationships hold true between them).329 Hence, 

every field is a group, but not every group is a field.  

A “field” is a structured set 

 

(𝐹, 0,1,+,∙) 

 

that satisfies the following properties: 

 

(F1) 0,1 ∈ 𝐹, 0 ≠ 1, and + and ∙ are binary functions (operations) on 𝐹. 

(F2) Addition + satisfies the following identities: 

 

i. (𝑥 + 𝑦) + 𝑧 = 𝑥 + (𝑦 + 𝑧), 
ii. 𝑥 + 𝑦 = 𝑦 + 𝑥, 

iii. 𝑥 + 0 = 𝑥, 

 

 
329 See: Campbell, The Structure of Arithmetic; Dummit and Foote, Abstract Algebra; Gallian, Contemporary 

Abstract Algebra; Mendelson, Number Systems and the Foundations of Analysis; Moschovakis, Notes on Set 

Theory. 
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and, for every 𝑥, there exists some 𝑥′ such that 𝑥 + 𝑥′ = 0. 

(F3) Multiplication ∙ satisfies the following identities: 

 

i. (𝑥 ∙ 𝑦) ∙ 𝑧 = 𝑥 ∙ (𝑦 ∙ 𝑧), 
ii. 𝑥 ∙ 𝑦 = 𝑦 ∙ 𝑥, 

iii. 𝑥 ∙ 1 = 𝑥, 

 

and, for every 𝑥, there exists some 𝑥′′ such that 𝑥 ∙ 𝑥′′ = 1. 

(F4) Both addition and multiplication satisfy the identity 

 

𝑥 ∙ (𝑦 + 𝑧) = 𝑥 ∙ 𝑦 + 𝑥 ∙ 𝑧. 

 

Remark: The axioms of a field imply that any field 𝐹 satisfies the following: 

 

i. For every 𝑥, there exists a unique 𝑥′ such that 𝑥 + 𝑥′ = 0; then 𝑥′ = −𝑥. 

Furthermore, for every 𝑥 ≠ 0, there exists a unique 𝑥′′ such that 𝑥 ∙ 𝑥′′ = 1; then 

𝑥′′ = 𝑥−1. 

ii. 𝑥 ∙ 0 = 0. 

iii. 𝑥 ∙ 𝑦 = 0 ⇒ 𝑥 = 0 𝑜𝑟y = 0. 

iv. (−𝑥) ∙ 𝑦 = −(𝑥 ∙ 𝑦). 

v. A field is a set 𝐹 that is closed under the operations of addition and multiplication 

such that: 𝐹 is an Abelian group under addition, and 𝐹 − {0} (i.e., the set 𝐹 without 

the additive identity element 0) is an Abelian group under multiplication.  

 

Familiar examples of fields are the set ℚ of all rational numbers and the set ℝ of all real 

numbers. Notice that the set ℤ of all integers is not a field, because not every element of ℤ has 

a multiplicative inverse (in fact, only 1 and −1 have multiplicative inverses in ℤ). However, 

ℤ under addition is an Abelian group. 

If a subset 𝑆 of the elements of a field 𝐹 satisfies the field axioms with the same 

operations of 𝐹, then 𝑆 is called a “subfield” of 𝐹. 

An “ordered field” is a structured set 

 

(𝐹, 0,1,+,∙, ≤) 

 

such that (𝐹, 0,1,+,∙) is a field, the binary relation ≤ is a linear order on 𝐹, and the following 

conditions are satisfied by every 𝑥, 𝑦, 𝑧 ∈ 𝐹: 

 

𝑥 ≤ 𝑦 ⇒ 𝑥 + 𝑧 ≤ 𝑦 + 𝑧, 

𝑧 > 0 & 𝑥 ≤ 𝑦 ⇒ 𝑧 ∙ 𝑥 ≤ 𝑧 ∙ 𝑦.  

 

Remark: For every element 𝑥 of an ordered field 𝐹, we have 

 

𝑥 ∙ 𝑥 = 𝑥2 ≥ 0, so that 0 < 1 & 𝑥 > 0 ⇒ 𝑥 + 1 > 0; because: 𝑥 = 0 ⇒ 𝑥2 = 0 ≥ 0 and 

𝑥 > 0 ⇒ 𝑥 ∙ 𝑥 ≥ 𝑥 ∙ 0 = 0; if 𝑥 < 0, then 𝑥 − 𝑥 < 0 − 𝑥 ⇒ 0 < −𝑥 ⇒ 𝑥 < 0 ⇒

(−𝑥) ∙ 𝑥 < (−𝑥) ∙ 0 ⇒ −(𝑥2) < 0 ⇒ (−𝑥2) + 𝑥2 < 𝑥2 ⇒ 0 < 𝑥2. 
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A “completely ordered field” is an ordered field wherein every non-empty set that is 

bounded from above has a supremum (least upper bound). 

On the grounds of Dedekind’s definition of real numbers, given any real numbers 𝑥 and 

𝑦, the sum 𝑥 + 𝑦 and the product 𝑥 ∙ 𝑦 (more simply denoted by 𝑥𝑦) are uniquely determined 

real numbers and satisfy the following properties: 

 

i. Commutative law: 

𝑥 + 𝑦 = 𝑦 + 𝑥 and 𝑥𝑦 = 𝑦𝑥. 

ii. Associative law: 

𝑥 + (𝑦 + 𝑧) = (𝑥 + 𝑦) + 𝑧 and 𝑥(𝑦𝑧) = (𝑥𝑦)𝑧. 
iii. Distributive law: 

𝑥(𝑦 + 𝑧) = 𝑥𝑦 + 𝑥𝑧. 

iv. There exist distinct elements 0 and 1 in ℝ such that  

𝑥 + 0 = 𝑥 (0 is the additive identity element) and 

𝑥1 = 𝑥 (1 is the multiplicative identity element). 

v. ∀𝑥 ∈ ℝ, ∃𝑦 ∈ ℝ|𝑥 + 𝑦 = 0, and then 𝑦 is called the additive inverse of 𝑥. 

vi. ∀𝑥 ∈ ℝ − {0}, ∃𝑦 ∈ ℝ|𝑥𝑦 = 1, and then 𝑦 is called the multiplicative inverse of 𝑥. 

 

Therefore, ℝ is a field.  

 

Order in ℝ:ℝ is an ordered field, because, in addition to the aforementioned six 

properties, ℝ satisfies the following properties: 

 

i. ℝ contains a set ℝ+ of positive elements such that, ∀𝑥, 𝑦 ∈ ℝ+, 𝑥 + 𝑦 ∈ ℝ+ and 

𝑥𝑦 ∈ ℝ+. 

ii. For any real number 𝑥, one and only one of the following holds: 𝑥 ∈ ℝ+, or −𝑥 ∈

ℝ+, or 𝑥 = 0 (Law of Trichotomy). 

 

As a result of property (viii), ℝ = ℝ+ ∪ ℝ− ∪ {0}. For any two distinct real numbers 𝑥, 𝑦, 

it holds that either 𝑥 > 𝑦 or 𝑦 > 𝑥, and, therefore, the following properties hold: 

 

i. 𝑥 > 𝑦&𝑦 > 𝑧 ⇒ 𝑥 > 𝑧, where 𝑧 is an arbitrary real number (transitivity). 

ii. 𝑥 > 𝑦 ⇒ 𝑥 + 𝑧 > 𝑦 + 𝑧. 

iii. 𝑥 > 𝑦&𝑧 > 0 ⇒ 𝑥𝑧 > 𝑦𝑧. 

iv. If we consider the possibility of 𝑥 = 𝑦, then we write 𝑥 ≥ 𝑦 or 𝑦 ≤ 𝑥 (namely, we 

use the sign that means “less than or equal to”).  

 

Given that ℝ is an ordered field, and given the Completeness Axiom of ℝ, it follows that 

ℝ is a completely ordered field.  

 

The Dedekind–Cantor Axiom of Continuum: The system of the real numbers is called the 

“arithmetic continuum.” The graphical representation of the arithmetic continuum is a straight 

line that is called the “real line,” or the “geometric continuum,” or the “linear continuum”: 

each point on the real line corresponds to exactly one real number, and, conversely, each real 

number is represented by exactly one point on the real line. Hence, there is an one-to-one 
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correspondence between the system ℝ of the real numbers and the system of points on the 

real line. This statement is known as the Dedekind–Cantor Axiom of Continuum. In other 

words, from the perspective of Dedekind’s theory of cuts, the set ℝ of all real numbers can be 

rigorously founded as an ordered field (𝐹,≤) that satisfies the following axiom of continuity: 

for every Dedekind cut (𝐴, 𝐵) in 𝐹, there exists a 𝜉 such that 𝑎 ≤ 𝜉 ≤ 𝑏 for every 𝑎 ∈ 𝐴 and 

for every 𝑏 ∈ 𝐵. 

 

The Absolute Value of a Real Number 

The “absolute value” (known also as the “modulus” or the “magnitude”) of a real number 

𝑥 is denoted by |𝑥|, and it is defined as follows: 

 

|𝑥| = {
𝑥𝑖𝑓𝑥 ≥ 0
−𝑥 < 0

. 

 

Therefore, the absolute value of any real number is always non-negative. The 

aforementioned definition implies the following330: 

 

i. |𝑥| is the distance between the point 𝑥 and zero (i.e., the “origin”) on the real line. 

Hence, for instance, |𝑥| < 2 means that the distance between 𝑥 and the origin is less 

than 2, so that 𝑥 lies between −2 and +2 on the real line, that is, −2 < 𝑥 < 2.  

ii. |𝑥| = |−𝑥| (“evenness,” namely, “reflection symmetry” of the graph). 

iii. |𝑥| ≥ 𝑥 and |𝑥| ≥ −𝑥. 

iv. |𝑥| = |𝑦| does not necessary imply that 𝑥 = 𝑦. 

 

Notice that, for instance, in order to convert the inequality 8 < 𝑥 < 20 into an absolute-

value form, we add −14 to both sides, and we obtain −6 < 𝑥 < 6 ⇒ |𝑥| < 6, and, in order to 

convert the inequality −3 < 𝑥 < 5 into an absolute-value form, we add −1 to both sides, and 

we obtain −4 < 𝑥 < 4 ⇒ |𝑥| < 4.  

The concept of an absolute value was originally articulated by the French mathematician 

Jean-Robert Argand (1768–1822), who used the French term “module” (meaning “unit of 

measure”), which was borrowed into English as the Latin equivalent “modulus.” The notation 

|𝑥| was introduced by the German mathematician Karl Weierstrass (1815–97).  

 

Properties of the Absolute Value331: The absolute value of any real number has the 

following properties: 

 

i. |𝑥𝑦| = |𝑥||𝑦|, and, generally, 

|𝑥1𝑥2…𝑥𝑛| = |𝑥1||𝑥2| … |𝑥𝑛|. 

ii. |𝑥 + 𝑦| ≤ |𝑥| + |𝑦|, and, generally, 

|𝑥1 + 𝑥2 +⋯+𝑥𝑛| ≤ |𝑥1| + |𝑥2| + ⋯+ |𝑥𝑛| (subadditivity). 

iii. |𝑥 − 𝑦| ≥ |𝑥| − |𝑦|. 

iv. |𝑥| − |𝑦| ≤ ||𝑥| − |𝑦|| ≤ |𝑥 − 𝑦| (triangle inequality).  

v. |𝑥 − 𝑦| < 𝑘 ⇒ 𝑦 − 𝑘 < 𝑥 < 𝑦 + 𝑘. 

 
330 Ibid. 
331 Ibid. 
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Proof:  

i. |𝑥𝑦|2 = (𝑥𝑦)2 = 𝑥2𝑦2 = |𝑥|2|𝑦|2 ⇒ |𝑥𝑦| = |𝑥||𝑦|. 

Similarly, we can prove that |𝑥1𝑥2…𝑥𝑛| = |𝑥1||𝑥2| … |𝑥𝑛|. 

ii. |𝑥 + 𝑦|2 = (𝑥 + 𝑦)2 = 𝑥2 + 𝑦2 + 2𝑥𝑦 = |𝑥|2 + |𝑦|2 + 2𝑥𝑦 

≤ |𝑥|2 + |𝑦|2 + 2|𝑥𝑦| ≤ |𝑥|2 + |𝑦|2 + 2|𝑥||𝑦| ≤ (|𝑥| + |𝑦|)2. 

Thus, |𝑥 + 𝑦| ≤ |𝑥| + |𝑦|, and, similarly, it can be verified that 

|𝑥1 + 𝑥2 +⋯+𝑥𝑛| ≤ |𝑥1| + |𝑥2| + ⋯+ |𝑥𝑛|, and that 

|𝑥 − 𝑦| ≤ |𝑥| + |𝑦|. 

iii. The proof is similar to the proof of (ii). 

iv. If we set 𝑧 = |𝑥| − |𝑦|, then, because, by definition, 𝑧 ≤ |𝑧|, we obtain the required 

inequality: |𝑥| − |𝑦| ≤ ||𝑥| − |𝑦||. Furthermore, in order to prove that ||𝑥| − |𝑦|| ≤

|𝑥 − 𝑦|, we work as follows: 

|𝑥 − 𝑦|2 = (𝑥 − 𝑦)2 = 𝑥2 + 𝑦2 − 2𝑥𝑦 = |𝑥|2 + |𝑦|2 − 2𝑥𝑦 

≥ |𝑥|2 + |𝑦|2 − 2|𝑥𝑦| ≥ |𝑥|2 + |𝑦|2 − 2|𝑥||𝑦| 

≥ (|𝑥| − |𝑦|)2 = ||𝑥| − |𝑦||
2
⇒ |𝑥 − 𝑦| ≥ ||𝑥| − |𝑦||. 

v. The inequality |𝑥 − 𝑦| < 𝑘 implies that (𝑥 − 𝑦) < 𝑘 and −(𝑥 − 𝑦) < 𝑘, so that 𝑥 <

𝑦 + 𝑘 and 𝑦 − 𝑘 < 𝑥. Hence, 𝑦 − 𝑘 < 𝑥 < 𝑦 + 𝑘.■ 

 

Exponentiation and Logarithm 

Let 𝑎 be a real number. Then the product 𝑎 ∙ 𝑎 ∙ 𝑎… (𝑛 times) is denoted by 𝑎𝑛, where 𝑛 

is called the “exponent,” and 𝑎 is called the “base.” Therefore, the following results hold 

∀𝑎, 𝑏 ∈ ℝ332: 

 

i. 𝑎𝑛𝑎𝑚 = 𝑎𝑛+𝑚, 

ii. (𝑎𝑛)𝑚 = 𝑎𝑛𝑚, 

iii. 
𝑎𝑛

𝑎𝑚
= 𝑎𝑛−𝑚, 

iv. 𝑎0 = 1, and 

v. (
𝑎

𝑏
)
𝑛
=

𝑎𝑛

𝑏𝑛
. 

 

Intimately related to the concepts of an exponent and an index is the concept of a 

logarithm, which is the inverse function to exponentiation.333 The “logarithm” of an arbitrary 

real number 𝑎 is the exponent to which another fixed real number, the base 𝑏, must be raised 

to produce the real number 𝑎, symbolically: 

 

𝑙𝑜𝑔𝑏𝑎 = 𝑥 ⇔ 𝑏𝑥 = 𝑎. 

 

For instance, 𝑙𝑜𝑔101,000 = 3, since 103 = 1,000, and 𝑙𝑜𝑔381 = 4, since 34 = 81. 

The method of logarithms was originally developed by the Scottish mathematician, 

physicist, and astronomer John Napier (1550–1617), who published his book Mirifici 

Logarithmorum Canonis Descriptio (Description of the Wonderful Rule of Logarithms) in 

1614. 

 
332 Ibid. 
333 Ibid. 
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In case 𝑏 = 𝑒 = ∑
1

𝑛!
∞
𝑛=0 ≈ 2.718, which is known as Euler’s number (in honor of the 

Swiss mathematician Leonhard Euler), then 𝑙𝑜𝑔𝑒𝑎 is written as 𝑙𝑛𝑎, and it is said to be the 

“natural logarithm” of 𝑎. Euler’s number 𝑒 is irrational, and it was originally derived from the 

study of compound interest: if one places 1 USD into a deposit account at a banking 

institution with 100% interest, and the compounding period is 𝑛, as a fraction of a year, then 

the formula of the compound interest (1 +
𝑟

𝑛
)𝑛, where, in our case, 𝑟 = 1 (annual interest rate 

as a decimal), tends to 𝑒 as 𝑛 tends to infinity. However, the problem of compound interest 

was systematically investigated by the Swiss mathematician Jacob Bernoulli (1655–1705), 

who studied the following question: if an account starts with 1 USD and pays 100% interest 

per year, and if the interest is credited once, at the end of the year, then the value of the 

account at the year-end will be 2 USD, but what will happen if the interest is computed and 

credited more frequently during the year? In fact, Bernoulli noticed that, if there are 𝑛 

compounding intervals, then the interest for each interval will be 
100%

𝑛
, and the value of the 

aforementioned account (which started with 1 USD) at the end of the year will be 1 𝑈𝑆𝐷 ×

(1 +
1

𝑛
)
𝑛
. Furthermore, Bernoulli noticed that this sequence approaches a limit (the “force of 

interest”), specifically, the number 𝑒, as 𝑛 increases, that is, as compounding intervals 

become smaller. For instance, compounding monthly (i.e., 𝑛 = 12) yields approximately 

2.613 USD, while compounding daily (𝑛 = 365) yields approximately 2.7146 USD. The 

limit as 𝑛 tends to infinity is the number 𝑒 = ∑
1

𝑛!
∞
𝑛=0 ≈ 2.718, meaning that, with continuous 

compounding, the value of the aforementioned account will reach approximately 2.718 USD. 

Leonhard Euler proved that the number 𝑒 is irrational by showing that its simple continued 

fraction expansion is infinite (by a “continued fraction,” we mean an expression obtained 

through an iterative process of representing a number as the sum of its integral part and the 

reciprocal of another number, then writing this other number as the sum of its integral part 

and another reciprocal, etc.).  

The following properties of the logarithm can be easily verified334: 

 

i. 𝑙𝑜𝑔𝑏(𝑥𝑦) = 𝑙𝑜𝑔𝑏𝑥 + 𝑙𝑜𝑔𝑏𝑦, 

ii. 𝑙𝑜𝑔𝑏 (
𝑥

𝑦
) = 𝑙𝑜𝑔𝑏𝑥 − 𝑙𝑜𝑔𝑏𝑦, 

iii. 𝑙𝑜𝑔𝑏𝑥
𝑘 = 𝑘𝑙𝑜𝑔𝑏𝑥, 

iv. 𝑙𝑜𝑔𝑏1 = 0, 

v. 𝑙𝑜𝑔𝑏𝑏
𝑥 = 𝑥 = 𝑏𝑙𝑜𝑔𝑏𝑥, 

vi. 𝑙𝑜𝑔𝑏𝑥 =
𝑙𝑜𝑔𝑎𝑥

𝑙𝑜𝑔𝑎𝑏
 (change of base rule). 

vii. If 𝑥, 𝑦, and 𝑏 are positive real numbers with 𝑏 ≠ 1, then  

𝑥 = y ⇒ 𝑙𝑜𝑔𝑏𝑥 = 𝑙𝑜𝑔𝑏𝑦, and, conversely, 

𝑙𝑜𝑔𝑏𝑥 = 𝑙𝑜𝑔𝑏𝑦 ⇒ 𝑥 = 𝑦. Hence, we can solve exponential equations (i.e., equations 

in which the unknown is in the exponent) by taking the logarithm of both sides of the 

equation. 

 

 
334 Ibid. 



Dr. Nicolas Laos, The Dialectic of Rational Dynamicity 180 

Properties of the System of the Real Numbers 

 

Theorem335: The set ℝ of all real numbers is uncountable.  

 

Proof: We can prove this theorem by reductio ad absurdum as follows: For convenience, 

we shall show that the set 𝑆 of all real numbers between 0 and 1 is uncountable. We regard 

the elements of 𝑆 as infinite decimals, and, for definiteness, we agree not to use the version 

ending in 9s (e.g., 0.23999… and 0.24000… are regarded as the same number). Assume that 

𝑆 is a countable set, namely, that its elements can be listed as 𝑟1, 𝑟2, 𝑟3,… We shall show that 

such an alleged enumeration of 𝑆 is incomplete, namely, that there exists a missing number 𝑥 

that differs from 𝑟1 in the first position after the decimal, differs from 𝑟2 in the second 

position, etc. In particular, let the 𝑛th digit of 𝑥 be 2 if the 𝑛th digit of 𝑟𝑛 is 1 and let the 𝑛th 

digit of 𝑥 be 1 otherwise. For instance, if 

 

𝑟0 = 0.1023…, 

𝑟1 = 0.1234…, 

𝑟2 = 0.3358…, 

𝑟3 = 0.9919…, 

⋮   

 

then 𝑥 = 0.2111… Obviously, 𝑥 is missing from the list, since it differs from each 𝑟𝑖 in at 

least one of its digits, which is a contradiction.■  

 

Corollary336: The cardinality of the power set of the set ℕ of all natural numbers is equal 

to the cardinality of the set ℝ of all real numbers and to 2ℕ, where 2ℕ denotes the set of all 

functions ℕ → {0,1}; symbolically: ℘(ℕ) =𝑐 2
ℕ =𝑐 ℝ. Notice that, usually, the cardinal 

number of the power set ℘(ℕ) of the set of all natural numbers is denoted by 

 

𝑐 = |℘(ℕ)| =𝑐 2
ℵ0, 

 

where 𝑐 stand for the word “continuum.” 

 

Proof: First, we shall prove that ℘(ℕ) =𝑐 2
ℕ: This follows directly from the fact that 

2𝑋 = ℘(𝑋) for any set X; this equality can be proved as follows: For each 𝑌 ⊆ 𝑋, define the 

function 𝛿: 𝛸 → {0,1} as follows:  

 

𝛿𝑌(𝑎) = {
1 𝑖𝑓𝑎 ∈ 𝑌
0 𝑖𝑓 𝑎 ∉ 𝑌

 , 

 

which is called the “characteristic function” of 𝑌. If 𝑓: ℘(𝑋) → 2𝑋 is defined by 𝑓: 𝑌 → 𝛿𝑌, 

then it is easily verified that 𝑓 is bijective (one-to-one and onto), and, therefore, 2𝑋 = ℘(𝑋). 

 
335 Ibid.  
336 Ibid.  
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Second, we shall prove that 2ℕ =𝑐 ℝ: First, notice that the unit interval [0,1] can be 

divided into 2 parts, then into 4 parts, 8 parts, etc., and these parts can be designated with 

binary digits (e.g., the division into 8 parts includes .000, .001, .010, .011, .100, .101, .111, 

and 1.00). By continuing this process indefinitely, that is, by iterating the process up to the 

limit ordinal 𝜔 (i.e., 𝜔 is the smallest ordinal number greater than every natural number), one 

will obtain a representation of all the real numbers contained in [0,1], and one will have 

produced 2𝜔 (and, thus, 2ℕ) points (since one doubles the number of points designated with 

each iteration of the process described); so that the reals between 0 and 1 have the cardinality 

of 2𝜔 (and, thus, of 2ℕ). Equivalently, yet more formally, we can argue as follows: Notice 

that each member of 𝐼 = {𝑥 ∈ ℝ|0 ≤ 𝑥 ≤ 1} has a dyadic expression ∑ 2−𝑛𝑎𝑛
∞
𝑛=1  with 𝑎𝑛 =

0 𝑜𝑟 1; the expansion is not unique, but the convention that, if any number has two 

expansions, we always choose the expansion with infinitely many 1𝑠 safeguards uniqueness. 

Let 𝐴 ⊆ 2ℕ consist of all characteristic functions taking the value 1 infinitely often. If 

𝑔: 2ℕ → ℝ is defined by 

 

𝑔(𝛿) = {
∑

𝛿(𝑛)

2𝑛
∞
𝑛=1  𝑖𝑓 𝛿 ∈ 𝐴

2 + ∑
𝛿(𝑛)

2𝑛
∞
𝑛=1  𝑖𝑓 𝛿 ∉ 𝐴

, 

 

then 𝑔 is one-to-one. But (0, 1] ≤𝑐 𝑔(2
ℕ) ≤𝑐 ℝ, and (0, 1] =𝑐 ℝ. Hence, 2ℕ =𝑐 ℝ.■ 

 

Remarks: 

 

i. 𝑐 ∙ 𝑐 =𝑐 2
ℵ0 ∙ 2ℵ0 =𝑐 2

ℵ0+ℵ0 =𝑐 2
ℵ0 =𝑐 𝑐.  

ii. 𝑐 =𝑐 2
ℵ0 ≤𝑐 ℵ0

ℵ0 ≤𝑐 𝑐
ℵ0 =𝑐 (2

ℵ0)ℵ0 =𝑐 2
ℵ0∙ℵ0 =𝑐 2

ℵ0 =𝑐 𝑐, so that, by Bernstein’s 

Equinumerosity Theorem, 𝑐 =𝑐 ℵ0
ℵ0 =𝑐 𝑐

ℵ0. 

iii. The cardinal number of the family of all functions from ℝ to ℝ is 

𝑐𝑐 =𝑐 (2
ℵ0)𝑐 =𝑐 2

ℵ0∙𝑐 =𝑐 2
𝑐. 

 

Because the cardinal number of ℝ = ℚ∪ℚ~ is uncountable while the cardinal number 

of ℚ is countably infinite, it follows that the set ℚ~of all irrational numbers is uncountable. 

 

Theorem337: The “Archimedean property” of ℝ asserts that, for every 𝑥 ∈ ℝ, there exists 

an 𝑛 ∈ ℕ such that 𝑥 < 𝑛. 

 

Proof: Let 𝑥 ∈ ℝ, and let 𝐴 denote the set of all natural numbers that are less than or 

equal to 𝑥. If 𝐴 is empty, then the Archimedean property is trivially satisfied. On the other 

hand, if 𝐴 is not empty, then 𝐴 is bounded from above by 𝑥, and, therefore, because ℝis a 

completely ordered field, there exists a least upper bound, say 𝑎, for 𝐴. Notice that 𝑎 − 1 <

𝑎, so that 𝑎 − 1 is not an upper bound for 𝐴. Hence, there exists an 𝑚 ∈ 𝐴 such that 𝑎 − 1 <

𝑚. Then 𝑎 < 𝑚 + 1, and, therefore, 𝑚+ 1 is an element of ℕ that is not in 𝐴, that is, 𝑥 <

𝑛 = 𝑚 + 1, which proves the theorem.■ 

 

 
337 Ibid.  
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Corollaries338: (i) The set ℚ of all rational numbers is “dense” in ℝ, which means that, 

between any two real numbers, there is a rational number. (ii) Moreover, the set ℚ~ of all 

irrational numbers is “dense” in ℝ, that is, between any two real numbers, there is an 

irrational number.  

 

Proof: (i) Let 𝑥, 𝑦 ∈ ℝ with 𝑥 < 𝑦. If 𝑥 ≥ 0, then 𝑦 − 𝑥 > 0 and (𝑦 − 𝑥)−1 ∈ ℝ, so that, 

by the Archimedean property of ℝ, it follows that there exists a number 𝑚 ∈ ℕ such that 

(𝑦 − 𝑥)−1 < 𝑚 ⇔ 𝑦 − 𝑥 > 1/𝑚 > 0. Moreover, the Archimedean property of ℝ implies 

that the set of positive integers 𝑘 such that 𝑦 ≤ 𝑘/𝑚 is not empty. Then, because every non-

empty set of real numbers that is bounded from below has a greatest lower bound, the set has 

a smallest element, say 𝑛, so that 

 
𝑛−1

𝑚
< 𝑦 ≤

𝑛

𝑚
. 

 

Furthermore,  

 

𝑥 = 𝑦 − (𝑦 − 𝑥) <
𝑛

𝑚
−

1

𝑚
=

𝑛−1

𝑚
, 

 

and, obviously, 𝑥 < 𝑟 < 𝑦 for 𝑟 = (𝑛 − 1)/𝑚 ∈ ℚ. 

If 𝑥 < 0, then the Archimedean property of ℝ implies that there exists a positive integer 

𝑘 > −𝑥. If this is the case, then 𝑘 + 𝑥 > 0, and there exists a rational number 𝑟 such that 𝑘 +

𝑥 < 𝑟 < 𝑘 + 𝑦. Hence, 𝑟 − 𝑘 ∈ ℚ lies between 𝑥 and 𝑦.This completes the proof of 

Corollary (i). 

(ii) Due to Corollary (i), there exists a rational number 𝑟 between 𝑥/√2 and 𝑦/√2. Then 

the irrational number 𝑟√2 lies between 𝑥 and 𝑦, which proves Corollary (ii).■ 

 

 

2.2.5. Matrices of Real Numbers and Vectors 

 

Let 𝐹 be the field of all real numbers ℝ (𝐹 may be a field different from ℝ). Suppose that 

𝑎11, 𝑎12, 𝑎13, … , 𝑎𝑚𝑛 is a collection of 𝑚𝑛 elements in 𝐹. The rectangular array of these 

elements 

 

(

𝑎11 ⋯ 𝑎1𝑛
⋮ ⋱ ⋮
𝑎𝑚1 ⋯ 𝑎𝑚𝑛

) 

 

consisting of 𝑚 rows and 𝑛 columns is called an “ 𝑚× 𝑛 matrix,” usually denoted by 𝐴 =

(𝑎𝑖𝑗). In other words, a “matrix” is a function on the set of pairs of integers (𝑖, 𝑗), where 1 ≤

𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛, with values in 𝐹 in which 𝑎𝑖𝑗 designates the value of 𝐴 at the pair (𝑖, 𝑗).339 

Hence, the aforementioned array exhibits the range of the function 𝐴. The element 𝑎𝑖𝑗 is 

 
338 Ibid. 
339 See: Eves, Elementary Matrix Theory; Friedberg, Insel, and Spence, Linear Algebra; Householder, The Theory 

of Matrices in Numerical Analysis; Turnbull, The Theory of Determinants, Matrices, and Invariants. 



Dr. Nicolas Laos, The Dialectic of Rational Dynamicity 183 

called the (𝑖, 𝑗) “entry” of 𝐴. The 𝑖th row of 𝐴 is the sequence 𝑎𝑖1, 𝑎𝑖2, 𝑎𝑖3, … , 𝑎𝑖𝑛, and the 𝑗th 

column of 𝐴 is the sequence 𝑎1𝑗 , 𝑎2𝑗 , 𝑎3𝑗 , … , 𝑎𝑚𝑗. The “main diagonal” of the matrix 𝐴 is the 

collection of those entries that lie in the diagonal that runs from top left to bottom right. Since 

the 𝑎𝑖𝑗 are in the field 𝐹, we say that 𝐴 is an 𝑚× 𝑛 matrix over the field 𝐹. The totality of 

such matrices can be denoted by 𝑀𝑚,𝑛(𝐹). If 𝑚 = 𝑛, then the corresponding matrix 𝐴 is said 

to be an “𝑛-square” matrix, and the set of all 𝑛-square matrices over 𝐹 is denoted by 𝑀𝑛(𝐹). 

The term “matrix” was introduced by the nineteenth-century English mathematician 

James Sylvester, but it was his friend the mathematician Arthur Cayley who developed the 

algebra of matrices in the 1850s. The standard operations for matrices over 𝐹 are defined as 

follows340: 

 

i. Multiplication of 𝐴 = (𝑎𝑖𝑗) ∈ 𝑀𝑚,𝑛(𝐹) by an element (“scalar”) 𝑘 ∈ 𝐹: the product 

is defined as the matrix in 𝑀𝑚,𝑛(𝐹) whose (𝑖, 𝑗) entry is 𝑘𝑎𝑖𝑗 and is denoted by 𝑘𝐴. 

ii. The sum of two matrices 𝐴 = (𝑎𝑖𝑗) and 𝐵 = (𝑏𝑖𝑗) in 𝑀𝑚,𝑛(𝐹) is the matrix 𝐶 =

(𝑐𝑖𝑗) ∈ 𝑀𝑚,𝑛(𝐹) whose (𝑖, 𝑗) entry is 𝑐𝑖𝑗 = 𝑎𝑖𝑗 + 𝑏𝑖𝑗. 

Obviously, the matrices 𝐴 and 𝐵 must be the same size in order that the sum be 

defined. 

iii. The product of two matrices 𝐴 = (𝑎𝑖𝑗) ∈ 𝑀𝑚,𝑘(𝐹) and 𝐵 = (𝑏𝑖𝑗) ∈

𝑀𝑘,𝑛(𝐹) 𝑖𝑠 𝑡ℎ𝑒 𝑚𝑎𝑡𝑟𝑖𝑥 𝐶 = (𝑐𝑖𝑗) ∈ 𝑀𝑚,𝑛(𝐹) 𝑤ℎ𝑜𝑠𝑒 (𝑖, 𝑗) 𝑒𝑛𝑡𝑟𝑦 𝑖𝑠  

𝑐𝑖𝑗 = ∑ 𝑎𝑖𝑝
𝑘
𝑝=1 𝑏𝑝𝑗, where 1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛. 

Obviously, the number of columns of 𝐴 must be the same as the number of rows of 𝐵 

in order that the product 𝐶 = 𝐴𝐵 be defined. If 𝐴 ∈ 𝑀𝑛(𝐹), namely, if 𝐴 is an 𝑛-

square matrix, then 𝐴𝑟 denotes the rth power of 𝐴, and 𝑟 is an arbitrary positive 

integer.  

 

The rules connecting the aforementioned operations (given that the corresponding 

matrices are of appropriate sizes for the indicated operations to be defined) are the 

following341: 

 

i. Commutativity: 𝐴 + 𝐵 = 𝐵 + 𝐴. However, it may hold that 𝐴𝐵 ≠ 𝐵𝐴. If 𝐴𝐵 = 𝐵𝐴, 

then the matrices 𝐴 and 𝐵 are said to “commute.” 

ii. Associativity: 𝐴 + (𝐵 + 𝐶) = (𝐴 + 𝐵) + 𝐶, and 𝐴(𝐵𝐶) = (𝐴𝐵)𝐶. 

iii. Distributivity: 𝐴(𝐵 + 𝐶) = 𝐴𝐵 + 𝐴𝐶, and (𝐵 + 𝐶)𝐴 = 𝐵𝐴 + 𝐶𝐴. 

 

An 𝑛-square matrix 𝐴 is said to be “invertible” or “non-singular” if there exists an 𝑛-

square matrix 𝐵 with the following property: 

 

𝐴𝐵 = 𝐵𝐴 = 𝐼𝑛, 

where 𝐼𝑛 is the 𝑛-square identity matrix, namely, the 𝑛 × 𝑛 matrix with ones along the main 

diagonal and zeros elsewhere. If this is the case, then the matrix 𝐵 is called the inverse of 𝐴, 

and the notation 𝐴−1 is used to designate 𝐵. If no such 𝐵 exists, then 𝐴 is said to be 

“singular.” 

 
340 Ibid. 
341 Ibid. 
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The “Kronecker delta” (named after the German mathematician Leopold Kronecker) is a 

function of two variables, usually non-negative integers, defined as follows: 

 

𝛿𝑖𝑗 = {
0 𝑖𝑓𝑖 ≠ 𝑗
1 𝑖𝑓𝑖 = 𝑗

 , 

 

and, therefore, the 𝑛-square identity matrix 𝐼𝑛 has entries equal to the Kronecker delta: 

 

𝐼𝑛 = (𝛿𝑖𝑗), where 𝑖 and 𝑗 take the values 1,2,3,… , 𝑛.  

 

The “transpose” of a matrix 𝐴 ∈ 𝑀𝑚,𝑛(𝐹) is denoted by 𝐴𝑇, and it is the matrix obtained 

by writing the rows of 𝐴, in order, as columns; namely, if 𝐴 = (𝑎𝑖𝑗) is an 𝑚× 𝑛 matrix, then 

𝐴𝑇 = (𝑎𝑖𝑗
𝑇 ) is the 𝑛 ×𝑚 matrix where 𝑎𝑖𝑗

𝑇 = 𝑎𝑗𝑖, for all 𝑖 and 𝑗.  

A matrix 𝐴 ∈ 𝑀𝑛(𝐹) is called “symmetric” if 𝐴𝑇 = 𝐴, and it is called “antisymmetric” 

(or “skew-symmetric”) if 𝐴𝑇 = −𝐴 ⇔ 𝑎𝑗𝑖 = −𝑎𝑖𝑗.  

A matrix 𝐴 ∈ 𝑀𝑛(𝐹) is called “orthogonal” if 𝐴𝑇 = 𝐴−1, that is, if 𝐴𝐴𝑇 = 𝐴𝑇𝐴 = 𝐼. 

A matrix 𝐷 ∈ 𝑀𝑛(𝐹) is called “diagonal,” denoted by 𝐷 = 𝑑𝑖𝑎𝑔(𝑑11, 𝑑22, … , 𝑑𝑛𝑛), if its 

non-diagonal elements (i.e., the entries outside the main diagonal) are all zero. In particular, 

𝐴 = (𝑎𝑖𝑗) is said to be “upper triangular” (resp. “lower triangular”) if its elements below 

(resp. above) the main diagonal are all zero, namely, if 𝑎𝑖𝑗 = 0 when 𝑖 < 𝑗 (resp. when 𝑖 > 𝑗).  

Let 𝑆(𝑛) denote the totality of one-to-one functions, or “permutations,” of the set 

{1,2,… , 𝑛} onto itself. In other words, 𝑆(𝑛) denotes the “symmetric group” of degree 𝑛 on the 

natural numbers 1,2,… , 𝑛. Thus, the set 𝑆(𝑛) has 𝑛! elements in it. A “cycle” in 𝑆(𝑛) is a 

permutation 𝜎 that has the following property: there exists a subset of {1,2,… , 𝑛}, say 

{𝑖1, 𝑖2, … , 𝑖𝑘}, such that 𝜎(𝑖1) = 𝑖2, 𝜎(𝑖2) = 𝑖3, … , 𝜎(𝑖𝑘−1) = 𝑖𝑘 , 𝜎(𝑖𝑘) = 𝑖1, and 𝜎(𝑗) = 𝑗 for 

𝑗 ≠ 𝑖𝑝, 𝑝 = 1,2,… , 𝑘. The integer 𝑘 is called the “length” of the cycle, and the cycles of 

length 2 are called “transpositions.” In the case of transpositions, any 𝜎 ∈ 𝑆(𝑛) is the product 

of transpositions. Any permutation 𝜎 is a product of cycles acting on disjoint subsets of 

{1,2,… , 𝑛}, namely, on disjoint cycles; and this factorization is unique to within order. If the 

lengths of these cycles are 𝜆1, 𝜆2, … , 𝜆𝑚, then 𝜎 is said to have the “cycle structure” 

[𝜆1, 𝜆2, … , 𝜆𝑚], where some of the 𝜆𝑖 may be 1. The factorization into a product of 

transpositions is not unique, but any two such factorizations of the same permutation 𝜎 must 

both have an even or both have an odd number of transpositions, and, hence, 𝜎 is called 

“even” or “odd,” respectively. The “sign” of 𝜎 is defined by 

 

𝑠𝑔𝑛(𝜎) = {
1 𝑖𝑓𝜎𝑖𝑠𝑒𝑣𝑒𝑛
−1 𝑖𝑓𝜎𝑖𝑠𝑜𝑑𝑑

 . 

 

If 𝐴 ∈ 𝑀𝑛(𝐹) and 𝜎 ∈ 𝑆(𝑛), then the sequence of elements 𝑎1𝜎(1), … , 𝑎𝑛𝜎(𝑛) is said to be 

the “diagonal” of 𝐴 corresponding to 𝜎. If 𝜎 is the “identity permutation,” namely,𝜎(𝑗) = 𝑗, 

for 𝑗 = 1,2,… , 𝑛, then the diagonal corresponding to 𝜎, namely, 𝑎11, … 𝑎𝑛𝑛, is the “main 

diagonal” of 𝐴. A matrix 𝐴 ∈ 𝑀𝑛(𝐹) such that 𝑎𝑖𝜎(𝑖) = 1 (𝑖 = 1,2,… , 𝑛) and 𝑎𝑖𝑗 = 0 

otherwise, is called a “permutation matrix” (namely, a “permutation matrix” is a matrix 

obtained by permuting the rows of an 𝑛-square identity matrixaccording to some permutation 
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of the numbers 1 to 𝑛, so that every row and every column contain precisely a single 1 with 

0s everywhere else, and there are 𝑛! permutation matrices of size 𝑛). 

The determinant of an 𝑛-square matrix 𝐴 = (𝑎𝑖𝑗) ∈ 𝑀𝑛(𝐹) is denoted by det (𝐴), and it 

is defined as follows: 

 

det (A) = ∑ 𝑠𝑖𝑔𝑛𝜎∏ 𝑎𝜎(𝑖)𝑖
𝑛
𝑖=1𝜎∈𝑆(𝑛) . 

 

In other words, the determinant is the sum of the products of the elements in all 𝑛! 

diagonals each weighted with ±1 according as the diagonal corresponds to an even or an odd 

permutation 𝜎 ∈ 𝑆(𝑛).  

Properties of determinants342: 

 

i. det (𝐴−1) = (det(𝐴))−1. 

ii. det (𝐴𝑇) = det (𝐴). 

iii. det (𝑘𝐴) = 𝑘𝑛det (𝐴), for any scalar 𝑛.  

iv. det (𝐴𝛣) = det(𝐴)det (𝐵), for any two 𝑛-square matrices 𝐴 and 𝐵. 

 

Let us consider a system of 2 linear equations with 2 unknowns:  

 

{
𝑎11𝑥1 + 𝑎12𝑥2 = 𝑐1
𝑎21𝑥1 + 𝑎22𝑥2 = 𝑐2

 , 

 

which gives rise to the following three matrices: 

 

𝐴 = (
𝑎11 𝑎12
𝑎21 𝑎22

), 𝐵 = (
𝑐1
𝑐2
), and 𝑋 = (

𝑥1
𝑥2
). 

 

Thus, the original system of linear equations can be reformulated as follows: 

 

𝐴 ∙ 𝑋 = 𝐵, 

 

where 𝐴 is the matrix of the system’s coefficients, 𝑋 is the matrix of the system’s unknowns, 

and 𝐵 is the matrix of the system’s constant terms. The system has a unique solution if and 

only if the determinant det (𝐴) = 𝑎11𝑎22 − 𝑎12𝑎21 ≠ 0, and that solution is: 

 

𝑥1 =
𝐵𝑥1

det (𝐴)
=

|
𝑐1 𝑎12
𝑐2 𝑎22

|

|
𝑎11 𝑎12
𝑎21 𝑎22

|
=

𝑐1𝑎22−𝑎12𝑐2

𝑎11𝑎22−𝑎12𝑎21
,  

 

and 

𝑥2 =
𝐵𝑥2

det (𝐴)
=

|
𝑎11 𝑐1
𝑎21 𝑐2

|

|
𝑎11 𝑎12
𝑎21 𝑎22

|
=

𝑎11𝑐2−𝑐1𝑎21

𝑎11𝑎22−𝑎12𝑎21
, 

 

 
342 Ibid. 
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where the numerators 𝐵𝑥1 and 𝐵𝑥2 are obtained by substituting the column of constant terms 

in place of the column of coefficients of the corresponding unknown in the matrix of 

coefficients.  

In case det (𝐴) = 0, then the system has either no solution or an infinite number of 

solutions.  

Consider the 3-square matrix 

 

𝐴 = (

𝑎1 𝑏1 𝑐1
𝑎2 𝑏2 𝑐2
𝑎3 𝑏3 𝑐3

). 

 

The determinant of 𝐴 is 

 

det (𝐴) = |

𝑎1 𝑏1 𝑐1
𝑎2 𝑏2 𝑐2
𝑎3 𝑏3 𝑐3

| = 𝑎1𝑏2𝑐3 + 𝑏1𝑐2𝑎3 + 𝑐1𝑎2𝑏3 − 𝑎1𝑐2𝑏3 − 𝑏1𝑎2𝑐3 − 𝑐1𝑏2𝑎3. 

 

Moreover, it can be easily shown that 

 

|

𝑎1 𝑏1 𝑐1
𝑎2 𝑏2 𝑐2
𝑎3 𝑏3 𝑐3

| = 𝑎1 |
𝑏2 𝑐2
𝑏3 𝑐3

| − 𝑏1 |
𝑎2 𝑐2
𝑎3 𝑐3

| + 𝑐1 |
𝑎2 𝑏2
𝑎3 𝑏3

|. 

 

Let us consider a system of 3 linear equations with 3 unknowns: 

 

{

𝑎1𝑥 + 𝑏1𝑦 + 𝑐1𝑧 = 𝑑1
𝑎2𝑥 + 𝑏2𝑦 + 𝑐2𝑧 = 𝑑2
𝑎3𝑥 + 𝑏3𝑦 + 𝑐3𝑧 = 𝑑3

. 

 

The aforementioned system has a unique solution if and only if the determinant of the 

matrix of coefficients is not zero: 

 

det (𝐴) = |

𝑎1 𝑏1 𝑐1
𝑎2 𝑏2 𝑐2
𝑎3 𝑏3 𝑐3

| ≠ 0. 

 

In this case, the unique solution of the given system can be expressed as quotients of 

determinants as follows: 

 

𝑥 =
𝐵𝑥

det (𝐴)
 , 

𝑦 =
𝐵𝑦

det (𝐴)
 , 

𝑧 =
𝐵𝑧

det (𝐴)
 , 
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where the numerators 𝐵𝑥, 𝐵𝑦, and 𝐵𝑧 are obtained by substituting the column of constant 

terms for the column of coefficients of the corresponding unknown in the matrix of 

coefficients, so that: 

 

𝐵𝑥 = |

𝑑1 𝑏1 𝑐1
𝑑2 𝑏2 𝑐2
𝑑3 𝑏3 𝑐3

|, 𝐵𝑦 = |

𝑎1 𝑑1 𝑐1
𝑎2 𝑑2 𝑐2
𝑎3 𝑑3 𝑐3

|, and 𝐵𝑧 = |

𝑎1 𝑏1 𝑑1
𝑎2 𝑏2 𝑑2
𝑎3 𝑏3 𝑑

|. 

 

In case det (𝐴) = 0, then the system has either no solution or an infinite number of 

solutions.  

 

General Order Determinants: The expansion of a third order determinant in terms of 

second order determinants, which was originally developed by the French mathematician, 

engineer, and philosopher Pierre-Simon de Laplace (1749–1827), can be generalized. In 

particular, any determinant can be similarly expressed as a linear combination of determinants 

of lower order using any row or any column as coefficients, with the coefficient 𝑎𝑖𝑗 

multiplied by (−1)𝑖+𝑗.  

The elementary row operation (𝑘𝑅𝑖 + 𝑅𝑗) → (𝑅𝑗), which adds 𝑘 times row 𝑖 to row 𝑗, 

does not change the value of the determinant. A similar result holds for the elementary 

column operation (𝑘𝐶𝑖 + 𝐶𝑗) → (𝐶𝑗). 

If the 𝑛-square matrix 𝐴 is triangular, then its determinant is equal to the product of its 

diagonal elements.  

Let 𝐴 = (𝑎𝑖𝑗) be a non-zero 𝑛-square matrix with 𝑛 > 1. The following algorithm 

reduces the determinant of 𝐴 to a determinant of order 𝑛 − 1: 

 

Step 1: We choose an element 𝑎𝑖𝑗 = 1 or, if lacking, 𝑎𝑖𝑗 ≠ 0. 

Step 2: We use 𝑎𝑖𝑗 as a pivot, and we apply elementary row (resp. column) operations in 

order to put zeros in all the other positions in column 𝑗 (resp. row 𝑖). 

Step 3: We expand the determinant using the column (resp. row) containing 𝑎𝑖𝑗. 

 

In particular, “Chiò’s Condensation Method” is a method for evaluating an 𝑛 × 𝑛 

determinant in terms of (𝑛 − 1) × (𝑛 − 1) determinants as follows343: 

 

|

𝑎11 𝑎12 … 𝑎1𝑛
𝑎21 𝑎22 … 𝑎2𝑛
⋮
𝑎𝑛1

⋮ ⋱
𝑎𝑛2 …

⋮
𝑎𝑛𝑛

| =
1

𝑎11
𝑛−2

|

|

|
𝑎11 𝑎12
𝑎21 𝑎22

| |
𝑎11 𝑎13
𝑎21 𝑎23

| … |
𝑎11 𝑎1𝑛
𝑎21 𝑎2𝑛

|

|
𝑎11 𝑎12
𝑎31 𝑎32

| |
𝑎11 𝑎13
𝑎31 𝑎33

| … |
𝑎11 𝑎1𝑛
𝑎31 𝑎3𝑛

|

⋮

|
𝑎11 𝑎12
𝑎𝑛1 𝑎𝑛2

|

⋮ ⋱

|
𝑎11 𝑎13
𝑎𝑛1 𝑎𝑛3

| …

⋮

|
𝑎11 𝑎1𝑛
𝑎𝑛1 𝑎𝑛𝑛

|

|

|
. 

 

 
343 Ibid. Felice Chiò was an Italian mathematician and politician closely associated with Amedeo Avogadro.  
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Vectors344 

A “scalar” is a quantity that can be specified by determining only its magnitude. 

However, the quantities that are specified by determining both magnitude and direction are 

called “vectors.” In other words, a “vector” is a quantity that has both a direction and a 

magnitude of length, and, therefore, it is graphically denoted by an oriented line segment 

(“arrow”). In a more abstract way, a “vector” can be defined as an element of a “vector 

space,” which, in turn, can be defined as follows: Let 𝑈 be a set with two operations defined 

in the following way: 

 

+: 𝑈 × 𝑈 → 𝑈 defined by (𝑢, 𝑣) ∈ 𝑈 × 𝑈 → 𝑢 + 𝑣 ∈ 𝑈 for all 𝑢, 𝑣 ∈ 𝑈, that is, 𝑈 is 

“closed under addition”; 

: 𝑘 × 𝑈 → 𝑈 defined by (𝑘, 𝑢) ∈ 𝐾 × 𝑈 → 𝑘 ∙ 𝑢 ∈ 𝑈 for every 𝑘 ∈ 𝐾 (where 𝐾 is a field, 

such as ℝ) and for every 𝑢 ∈ 𝑈, that is, 𝑈 is “closed under scalar multiplication.” Of 

course, 0 ∈ 𝑈, since, for every 𝑢 ∈ 𝑈, (−1)𝑢 ∈ 𝑈, and, therefore, 𝑢 − 𝑢 ∈ 𝑈 ⇒ 0 ∈

𝑈. As a result of the aforementioned definition, we say that 𝑈 under the operations of 

+ (addition) and ∙ (scalar multiplication) forms a “vector space” over the field 𝐾, 

and, therefore, a “vector” can be defined as an element of such a 𝑈. Furthermore, let 

𝑉 be a vector space over the field 𝐾. Let 𝑈 be a subset of 𝑉. Then 𝑈 is a “subspace” 

of 𝑉 if and only if 𝑈 is a vector space itself under the operations defined in 𝑉. Using 

the definition of a vector space, it can be easily verified that, if 𝑉 is a vector space 

over a field 𝐾, and if 𝑈1 and 𝑈2 are two subspaces of 𝑉, then 𝑈1 ∩ 𝑈2 is a subspace 

of 𝑉; but 𝑈1 ∪ 𝑈2 is not always a subspace of 𝑉, unless 𝑈1 ⊆ 𝑈2 or 𝑈2 ⊆ 𝑈1 (in order 

to show that 𝑈1 ∪ 𝑈2 is not always a subspace of 𝑉, consider the following example: 

let 𝑉 be the 𝑥𝑦-plane, which is a vector space over ℝ, let 𝑈1, namely, the first 

subspace of 𝑉, be the 𝑥-axis, and let 𝑈2, namely, the second subspace of 𝑉, be the 𝑦-

axis; then, for 𝑣1 = (1,0) ∈ 𝑈1 ∪ 𝑈2 and 𝑣2 = (0,1) ∈ 𝑈1 ∪ 𝑈2, we obtain 𝑣1 +

𝑣2 = (1,1) ∉ 𝑈1 ∪ 𝑈2). 

 

Examples: 

 

i. If 𝑉 = {𝑎𝑥2 + 𝑏𝑥 + 𝑐|𝑎, 𝑏, 𝑐 ∈ ℝ}, then 𝑉 is a vector space over ℝ. Proof: 

Step 1: 0= 0𝑥2 + 0𝑥 + 0 ∈ 𝑉. 

Step 2: Let  

{
𝑣1 = 𝑎1𝑥

2 + 𝑏1𝑥 + 𝑐1
𝑣2 = 𝑎2𝑥

2 + 𝑏2𝑥 + 𝑐2
 , 

so that 𝑣1 + 𝑣2 = (𝑎1 + 𝑎2)𝑥
2 + (𝑏1 + 𝑏2)𝑥 + (𝑐1 + 𝑐2) ∈ 𝑉. 

Step 3: Let 𝑣 = 𝑎𝑥2 + 𝑏𝑥 + 𝑐 with 𝑎, 𝑏, 𝑐 ∈ ℝ. Then 

𝑘𝑣 = (𝑘𝑎)𝑥2 + (𝑘𝑏)𝑥 + (𝑘𝑐) ∈ 𝑉. 

Therefore, 𝑉 is a vector space over ℝ.  

ii. A sphere 𝑆 is not a vector space. Proof: Let 𝑣 be a vector belonging to the sphere 𝑆. 

If we multiply 𝑣 by an adequate number 𝑘, then 𝑘𝑣 does not belong to 𝑆 any more. 

Hence, a sphere is not a vector space. This example helps us to understand why every 

bounded set is never a vector space.  

 
344 See: Eves, Elementary Matrix Theory; Friedberg, Insel, and Spence, Linear Algebra; Householder, The Theory 

of Matrices in Numerical Analysis; Turnbull, The Theory of Determinants, Matrices, and Invariants. 



Dr. Nicolas Laos, The Dialectic of Rational Dynamicity 189 

Let 𝑉 be a vector space over 𝐾, 𝑈 be a subspace of 𝑉, and 𝑣 be a vector belonging to 𝑉. 

Then the set defined by 𝑣 + 𝑈 = {𝑣 + 𝑢|𝑢 ∈ 𝑈} is said to be the “coset” of 𝑈 represented by 

𝑣. For instance, if 𝑉 = ℝ2, and if 𝑈 is some straight line through the origin, then the cosets of 

𝑈 are all the translates of that straight line (i.e., we have a partition of the real plane by 

separating it into a bunch of parallel lines); and, similarly, if 𝑉 = ℝ3, and if 𝑈 is some plane 

through the origin, then the cosets of 𝑈 are all the parallel planes (i.e., we fill up ℝ3 with a 

stack of planes). The set of all cosets 𝑣 + 𝑈 is denoted by
𝑉

𝑈
, and it is called the “quotient 

vector space.” 

If {𝑣1, 𝑣2, … , 𝑣𝑛} is a finite non-empty set of vectors belonging to the vector space 𝑉, then 

the vector 𝑣 = 𝑘1𝑣1 + 𝑘2𝑣2 +⋯+ 𝑘𝑛𝑣𝑛 is called a “linear combination” of 𝑣1, 𝑣2, … , 𝑣𝑛, and 

every subspace of 𝑉 is a non-empty subset of 𝑉 closed under linear combinations. 

 

Linearly Independent Vectors: Let 𝑉 be a vector space over 𝐾. The vectors 𝑣1, 𝑣2, … , 𝑣𝑛 

of 𝑉 are “linearly independent” if and only if every time 

 

𝑘1𝑣1 + 𝑘2𝑣2 +⋯+ 𝑘𝑛𝑣𝑛 = 0 ⇒ 𝑘1 = 𝑘2 = ⋯ = 𝑘𝑛 = 0. 

 

For instance, the vectors 𝑣1 = (
1 0
0 0

), 𝑣2 = (
0 1
0 0

), 𝑣3 = (
0 0
1 0

), and 𝑣4 = (
0 0
0 1

) 

are linearly independent, since  

 

𝑘1𝑣1 + 𝑘2𝑣2 +⋯+ 𝑘𝑛𝑣𝑛 = 0 

⇒ (
𝑘1 0
0 0

) + (
0 𝑘2
0 0

) + (
0 0
𝑘3 0

) + (
0 0
0 𝑘4

) = (
0 0
0 0

) 

⇒ (
𝑘1 𝑘2
𝑘3 𝑘4

) = (
0 0
0 0

) ⇒ 𝑘1 = 𝑘2 = 𝑘3 = 𝑘4 = 0. 

 

Linearly Dependent Vectors: Let 𝑉 be a vector space over 𝐾. The vectors 𝑣1, 𝑣2, … , 𝑣𝑛 of 

𝑉 are “linearly dependent” if and only if 𝑘1𝑣1 + 𝑘2𝑣2 +⋯+ 𝑘𝑛𝑣𝑛 = 0 for some 𝑘𝑖 ≠ 0, 

where 𝑖 = 1,2,… , 𝑛. 

For instance, the vectors 𝑣1 = (0,1), 𝑣2 = (1,0), and𝑣3 = (1,1) are linearly dependent.  

 

Basis: Let 𝑉 be a vector space over 𝐾. The vectors 𝑣1, 𝑣2, … , 𝑣𝑛 form a “basis” of 𝑉 if 

and only if these vectors are linearly independent and generate (or span) 𝑉, that is, every 

vector of 𝑉 must be expressed in terms of 𝑣1, 𝑣2, … , 𝑣𝑛. For instance, if 𝑉 = {𝑎 + 𝑏𝑥 +

𝑐𝑥2|𝑎, 𝑏, 𝑐 ∈ ℝ}, then 𝑣1 = 1, 𝑣2 = 𝑥, and 𝑣3 = 𝑥
2 form a basis of 𝑉, because: (i) 𝑣1, 𝑣2, and 

𝑣3 are linearly independent, since no vector from {1, 𝑥, 𝑥2} can be written in terms of the 

other vectors; (ii) {1, 𝑥, 𝑥2} generate 𝑉, since, for any 𝑣 ∈ 𝑉, it holds that 𝑣 = 𝑘 + 𝑙𝑥 +

𝑚𝑥2 = 𝑘 ∙ 1 + 𝑙𝑥 + 𝑚𝑥2. Every single-element set that contains a non-zero vector can form a 

basis if it is adequately enlarged, and, therefore, every (non-zero) vector space over a field 𝐾 

has at least one basis (actually, it has many different bases). However, every vector space 𝑉 

has an invariant property, namely: the number of vectors in every basis of 𝑉 remains the 
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same; and the “dimension” of a vector space 𝑉 is the number of elements of any of its 

bases.345 

Consider the totality 𝑀𝑚,𝑛(𝐹) of all 𝑚× 𝑛 matrices over a field 𝐹. A “row vector” (resp. 

a “column vector”) over 𝐹 is just an element of 𝑀1,𝑛(𝐹) (resp. of 𝑀𝑚,1(𝐹)). In general, a “𝑘-

vector 𝑣⃗ over 𝐹” is an ordered 𝑘-tuple of elements of 𝐹, (𝑎1, … , 𝑎𝑘), where 𝑎𝑖 is called the 𝑖th 

“coordinate” of 𝑣⃗.  

Vectors indicate the manner in which determinants are related to area and volume. Let 

𝑣1⃗⃗⃗⃗⃗, 𝑣2⃗⃗⃗⃗⃗, … , 𝑣𝑛⃗⃗⃗⃗⃗ be vectors in ℝ𝑛. Assume that 𝑃 is the parallelepiped formed by these vectors. 

Let 𝐴 be the matrix with rows 𝑣1⃗⃗⃗⃗⃗, 𝑣2⃗⃗⃗⃗⃗, … , 𝑣𝑛⃗⃗⃗⃗⃗. Then, for 𝑛 = 3, the volume of 𝑃 is denoted by 

𝑉(𝑃), and it is equal to the absolute value of the determinant of 𝐴. Similarly, when 𝑛 = 2, the 

area of a parallelogram formed by the given vectors is equal to the absolute value of the 

determinant of the matrix whose rows are the given vectors. For instance, given two vectors 

𝑣1⃗⃗⃗⃗⃗ = (1,2) and 𝑣2⃗⃗⃗⃗⃗ = (3,5) in ℝ2, we can define a parallelogram 𝑃 as follows: we draw the 

vectors (arrows) from the origin 𝑂(0,0) of the coordinate system to the points 𝑃1(1,2) and 

𝑃2(3,5) in the plane ℝ2, and then we complete the parallelogram 𝑃 by drawing parallels to 𝑣1⃗⃗⃗⃗⃗ 

and 𝑣2⃗⃗⃗⃗⃗. The determinant of the matrix  

 

𝐴 = (
1 2
3 5

), 

 

whose rows are 𝑣1⃗⃗⃗⃗⃗ and 𝑣2⃗⃗⃗⃗⃗, is det (𝐴) = 5 − 6 = −1. Therefore, the area of the parallelogram 

𝑃 is |det (𝐴)| = |−1| = 1.  

Let 𝑉1, 𝑉2 be two vector spaces over a field 𝐾. A mapping 𝑇: 𝑉1 → 𝑉2 is linear if and only 

if: 

 

i. 𝑇(𝑣1 + 𝑣2) = 𝑇(𝑣1) + 𝑇(𝑣2) ∀𝑣1, 𝑣2 ∈ 𝑉1, and 

ii. 𝑇(𝑎𝑣) = 𝑎𝑇(𝑣) ∀𝑎 ∈ 𝐾, ∀𝑣 ∈ 𝑉1. 

 

If (i) is satisfied by a mapping 𝑇: 𝑉1 → 𝑉2, then 𝑇 is said to be “additive.” If (ii) is 

satisfied by a mapping 𝑇:𝑉1 → 𝑉2, then 𝑇 is said to be a “homogeneous mapping.” It is 

important to mention that a linear mapping preserves the origin and negatives, namely, 

𝑇(0) = 𝑇(0 ∙ 0) = 0𝑇(0) = 0, and 𝑇(−𝑣) = (−1)𝑇(𝑣) = −𝑇(𝑣). If a mapping is not linear, 

then it is called “nonlinear.” A nonlinear mapping never satisfies the property of 

homogeneity. 

If a mapping 𝑇 between two algebraic structures of the same kind, say 𝑈 and 𝑉 (such as 

groups, vector spaces, etc.), preserves the operations of the algebraic structures, then 𝑇 is a 

“homomorphism.” Homomorphisms of vector spaces are also called linear mappings, that is, 

linear mappings are homomorphisms of vector spaces. 

Let us consider an input–output system such that the inputs and the outputs are vectors, 

and the system effects a linear transformation represented by some square matrix 𝐴. In 

particular, let us assume that the input vector is 𝑣⃗, and that the output vector is 𝐴𝑣⃗. Often, the 

direction of the output 𝐴𝑣⃗ is different from the direction of the input 𝑣⃗. In order to understand 

such a system better, we have to find the input vectors that do not change direction when they 

pass through (i.e., when they are transformed by) the system (namely, we have to find those 

 
345 Ibid. 
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vectors whose magnitude may change, but whose direction remains invariant). More formally 

stated, we have to find the 𝑣⃗’s for which 𝐴𝑣⃗ is just a scalar multiple of 𝑣⃗. These 𝑣⃗’s are called 

eigenvectors; and the eigenvalue is the scaling factor. A non-zero vector 𝑣⃗ and a number 𝜆 are 

called, respectively, an “eigenvector” and an “eigenvalue” of a square matrix 𝐴 if they satisfy 

the following equation: 

 

𝐴𝑣⃗ = 𝜆𝑣⃗.  

 

In other words, eigenvectors inform us about the direction of spread of data, and 

eigenvalues inform us about the intensity of spread (i.e., about the magnitude of a distortion 

due to a linear transformation) in a particular direction (i.e., in the direction of the 

corresponding eigenvectors).  

We can find the eigenvalues as follows: if 𝐼 is an identity matrix, then 

 

𝐴𝑣⃗ = 𝜆𝑣⃗ ⇒ 𝐴𝑣⃗ = 𝜆𝐼𝑣⃗ ⇒ 𝐴𝑣⃗ − 𝜆𝐼𝑣⃗ = 0 ⇒ (𝐴 − 𝜆𝐼)𝑣⃗ = 0, 

 

and, if 𝑣⃗ is non-zero, then we can solve for 𝜆 using only the determinant: 

 

𝑑𝑒𝑡(𝐴 − 𝜆𝐼) = 0; 

 

the above equation is known as the “characteristic equation.” 

We can find the eigenvectors as follows: for each eigenvalue 𝜆𝑖 found according to the 

aforementioned method, we solve the system 

 

(𝐴 − 𝜆𝑖𝐼)𝑣⃗ = 0⃗⃗ 

 

for the corresponding 𝑣⃗. The set of eigenvectors for a given 𝜆 is called its “eigenspace.” 

 

Some Applications of Matrices 

In this section, I provide a few basic examples of applications of matrix theory to the 

study of empirical problems, such as input–output analysis, linear programming, and game 

theory.346 

 

Input–Output Analysis 

As the renowned Russian/Soviet scientist and philosopher Alexander A. Bogdanov 

(1873–1928) has pointedly observed, “nature is what people call the endlessly unfolding field 

of their labor-experience,”347 “labor, as a whole, is the activity of all humanity in the 

historical interconnectedness of all its generations,”348 and “human beings change the 

correlation of the elements of nature so that they conform to their needs and desires, so that 

they serve their interests.”349 The major economic tasks that every society must accomplish 

pertain to decision-making about an economy’s inputs and outputs. In economics, the term 

 
346 Ibid. 
347 Bogdanov, The Philosophy of Living Experience, p. 42. 
348 Ibid. 
349 Ibid. 
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“input” refers to commodities or services used by firms in their production processes. Thus, 

by means of its technology, an economy combines inputs to produce outputs. In economics, 

the term “output” refers to the various useful goods or services that are either employed in 

further production or consumed. In the context of political economy, people as a social order 

have to figure out three things: first, what to produce; second, how to produce it; and, third, 

how to distribute the output. 

The acknowledged founder of “input-output analysis” is the Russian-American 

economist Wassily Leontief, who won the Nobel Prize in Economics in 1973.350 An input–

output matrix is a square matrix, say 𝐴 = (𝑎𝑖𝑗), whose entries 𝑎𝑖𝑗 represent the amount of 

input 𝑖 required per unit of output 𝑗. A column of such a matrix depicts the inputs needed for 

the achievement of a specific output, and, therefore, from the perspective of economics, it can 

be considered as a “production technique.” Hence, an input–output matrix is a “constellation” 

of production techniques. If the list of inputs is complete, including factor inputs, then the 

input–output matrix contains techniques for the production of the factor services as well. 

Input–output is an integral part of general equilibrium analysis. As the American economist 

Campbell R. McConnell has pointed out, the economy is “an interlocking network of prices 

wherein changes in one market are likely to elicit numerous and significant changes in other 

markets,” and, therefore, economists need to study “the price system as a whole” and shift 

their analysis from equilibrium models pertaining to particular economic industries to 

“general equilibrium analysis,” in order to determine the optimal level of production of the 

whole economy.351 

For instance, let us consider a small economic network that consists of two 

interdependent industries A and B (e.g., A may represent the final goods industry, and B may 

represent the energy industry). Obviously, this method can be generalized to any number of 

industries. We assume that, for each dollar’s worth of goods/services produced by A, A needs 

to consume a quantity of A’s output and a quantity of B’s output, and, for each dollar’s worth 

of goods/services produced by B, B needs to consume a quantity of B’s output and a quantity 

of A’s output. In particular: the production of each dollar’s worth of A requires $𝑞11 worth of 

A and $𝑞21 worth of B; and the production of each dollar’s worth of B requires $𝑞12 worth of 

A and $𝑞22 worth of B. Therefore, both industries sell to each other and buy from each other. 

In addition, assume that there is an external demand for A and B; specifically, let the final 

demand from the outside sector of the economy be $𝑑1 million for A and $𝑑2 million for B. 

Let 𝑥1 and 𝑥2 represent the total output from A and B, respectively. Then we formulate the 

following equation: 

 

𝑋 = 𝑄𝑋 + 𝐷 ⇒ 𝑋 − 𝑄𝑋 = 𝐷 ⇒ 𝐼𝑋 − 𝑄𝑋 = 𝐷 ⇒ (𝐼 − 𝑄)𝑋 = 𝐷, 

 

where: 𝑋 = (
𝑥1
𝑥2
), 𝑄 = (

𝑞11 𝑞12
𝑞21 𝑞22

), and 𝐷 = (
𝑑1
𝑑2
), 

 

 
350 Leontief, “Quantitative Input and Output Relations in the Economic System of the United States.” Moreover, 

see: Raa, The Economics of Input–Output Analysis.  
351 McConnell, Economics, p. 579. 
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and 𝑋 is the “output matrix” (i.e., 𝑋 is a column matrix representing the equilibrium output 

levels in industry A and industry B), 𝑄 is the “technology matrix,” 𝐷 is the “final demand 

matrix,” and 𝐼 is the identity matrix. If 𝐼 − 𝑄 is invertible, then the solution for 𝑋 is given by 

 

𝑋 = (𝐼 − 𝑄)−1𝐷, 

 

which is the optimum level of production for the given economic network, meaning that the 

given economic network must produce 𝑥1 million dollars of A (e.g., final goods) and 𝑥2 

million dollars of B (e.g., energy) in order meet both the internal demand and the external 

demand for A and B (and, thus, avoid both oversupplying and undersupplying the market 

with the corresponding commodities).  

 

Linear Programming 

By the term “linear programming,” we mean a method to achieve the best outcome (e.g., 

to maximize profit, minimize cost, etc.) in a mathematical model whose requirements are 

represented by linear functions. The first contributions to linear programming are due to the 

Soviet mathematician and economist Leonid Vitaliyevich Kantorovich (1912–86), who won 

the Nobel Prize in Economics in 1975. Moreover, one of the acknowledged founders of linear 

programming is the American mathematician George Bernard Dantzig (1914–2005), who 

managed to make significant contributions to industrial engineering, operations research, 

economics, statistics, and computer science.352 In fact, input–output analysis is a special, very 

important case of linear programming.  

The “canonical form” of linear programming is the following: given a system of 𝑚 linear 

constraints, namely, linear inequalities, with 𝑛 variables, we wish to find non-negative values 

(i.e., ≥ 0) of these variables that will satisfy the constraints and will maximize a function of 

these variables; symbolically: 

Given 𝑚 linear inequalities and/or equalities  

 

∑ 𝑎𝑖𝑗𝑗 𝑥𝑗 ≤ 𝑏𝑖 , 𝑖 = 1,2,… ,𝑚, 𝑎𝑛𝑑 𝑗 = 1,2,… , 𝑛, (∗) 

 

we wish to find those values of 𝑥𝑗 which satisfy the constraints (∗) and the condition that 𝑥𝑗 ≥

0 (for 𝑗 = 1,2,… , 𝑛) and simultaneously maximize the linear function 

 

𝑧 = ∑𝑐𝑗𝑥𝑗 , 𝑗 = 1,2,… , 𝑛. (∗∗) 

 

For instance, consider a problem where we wish to maximize the gross profit of an 

industry (or of a firm offering several product lines) that produces 𝑛 commodities, and, thus, 

it has 𝑛 sectors of production. Then (∗) and (∗∗) can be interpreted as follows: 𝑧 is the value 

of overall performance measure, specifically, total gross profit; 𝑥𝑗 is the level of activity 𝑗 

(𝑗 = 1,2,… , 𝑛), specifically, the output of the 𝑗th sector of production (i.e., the produced 

quantity of the 𝑗th commodity); 𝑐𝑗 is the performance measure coefficient for activity 𝑗, 

specifically, the gross profit per unit of output in the 𝑗th sector of production (so that the total 

 
352 Dantzig, Linear Programming and Extensions. Moreover, see: Hadley, Linear Programming. 
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gross profit in the 𝑗th sector of production is 𝑐𝑗𝑥𝑗); 𝑏𝑖 is the amount of resource 𝑖 available 

(𝑖 = 1,2,… ,𝑚); and 𝑎𝑖𝑗 is the amount of resource 𝑖 consumed by each unit of activity 𝑗. 

In matrix form, the constrained maximization problem (∗∗) can be rewritten as follows: 

 

𝑧𝑚𝑎𝑥 = (𝑐1 𝑐2 … 𝑐𝑛) ∙ (

𝑥1
𝑥2
⋮
𝑥𝑛

), 

 

under the constraints 

 

(

𝑎11 𝑎12 … 𝑎1𝑛
𝑎21 𝑎22 … 𝑎2𝑛
⋮
𝑎𝑚1

⋮ ⋱
𝑎𝑚2 …

⋮
𝑎𝑚𝑛

) ∙ (

𝑥1
𝑥2
⋮
𝑥𝑛

) ≤ (

𝑏1
𝑏2
⋮
𝑏𝑚

), 

 

and 

 

𝑥𝑗 ≥ 0 for 𝑗 = 1,2,… , 𝑛.  

 

More simply, given the above concepts, we can write: 

 
𝑚𝑎𝑥𝑧 = 𝑐𝑥

𝑢𝑛𝑑𝑒𝑟 𝑡ℎ𝑒 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠
𝐴𝑥 ≤ 𝑏
𝑥𝑗 ≥ 0

}. (∗∗∗) 

 

Regarding the geometric significance of (∗∗∗), notice that the constraints 𝐴𝑥 ≤ 𝑏 and 

𝑥𝑗 ≥ 0 define a convex polyhedron 𝑃𝑛 in ℝ𝑛, and such 𝑃𝑛 is called the “feasible region” of the 

corresponding model, namely, the region of all the feasible solutions of the corresponding 

problem. In general, a polyhedron 𝑃𝑛 in ℝ𝑛 is the set of all points 𝑥 ∈ ℝ𝑛 that satisfy a finite 

set of linear inequalities. Moreover, a set 𝑄 in ℝ𝑛 is called “convex” (or “concave up”) if, for 

any two points 𝑥 and 𝑦 in 𝑄, the line segment joining them is also in 𝑄; symbolically: ∀𝑥, 𝑦 ∈

𝑄, the “convex combination” 𝑘𝑥 + (1 − 𝑘)𝑦 ∈ 𝑄 for any 𝑘 such that 0 ≤ 𝑘 ≤ 1. The goal of 

constrained maximization in the context of linear programming is to choose that feasible 

combination (𝑥1, 𝑥2, … , 𝑥𝑛) of actions that maximize a given function 𝑧 = 𝑐𝑥. This occurs at 

the maximum (most extreme) point (𝑥1
∗, 𝑥2

∗, … , 𝑥𝑛
∗) of the feasible region.  

The constrained maximization problem (∗∗∗) is known as the “primal problem,” while 

the so-called “dual problem” is the corresponding constrained minimization problem, where, 

given a system of 𝑚 linear constraints, namely, linear inequalities, with 𝑛 variables, we wish 

to find non-negative values (i.e., ≥ 0) of these variables that will satisfy the constraints and 

will minimize a function (e.g., a cost function) of these variables; symbolically: 

 

𝑚𝑖𝑛𝑧 = 𝑐𝑥
𝑢𝑛𝑑𝑒𝑟 𝑡ℎ𝑒 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠

𝐴𝑥 ≥ 𝑏
𝑥𝑗 ≥ 0

}. (∗∗∗∗) 
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For instance, using the “dual problem,” we can create models of constrained cost 

minimization in economics and business management. Firms seek to minimize cost subject to 

the constraint that they produce at least 𝑏 units of output, so that the firm’s cost minimization 

problem is given by (∗∗∗∗). 

 

Game Theory 

Game theory is the study of mathematical models of strategic interaction between rational 

decision-makers. However, some important game-theoretical insights can be found in Plato’s 

Laches and Symposium. Moreover, analyzing strategic thinking, Plato, in his Republic, refers 

to an ancient Greek strategy game that was called “petteia” (translated as “pebbles,” or 

“pawns”). 

In general, “rationality” means that social behavior can be seen in terms of actors 

pursuing goals. The “rationality postulate” implies the following: (i) actors have well ordered 

preference systems over the set of outcomes (of alternative actions), namely, for all pairs 𝑐𝑖 

and 𝑐𝑗, there is a preference relation 𝑅 such that either 𝑐𝑖𝑅𝑐𝑗 (the actor prefers 𝑐𝑖 to 𝑐𝑗), or 

𝑐𝑗𝑅𝑐𝑖 (the actor prefers 𝑐𝑗 to 𝑐𝑖), or both (the actor is indifferent); (ii) each actor’s preference 

system is substantially independent of the other social variables; (iii) each actor acts to 

maximize one’s utility index. In particular, one can formulate a decreasing sequence of 

numbers (these numbers are called “utilities,” 𝑢𝑛) where the largest number is assigned to the 

most preferred outcome, the second largest number to the next outcome in the preference 

order, etc. The function that maps consequences to numbers representing an actor’s 

preference over those outcomes is said to be a “utility function.” The most well-known utility 

function is the von Neumann–Morgenstern utility function, which is defined as follows: the 

actor considers a set of all conceivable states of the world and assesses the likelihood of each 

state 𝑆 by assigning a probability 𝑝(𝑆) to it, so that the expected utility 𝑈𝑒(𝐴) for an action 𝐴 

can be calculated by multiplying the probability 𝑝(𝑆) of each state’s occurring by the utility 

𝑢(𝐶(𝑆, 𝐴)) of the outcome that results from the given state of the world and the given action, 

and then summing these products over all the possible states: 

 

𝑈𝑒(𝐴) = ∑ 𝑝(𝑆)𝑢(𝐶(𝑆, 𝐴))𝑎𝑙𝑙 𝑆 ; 

 

the actor chooses 𝐴 such that 𝑈𝑒(𝐴) is maximized.  

Game theory methods and models are the bases of modern general equilibrium theory in 

economics. The American economists Paul A. Samuelson and William D. Nordhaus have 

written that “game theory analyzes the way that two or more players or parties choose actions 

or strategies that jointly affect each participant.”353 In fact, the underlying reasoning of linear 

programming is similar to that of game theory. The first general mathematical formulation of 

game theory was given in the 1940s by the mathematician John von Neumann and the 

economist Oskar Morgenstern.354 Moreover, several great Russian/Soviet mathematicians, 

such as Nikolai N. Vorob’ev,355 Elena Borisovna Yanovskaya,356 and Joseph Vladimirovich 

 
353 Samuelson and Nordhaus, Economics, p. 205. 
354 Neumann and Morgenstern, Theory of Games and Economic Behavior. Moreover, see: Luce and Raiffa, Games 

and Decisions. 
355 Vorob’ev, Game Theory. 
356 Yanovskaya, “First All-Union Conference on Game Theory.” 
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Romanovsky,357 have made foundational contributions to game theory, and they have proved 

advanced theorems in this field.  

Every game is a model of a social situation, and, in every such model, there exist: 

 

• 𝑛 players (decision-makers), where 𝑛 ≥ 2; 

• rules that determine the series of available actions (strategies or policies) and are 

known to the players; 

• a well-defined set of outcomes; and 

• pay-offs that are related to each outcome and are known to the players. 

 

There are different kinds of games. In particular, with regard to the number of players, 

games can be distinguished into 2-player games and games that involve more than two 

players. With regard to the nature of the pay-offs, games can be distinguished into those that 

are zero-sum and those that are not. By a “zero-sum” game, we mean (in the case of a 2-

player game) a game in which one player can only be made better off by making the other 

player worse off. With regard to the communication between the players, games can be 

distinguished into cooperative games and non-cooperative games. In the context of “non-

cooperative” games, each player is assumed to maximize one’s own utility function while 

treating the other players’ expected strategic responses as constrains. In the context of 

“cooperative” games, players are assumed to have already, by some process, agreed on a 

series of strategies and, thus, on an outcome (for instance, this is naturally the case in 

parliamentary coalitions).  

The most common type of competitive situations are 2-player zero-sum games, whose 

general form is shown in Table 2.1. 

 

Table 2.1. The Pay-Off Matrix of a 2-Player Zero-Sum Game 

 

Player B 

𝐵1 𝐵2 . . . 𝐵𝑗  . . .  𝐵𝑛 

𝑐11 𝑐12  . . . 𝑐1𝑗  . . . 𝑐1𝑛  𝐴1 

Player A 

𝑐21 𝑐22 . . . 𝑐2𝑗  . . . 𝑐2𝑛 𝐴2 

. . .  . . . . . . . . . . . . . . . ⋮ 

𝑐𝑖1 𝑐𝑖2 . . . 𝑐𝑖𝑗  . . . 𝑐𝑖𝑛 𝐴𝑖 

. . . . . . . . . . . . . . . . . . ⋮ 

𝑐𝑚1 𝑐𝑚2 . . . 𝑐𝑚𝑗  . . . 𝑐𝑚𝑛 𝐴𝑚 

 

In the above table, which is called the “pay-off matrix” of the corresponding game, the 

set {𝐴𝑖 , 𝑖 = 1,2,… ,𝑚} represents the strategies that are available to player A, and the set 

{𝐵𝑗 , 𝑗 = 1,2,… , 𝑛} represents the strategies of player B. If we assume that the pay-offs 𝑐𝑖𝑗 are 

expressed in terms of A’s gains (and, thus, B’s losses), then the quantity 𝑐𝑖𝑗 represents player 

A’s benefit (and, thus, player B’s loss) when the two players choose the pair of strategies 

(𝐴𝑖, 𝐵𝑗). 

In 2-player zero-sum games, there are several criteria (“decision rules”) by which each 

player chooses one’s strategy. The most important such criteria are the following: 

 
357 Romanovsky, “Reduction of a Game with Perfect Recall to a Constrained Matrix Game.” 
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i. Wald’s maximin criterion (developed by the Hungarian-American mathematician 

Abraham Wald in the 1940s): According to this criterion, the player should select the 

alternative that provides the best of the worst possible outcomes, namely, the player 

should choose the strategy that maximizes the minimum possible outcome. In 

particular, given an 𝑚× 𝑛-matrix (where 𝑚 is the number of rows or the strategies 

available to A, and 𝑛 is the number of columns or the strategies available to B), A 

takes the minimum pay-off, say 𝑘𝑖, from each row, namely, 𝑘𝑖 = 𝑚𝑖𝑛𝑐𝑖𝑗, where 𝑖 =

1,2,… ,𝑚, and then chooses the maximum 𝑘𝑖, namely, 𝑚𝑎𝑥(𝑘1, 𝑘2, … , 𝑘𝑚). A’s 

strategy is the one which corresponds to the row that contains the maximum 𝑘𝑖. 

Although Wald’s maximin criterion focuses on the most pessimistic outcome for 

each decision alternative, it should not be dismissed; for, it implicitly assumes a very 

strong aversion to risk, and, therefore, it is appropriate for decisions involving the 

possibility of catastrophic outcomes.  

Alternatively, Wald’s maximax criterion states that the player should find the 

best possible (maximum) outcome for each decision alternative and then choose the 

option whose best outcome provides the highest (maximum) pay-off. The maximax 

criterion implicitly assumes that the player focuses on expected returns and 

disregards the dispersion of returns (i.e., risks) or that, in the given environment of 

action, the level of uncertainty is very low.  

ii. Laplace criterion: Given an 𝑚× 𝑛-matrix, player A assigns the probability 𝑝 =
1

𝑛
 to 

each strategy of B, since B has 𝑛 alternative strategies, and A assumes that they are 

equally probable. Then A calculates the expected pay-off 𝑒𝑖 of each row, given by 

𝑒𝑖 = ∑ 𝑝𝑐𝑖𝑗 =
1

𝑛

𝑛
𝑗=1 (𝑐𝑖1 +⋯+ 𝑐𝑖𝑛), 𝑖 = 1,2,… ,𝑚.  

Finally, A chooses the maximum 𝑒𝑖, namely, 𝑚𝑎𝑥(𝑒1, 𝑒2, … , 𝑒𝑚). Therefore, A’s 

strategy is the one which corresponds to the row that contains the maximum 𝑒𝑖. 

iii. Hurwicz’s optimism–pessimism criterion (originally presented by the Polish-

American economist and mathematician Leonid Hurwicz in 1951): According to this 

criterion, an index 𝛼 such that 0 ≤ 𝛼 ≤ 1, called the optimism index of player A, is 

assigned to the maximum pay-off of each row. Moreover, the index 1 − 𝛼, called the 

pessimism index of player A, is assigned to the minimum pay-off of each row. 

Finally, player A calculates the expected pay-off of each row as the weighted sum of 

the minimum and the maximum pay-offs of the corresponding row. Therefore, A’s 

strategy is the one which corresponds to the row that contains the maximum expected 

pay-off. In particular, if 𝑥𝑖 and 𝑦𝑖 are the maximum and the minimum pay-offs of 

row 𝑖, respectively, namely, 

𝑥𝑖 = 𝑚𝑎𝑥𝑐𝑖𝑗, and 

𝑦𝑖 = 𝑚𝑖𝑛𝑐𝑖𝑗, 

where 𝑖 = 1,2,… ,𝑚, then player A calculates the expected pay-off 𝑠𝑖 of each row by 

the formula 

𝑠𝑖 = 𝛼𝑥𝑖 + (1 − 𝛼)𝑦𝑖, 𝑖 = 1,2,… ,𝑚, 

and, finally, A finds the maximum such weighted sum, namely, 

max (𝑠1, 𝑠2, … , 𝑠𝑚). 

Hence, the strategy that player A must choose is the one which corresponds to 

the row that contains the maximum 𝑠𝑖. Notice that the index 𝛼 is mostly subjective, 
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and it is determined by the corresponding player’s perception of one’s historical 

environment as well as by the corresponding player’s knowledge of history and 

policy-making.  

iv. Regret (or Minimax) criterion: According to this criterion, the player should 

minimize the maximum possible regret (opportunity loss) associated with a wrong 

decision after the fact. In other words, this criterion states that the player should 

minimize the difference between possible outcomes and the best outcome for each 

state of the world. It should be mentioned that “opportunity loss” is defined to be the 

difference between a given pay-off and the highest possible pay-off for the resulting 

state of the world. Opportunity losses result because returns actually received under 

conditions of uncertainty are usually lower than the maximum return that would have 

been possible if the player had perfect knowledge beforehand. In mathematical 

terms, the regret or minimax criterion states that, from the original pay-off matrix, 

player A constructs a new matrix, called regret matrix, and then applies Wald’s 

maximin criterion. The regret matrix is constructed by subtracting the maximum 

element of each column of the original pay-off matrix from each element of this 

column, namely, the elements of the regret matrix will be the 𝑟𝑖𝑗’s which, for the 

column 𝑗 (where 𝑗 = 1,2,… , 𝑛), are given by  

𝑟𝑖𝑗 = 𝑐𝑖𝑗 −𝑚𝑎𝑥𝑐𝑖𝑗, 

where 𝑖 = 1,2,… ,𝑚. 

 

A significant part of advanced game-theoretical research works emphasizes various forms 

of dynamic analysis. Within a given game, analysis concentrates on the modification of 

strategies as the game unfolds, instead of assuming that strategies are chosen once-and-for-all 

(and players may play mixed strategies, too). Moreover, multi-level games consider series of 

linked games, and, within the framework of a multi-level game, the outcome of each stage 

determines which game is to be played next. Hypergame analysis358 goes further by starting 

from the assumption that the players may perceive the game in quite different terms. The 

basic model of hypergame analysis is not a single game perceived by all the players but a set 

of subjective games, each expressing one player’s view of the situation. Thus, in hypergame 

terms, a situation in which both players correctly perceive the same game is said to be a level-

zero hypergame; a situation in which both players believe that they are playing the same 

game while at least one player misperceives the game is said to be a level-one hypergame; a 

situation in which at least one perceives the other player’s (assumed) misperceptions is said to 

be a level-two hypergame. The analysis of hypergames of level higher than two is a very 

arduous task, because these hypergames require long mental recursions of the type “I think he 

thinks I think he thinks, and so on.”  

 

 

2.2.6. Analytic Geometry and the Abstract Concept of a Distance 

 

Geometry is the scientific study of the quantitative and the qualitative properties of 

spatial forms and relations (the criteria for equality of triangles provide instances of 

qualitative geometric knowledge, and the computation of lengths, areas, and volumes 

 
358 See: Takahashi, Fraser, and Hipel, “A Procedure for Analyzing Hypergames.”  
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exemplifies quantitative geometric knowledge). In geometry, the abstraction of a straight line 

can be attributed to mathematical intuition. According to the ancient Greek mathematician 

Euclid, an arbitrary straight line can be construed as a “length without breadth” that is 

perceived as a whole. Furthermore, as I explained in section 2.2, there are points on every 

straight line, each point on the straight line corresponds to a real number, and the straight line 

is complete, for which reason it is known as the arithmetic or the geometric continuum. In 

fact, the ancient Greek mathematicians’ awareness of the existence of real numbers was 

developed with reference to geometric processes, in the sense that they understood a real 

number either as a completed process of combining units/monads (that is, as a rational 

number) or as an incomplete process of measuring non-commensurate quantities (that is, as 

an irrational number).  

Analytic geometry signifies the introduction of coordinates into geometry in a systematic 

way, specifically, by unifying aspects of algebra and aspects of geometry. In fact, the 

development of analytic geometry set the stage for the development of infinitesimal calculus. 

The first pioneers of analytic geometry were the second-century B.C. Greek astronomer and 

mathematician Hipparchus of Nicaea, who introduced coordinates for the sphere (in the 

context of his studies of the night sky), and the third-century B.C. Greek geometer Apollonius 

of Perga, who introduced coordinates for the study of conic sections. In the Middle Ages, the 

use of coordinates in mathematics and analytic geometry was further analyzed and developed 

by the fourteenth-century French philosopher and mathematician Nicolas d’Oresme.  

By the term “locus,” we mean a set of all the points that satisfy a specific rule. Moreover, 

the path drawn by a point moving according to a given rule is called the “locus of the 

point.”The seventeenth-century French jurist and mathematician Pierre de Fermat has pointed 

out that, “whenever two unknown magnitudes appear in a final equation, we have a locus, the 

extremity of one of the unknown magnitudes describing a straight line or curve,” and, 

whereas “the straight line is simple and unique,” it is easily understood that “the classes of 

curves are indefinitely many—circle, parabola, hyperbola, ellipse, etc.”359 Thus, according to 

Fermat’s terminology, “when the extremity of the unknown magnitude which traces the locus, 

follows a straight line or a circle, the locus is said to be plane; when the extremity describes a 

parabola, a hyperbola, or an ellipse, the locus is said to be solid.”360 Thus, we can study 

geometric problems through algebra.  

One of the most important geometric theorems is the Pythagorean Theorem, which states 

that, in every right-angled triangle, the square of the hypotenuse is equal to the sum of the 

squares of the other two sides. This theorem can be proved in an algebraic way, in the spirit of 

Fermat’s aforementioned observations, as follows. 

 

Pythagorean Theorem361: Consider a right-angled triangle ∆𝐴𝐵𝐶, whose hypotenuse is c, 

and whose other two sides are 𝑎 and 𝑏, as shown in Figure 2.3. Then 𝑎2 + 𝑏2 = 𝑐2.  

 

Proof: Given the triangle shown in Figure 2.3, we create four triangles identical to it, and 

we use them in order to form a square with side lengths 𝑎 + 𝑏 as shown in Figure 2.4. The 

area of this square is  

 
359 Fermat, “On Analytic Geometry,” p. 389.  
360 Ibid.  
361 See: Maor, The Pythagorean Theorem. 
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𝐴 = (𝑎 + 𝑏)(𝑎 + 𝑏).   (∗) 

 

 

Figure 2.3. Pythagorean Theorem. 

 

 

Figure 2.4. Proof of the Pythagorean Theorem. 

In Figure 2.4, inside the big square, the hypotenuses of the four identical triangles form 

another smaller square, whose area is equal to 𝑐2. Each of the four triangles has an area of 
 𝑎𝑏

2
. 

In general, notice that, given an arbitrary rectangle 𝐴𝐵𝐶𝐷 whose height is ℎ, and whose base 

is 𝑏, its area is equal to ℎ𝑏, and, therefore, if we draw a diagonal from one vertex, say 

diagonal 𝐴𝐶, it will break the rectangle into two congruent, or equal, triangles, and the area of 

each of these triangles is half the area of the rectangle, that is, 
ℎ𝑏

2
.  

The area of all four of the triangles that are shown in Figure 2.4 is equal to 
4𝑎𝑏

2
= 2𝑎𝑏. 

Adding up the areas of the smaller square and of the four triangles, we obtain  

 

𝐴 = 𝑐2 + 2𝑎𝑏. (∗∗) 

 

Hence, given (∗) and (∗∗),  

 

(𝑎 + 𝑏)(𝑎 + 𝑏) = 𝑐2 + 2𝑎𝑏 ⇔ 𝑎2 + 𝑏2 = 𝑐2.■ 
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Remark: The Pythagorean Theorem is often a quadratic equation, whenever one of the 

lengths is unknown. The general form of the quadratic equation is 

 

𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0, 𝑎 ≠ 0, 𝑎, 𝑏, 𝑐 ∈ ℝ, 

 

and its roots are given by the formula 

 

𝑥 =
−𝑏±(𝑏2−4𝑎𝑐)1/2

2𝑎
. 

 

However, the quadratic equation describes parabolic curves, whereas the Pythagorean 

Theorem describes right-angled triangles.  

Analytic geometry is a branch of mathematics that studies geometric problems through 

algebra. As I have already mentioned, the roots of analytic geometry can be traced back to 

ancient Greek mathematicians, such as the third-century B.C. Greek geometer and astronomer 

Apollonius of Perga, who is famous for his work on “conic sections.” Indeed, ancient Greek 

mathematicians had observed that circles, ellipses, hyperbolas, and parabolas result from the 

intersection of a cone by an adequate plane. A circle is produced when the cone is cut by a 

plane that is parallel to the base of the cone. An ellipse is produced when the cone is cut by a 

plane that is not parallel to the base of the cone or the side of the cone, and it cuts only one 

nappe of the cone. A hyperbola is produced when the intersecting plane cuts both nappes of 

the cone. A parabola is produced when the oblique section of the cone is parallel to the slant 

height (i.e., the height of a cone from the vertex to the periphery (rather than the center) of the 

base). 

In analytic geometry, we put traditional (Euclidean) geometry on the Cartesian plane. 

René Descartes has pointed out that “any problem in geometry can easily be reduced to such 

terms that knowledge of lengths of certain straight lines is sufficient for its construction.”362 

In particular, according to Descartes, “just as arithmetic consists of only four or five 

operations, namely, addition, subtraction, multiplication, division, and the extraction of roots, 

which may be considered a kind of division, so in geometry,” we can find required lines by 

merely adding or subtracting other lines; or else, by working as follows: 

 

. . . taking one line which I shall call unity in order to relate it as closely as possible to 

numbers, and which can in general be chosen arbitrarily, and having given two other lines, to 

find a fourth line which shall be to one of the given lines as the other is to unity (which is the 

same as multiplication); or, again, to find a fourth line which is to one of the given lines as 

unity is to the other (which is equivalent to division); or, finally, to find one, two, or several 

mean proportionals between unity and some other line (which is the same as extracting the 

square root, cube root, etc., of the given line).363 

 

Consider two points 𝑃(𝑥1, 𝑦1) and 𝑄(𝑥2, 𝑦2) on the 𝑥𝑦-plane and connect them with a 

straight line segment as shown in Figure 2.5.  

 

 
362 Descartes, “On Analytic Geometry,” p. 397.  
363 Ibid, p. 397–98. 
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Figure 2.5. Slope and Distance. 

The 𝑥-coordinate of point 𝑃 is 𝑥1, the 𝑥-coordinate of point 𝑄 is 𝑥2, and the distance 

between 𝑥1 and 𝑥2 is 𝑥2 − 𝑥1; and, in order to avoid the use of plus and minus signs, we can 

use the absolute value |𝑥2 − 𝑥1|. The 𝑦-coordinate of point 𝑃 is 𝑦1, the 𝑦-coordinate of point 

𝑄 is 𝑦2, and the distance between 𝑦2 and 𝑦1 is 𝑦2 − 𝑦1; and, in order to avoid the use of plus 

and minus signs, we can use the absolute value |𝑦2 − 𝑦1|. Therefore, the horizontal distance 

between points 𝑃 and 𝑄 is 𝑥2 − 𝑥1, and the vertical distance between points 𝑃 and 𝑄 is 𝑦2 −

𝑦1. Now, consider the right-angled triangle that is defined by the points 𝑃(𝑥1, 𝑦1), 𝑄(𝑥2, 𝑦2), 

and the point 𝑅 (the intersection between the horizontal side and the vertical side): the three 

sides of this right-angled triangle are the hypotenuse 𝑃𝑄, the horizontal side, which is 𝑥2 −

𝑥1, and the vertical side, which is 𝑦2 − 𝑦1. The “slope,” or “gradient,” of the straight line 

segment 𝑃𝑄, denoted by 𝑚𝑃𝑄, is the quotient of the “rise” over the “run,” comparing how 

much one travels vertically (“up and down”) versus how much one travels horizontally, and, 

thus, it relates the steepness or inclination of the straight line segment 𝑃𝑄 to the coordinates; 

symbolically: 

 

𝑚𝑃𝑄 =
𝑟𝑖𝑠𝑒

𝑟𝑢𝑛
=

𝑦2−𝑦1

𝑥2−𝑥1
. 

 

In Figure 2.5, the distance between points 𝑃 and 𝑄, denoted by 𝑑𝑃𝑄, is given by (and, 

indeed, is a version of) the Pythagorean Theorem. Therefore, in Figure 2.5, 

 

(𝑑𝑃𝑄)
2
= (𝑟𝑢𝑛)2 + (𝑟𝑖𝑠𝑒)2 

⇔ 𝑑𝑃𝑄 = √(𝑥2 − 𝑥1)2 + (𝑦2 − 𝑦1)2. 

 

It can be easily verified that the midpoint of the straight line segment joining points 

(𝑥1, 𝑦1) and (𝑥2, 𝑦2) is (
𝑥1+𝑥2

2
,
𝑦1+𝑦2

2
). 

All points (𝑥, 𝑦) in ℝ2 satisfying the equation 𝑦 = 𝑚𝑥 + 𝑏 form a straight line, and 𝑚 is 

the slope of the straight line. For the slope 𝑚 of the straight line passing through the points 

(𝑥1, 𝑦1) and (𝑥2, 𝑦2), we have: 

 

i. If 𝑥1 = 𝑥2, 𝑚 is undefined (the line is vertical). 
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ii. If 𝑥1 ≠ 𝑥2, then 𝑚 =
𝛥𝑦

𝛥𝑥
=

𝑦2−𝑦1

𝑥2−𝑥1
. 

 

Two straight lines 𝑦1 and 𝑦2 with slopes 𝑚1 and 𝑚2, respectively, are parallel if and only 

if 𝑚1 = 𝑚2, and they are perpendicular if and only if 𝑚2 = −
1

𝑚1
. 

To find the equation of a non-vertical straight line, we work as follows: 

 

i. we find a point (𝑥1, 𝑦1) on the line;  

ii. we find the slope 𝑚 of the line; 

iii. we write the equation of the line as follows: 𝑦 − 𝑦1 = 𝑚(𝑥 − 𝑥1); this equation is 

called the “point-slope” form of the equation of a line. 

 

For instance, let us find the equation of the straight line passing through the points 

(5,−0.5) and (10, 9.5). First, we define the point (𝑥1, 𝑦1) = (5,−0.5). Second, we find the 

slope of the required line: 𝑚 =
9.5−(−0.5)

10−5
= 2. Third, we find the equation of the required line: 

𝑦 − 𝑦1 = 𝑚(𝑥 − 𝑥1) ⇒ 𝑦 − (−0.5) = 2(𝑥 − 5) ⇒ 𝑦 = 2𝑥 − 10.5.  

 

Circle 

As we can see in Figure 2.6, a circle with center 𝑂(𝑣,𝑤) and radius 𝑟 is the set of all 

points in the 𝑥𝑦-plane whose distance from 𝑂 is 𝑟 (in Figure 2.6, 𝑂(𝑣, 𝑤) = 𝑂(2,−1), and 

𝑟 = 3). 

 

 

Figure 2.6. Circle. 

If (𝑥, 𝑦) is a point on the circle with center 𝑂(𝑣,𝑤) and radius 𝑟, then the distance 

formula implies that  

 

𝑟 = √(𝑥 − 𝑣)2 + (𝑦 − 𝑤)2 ⇔ 𝑟2 = (𝑥 − 𝑣)2 + (𝑦 −𝑤)2, 

 

which is the standard form of the equation of a circle with center (𝑣,𝑤) and radius 𝑟. The 

circumference of a circle of radius 𝑟 is 𝐶 = 2𝜋𝑟, and the area of a circle of radius 𝑟 is 𝐴 =

𝜋𝑟2, where 𝜋 ≈ 3.14 is Archimedes’s constant (the ratio of the circle’s circumference to its 
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diameter).364 It is worth mentioning that the degenerate possibilities for a circle are the 

following: a point or no graph at all. 

The study of the circle underpins trigonometry. The term “trigonometry” appeared for the 

first time in the book Trigonometria by Bartholomaeus Pitiscus (1561–1613) in 1595, and it 

literary means measuring (and, more broadly, studying) “trigons” (“trigon” being the Latin 

word for “triangle”). The acknowledged founder of trigonometry is the ancient Greek 

astronomer and mathematician Hipparchus of Nicaea (ca. 190–ca. 120 B.C.). Moreover, 

around 100 A.D., another Greek mathematician, Menelaus of Alexandria, published a series 

of treatises on chords.  

 

Trigonometric Functions365 

In the context of analytic geometry, we can also study the basic trigonometric functions 

on the unit circle (specifically, on a circle whose center is (0,0) and whose radius 𝑟 = 1).  

 

 

Figure 2.7. The Number Circle. 

Consider a circle of unit radius, as shown in Figure 2.7, and let point 𝐴 (the right-hand 

end point of the horizontal diameter) be a reference point. Let an anti-clockwise motion round 

the circle be a positive direction, and a clockwise motion be a negative direction. A circle of 

unit radius with a reference point and the direction of tracing specified is called the “number 

circle.” Given an arbitrary point 𝑃 of the number circle, there are infinitely many arcs 

beginning at the point 𝐴 and terminating at the point 𝑃. One of these arcs is the shortest arc 

connecting the points 𝐴 and 𝑃, and all the other arcs are obtained from the shortest arc by 

adding or subtracting an integral number of complete revolutions. Hence, every point 𝑃 of the 

number circle is associated with an infinite set of numbers that consists of the values of all the 

arcs beginning at the point 𝐴 and terminating at the point 𝑃 (the lengths of the arcs are taken 

with the plus or minus sign according as the motion from the point 𝐴 to the point 𝑃 is anti-

clockwise or clockwise, respectively). The circumference of the circle of unit radius is equal 

to 2𝜋, and, therefore, the lengths of all the arcs terminating at the given point 𝑃 differ from 

one another by an integer number multiple of 2𝜋, so that the general form of these quantities 

 
364 See: Swokowski and Cole, Algebra and Trigonometry with Analytic Geometry; Wildberger, Divine Proportions. 

Archimedes approximated 𝜋 by using the fact that the circumference of a circle is bounded by the perimeter of 

an inscribed polygon and the perimeter of a circumscribed polygon. In particular, he used a 96-sided inscribed 

polygon and a 96-sided circumscribed polygon to find the following approximation: 

3 +
10

71
< 𝜋 < 3 +

10

70
. 

Moreover, regarding Archimedes and his scientific legacy, see: Rassias, ed., Geometry, Analysis and 

Mechanics. 
365 See: Swokowski and Cole, Algebra and Trigonometry with Analytic Geometry; Wildberger, Divine Proportions. 
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is 𝑥 + 2𝜋𝑎, where 𝑎 ∈ ℤ, and 𝑥 is the length of the shortest arc connecting the points 𝐴 and 

𝑃. Thus, for every real number 𝑥, there is a point 𝑃(𝑥) of the number circle such that the 

length of the arc 𝐴𝑃 is 𝑥, and every point 𝑃 of the circle corresponds to an infinite set of 

numbers of the form 𝑥 + 2𝜋𝑎, where 𝑎 ∈ ℤ, and 𝑥 is the length of one of the arcs connecting 

the points 𝐴 and 𝑃. 

Assume that the center of the number circle coincides with the origin 𝑂(0,0) of the 

rectangular coordinate system 𝑋𝑂𝑌, as shown in Figure 2.8. Let 𝑥 be an arbitrary real 

number. Then, on the number circle, we find the point 𝑃(𝑥) that corresponds to 𝑥. The 

ordinate of the point 𝑃(𝑥) is called the “sine” of the number 𝑥 (denoted by 𝑠𝑖𝑛𝑥), the abscissa 

of the point 𝑃(𝑥) is called the “cosine” of the number 𝑥 (denoted by 𝑐𝑜𝑠𝑥), the ratio
𝑠𝑖𝑛𝑥

𝑐𝑜𝑠𝑥
is 

called the “tangent” of the number 𝑥 (denoted by 𝑡𝑎𝑛𝑥), and the ratio 
𝑐𝑜𝑠𝑥

𝑠𝑖𝑛𝑥
 is called the 

“cotangent” of the number 𝑥 (denoted by 𝑐𝑜𝑡𝑥).  

 

 

Figure 2.8. Trigonometric Functions. 

Notice that the reference point 𝐴 on the number circle corresponds to the number 0, since 

the abscissa and the ordinate of this point are 1 and 0, respectively, and we have 𝑐𝑜𝑠0 = 1, 

𝑠𝑖𝑛0 = 0, and 𝑡𝑎𝑛0 =
𝑠𝑖𝑛0

𝑐𝑜𝑠0
= 0. The point 𝐵 of intersection of the circle and the positive ray 

of the axis 𝑂𝑌 corresponds to the number 𝜋/2. Since the abscissa and the ordinate of the 

point 𝐵 are 0 and 1, respectively, we have cos (
𝜋

2
) = 0 and sin (

𝜋

2
) = 1, whereas tan (

𝜋

2
) is 

not defined. Similarly, as shown in Figure 2.8, given the coordinates of the points 𝐶 and 𝐷, 

we realize that 𝑐𝑜𝑠𝜋 = −1, 𝑠𝑖𝑛𝜋 = 0, 𝑡𝑎𝑛𝜋 = 0, cos (
3𝜋

2
) = 0, 𝑠𝑖𝑛 (

3𝜋

2
) = −1, and 𝑡𝑎𝑛 (

3𝜋

2
) 

is not defined.  

We can summarize the basic definitions and the basic formulas of trigonometry as 

follows: 

 

𝑆𝑖𝑛𝑒: sin𝜃 =
𝑜𝑝𝑝𝑜𝑠𝑖𝑡𝑒 𝑠𝑖𝑑𝑒

ℎ𝑦𝑝𝑜𝑡𝑒𝑛𝑢𝑠𝑒
, 

𝐶𝑜𝑠𝑖𝑛𝑒: 𝑐𝑜𝑠𝜃 =
𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡 𝑠𝑖𝑑𝑒

ℎ𝑦𝑝𝑜𝑡𝑒𝑛𝑢𝑠𝑒
, 

𝑇𝑎𝑛𝑔𝑒𝑛𝑡: 𝑡𝑎𝑛𝜃 =
𝑜𝑝𝑝𝑜𝑠𝑖𝑡𝑒 𝑠𝑖𝑑𝑒

𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡 𝑠𝑖𝑑𝑒
, 

𝐶𝑜𝑠𝑒𝑐𝑎𝑛𝑡: 𝑐𝑠𝑐𝜃 =
ℎ𝑦𝑝𝑜𝑡𝑒𝑛𝑢𝑠𝑒

𝑜𝑝𝑝𝑜𝑠𝑖𝑡𝑒 𝑠𝑖𝑑𝑒
, 

𝑆𝑒𝑐𝑎𝑛𝑡: 𝑠𝑒𝑐𝜃 =
ℎ𝑦𝑝𝑜𝑡𝑒𝑛𝑢𝑠𝑒

𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡 𝑠𝑖𝑑𝑒
, 

𝐶𝑜𝑡𝑎𝑔𝑛𝑔𝑒𝑛𝑡: 𝑐𝑜𝑡𝜃 =
𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡 𝑠𝑖𝑑𝑒

𝑜𝑝𝑝𝑜𝑠𝑖𝑡𝑒 𝑠𝑖𝑑𝑒
, 
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and the basic trigonometric identities: 

 

𝑠𝑖𝑛2𝑎 + 𝑐𝑜𝑠2𝑎 = 1, 

sin (−𝑎) = −𝑠𝑖𝑛𝑎, 

cos (−𝑎) = 𝑐𝑜𝑠𝑎, 

sin (𝑎 ± 𝑏) = 𝑠𝑖𝑛𝑎 ∙ 𝑐𝑜𝑠𝑏 ± 𝑐𝑜𝑠𝑎 ∙ 𝑠𝑖𝑛𝑏, 

cos (𝑎 ± 𝑏) = 𝑐𝑜𝑠𝑎 ∙ 𝑐𝑜𝑠𝑏 ∓ 𝑠𝑖𝑛𝑎 ∙ 𝑠𝑖𝑛𝑏, 

𝑠𝑖𝑛𝑎 + 𝑠𝑖𝑛𝑏 = 2𝑠𝑖𝑛
1

2
(𝑎 + 𝑏) ∙ 𝑐𝑜𝑠

1

2
(𝑎 − 𝑏), 

𝑐𝑜𝑠𝑎 + 𝑐𝑜𝑠𝑏 = 2𝑐𝑜𝑠
1

2
(𝑎 + 𝑏) ∙ 𝑐𝑜𝑠

1

2
(𝑎 − 𝑏), 

𝑠𝑖𝑛
1

2
𝑎 = √

1−𝑐𝑜𝑠𝑎

2
, 

𝑐𝑜𝑠
1

2
𝑎 = √

1+𝑐𝑜𝑠𝑎

2
,  

𝑠𝑖𝑛2𝑎 = 2𝑠𝑖𝑛𝑎 ∙ 𝑐𝑜𝑠𝑎, 

𝑐𝑜𝑠2𝑎 = 𝑐𝑜𝑠2𝑎 − 𝑠𝑖𝑛2𝑎 = 2𝑐𝑜𝑠2𝑎 − 1,  

𝑡𝑎𝑛𝑎 =
𝑠𝑖𝑛𝑎

𝑐𝑜𝑠𝑎
, 

sin (𝑎 ±
𝜋

2
) = ±𝑐𝑜𝑠𝑎, 

cos (𝑎 ±
𝜋

2
) = ∓𝑠𝑖𝑛𝑎. 

 

The inverse trigonometric functions are denoted as follows: 𝑎𝑟𝑐𝑠𝑖𝑛𝑥 ≡ 𝑠𝑖𝑛−1𝑥 (𝑦 =

𝑎𝑟𝑐𝑠𝑖𝑛𝑥 ⇔ 𝑥 = 𝑠𝑖𝑛𝑦), 𝑎𝑟𝑐𝑐𝑜𝑠𝑥 ≡ 𝑐𝑜𝑠−1𝑥 (𝑦 = 𝑎𝑟𝑐𝑐𝑜𝑠𝑥 ⇔ 𝑥 = 𝑐𝑜𝑠𝑦), and 𝑎𝑟𝑐𝑡𝑎𝑛𝑥 =

𝑡𝑎𝑛−1𝑥 (𝑦 = 𝑎𝑟𝑐𝑡𝑎𝑛𝑥 ⇔ 𝑥 = 𝑡𝑎𝑛𝑦). 

 

 

Ellipse 

As we can see in Figure 2.9, an “ellipse” is the set of all points in a plane the sum of 

whose distances from two fixed points (“foci”) is constant.366 Notice that, if the two foci 

coincide, then we receive a circle. 

 

 

Figure 2.9. Ellipse. 

 
366 Ibid. 
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Let the two foci of an ellipse be the points (−𝑐, 0) and (𝑐, 0), so that 𝑑1 + 𝑑2 = 2𝑎. Then 

a point 𝑃(𝑥, 𝑦) is on this ellipse if and only if  

 

√[𝑥 − (−𝑐)]2 + (𝑦 − 0)2 +√(𝑥 − 𝑐)2 + (𝑦 − 0)2 = 2𝑎 

⇒ √(𝑥 + 𝑐)2 + (𝑦 − 0)2 +√(𝑥 − 𝑐)2 + (𝑦 − 0)2 = 2𝑎 

⇒ √(𝑥 + 𝑐)2 + 𝑦2 = 2𝑎 − √(𝑥 − 𝑐)2 + 𝑦2 

⇒ (𝑥 + 𝑐)2 + 𝑦2 = 4𝑎2 − 4𝑎√(𝑥 − 𝑐)2 + 𝑦2 + (𝑥 − 𝑐)2 + 𝑦2 

⇒ 𝑥𝑐 = 𝑎2 − 𝑎√(𝑥 − 𝑐)2 + 𝑦2 

⇒ 𝑎√(𝑥 − 𝑐)2 + 𝑦2 = 𝑎2 − 𝑥𝑐 

⇒ 𝑎2[(𝑥 − 𝑐)2 + 𝑦2] = 𝑎4 − 2𝑎2𝑐𝑥 + 𝑐2𝑥2 

⇒ 𝑎2𝑥2 − 2𝑎2𝑐𝑥 + 𝑎2𝑐2 + 𝑎2𝑦2 = 𝑎4 − 2𝑎2𝑐𝑥 + 𝑐2𝑥2 

⇒ (𝑎2 − 𝑐2)𝑥2 + 𝑎2𝑦2 = 𝑎2(𝑎2 − 𝑐2) 

⇒
𝑥2

𝑎2
+

𝑦2

𝑎2−𝑐2
= 1. 

 

Notice that, because 𝑑1 + 𝑑2 is greater than the distance between the foci, it holds that 

𝑎 > 𝑐 and 𝑎2 − 𝑐2 > 0. If 𝑏2 = 𝑎2 − 𝑐2 ⇔ 𝑎2 = 𝑏2 + 𝑐2, then we receive the standard form 

of the equation of an ellipse with center at the origin and foci on the 𝑥-axis, namely,  

 
𝑥2

𝑎2
+
𝑦2

𝑏2
= 1.  

 

If we set 𝑦 = 0, then we find the 𝑥-intercepts of the ellipse, say (−𝑎, 0) and (𝑎, 0); and, 

if we set 𝑥 = 0, then we find the 𝑦-intercepts of the ellipse, say (0,−𝑏) and (0, 𝑏). In Figure 

2.9, the larger segment from (−𝑎, 0) to (𝑎, 0) is called the “major axis,” and the “minor axis” 

is the segment from (0,−𝑏) to (0, 𝑏). The endpoints of the major axis are called the “vertices 

of the ellipse.” Hence, we have: 

 

foci: (−𝑐, 0) and (𝑐, 0); 

vertices: (−𝑎, 0) and (𝑎, 0).  

 

In general, if the ellipse is centered at the point (𝑢, 𝑣), and if the major axis is parallel to 

the 𝑥-axis, then the standard form of the equation of an ellipse is 

 
(𝑥−𝑢)2

𝑎2
+
(𝑦−𝑣)2

𝑏2
= 1. 

 

Similarly, we can show that, if the foci of an ellipse are two points (0,−𝑐) and (0, 𝑐) on 

the 𝑦-axis, then the standard form of the equation of an ellipse becomes 

 
𝑥2

𝑏2
+
𝑦2

𝑎2
= 1, 

 

and, then, the major axis is along the 𝑦-axis, so than then we have: 

 

foci: (0, 𝑐) and (0,−𝑐); 
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vertices: (0, 𝑎) and (0,−𝑎). 

 

In general, if the ellipse is centered at the point (𝑢, 𝑣), and if the major axis is parallel to 

the 𝑦-axis, then the standard form of the equation of an ellipse is 

 
(𝑥−𝑢)2

𝑏2
+
(𝑦−𝑣)2

𝑎2
= 1. 

 

Given the definition of an ellipse, the degenerate possibilities for an ellipse are the 

following: a point or no graph at all. 

In our solar system, many bodies revolve in elliptical orbits around a larger body that is 

located at one focus. In the seventeenth century, Johannes Kepler, based on Apollonius’s 

mathematical study of the ellipse, articulated a rigorous explanation of planetary motions.  

Moreover, regarding the ellipse, it should be mentioned that it has a reflection property 

that causes any ray or wave that originates at one focus to strike the ellipse and pass through 

the other focus. In terms of acoustics, the aforementioned property implies that, in a room 

with an elliptical ceiling, even a slight noise made at one focus can be heard at the other 

focus, but, if people are standing between the foci, then they hear nothing. Such rooms are 

known as whispering galleries.  

 

Hyperbola 

As we can see in Figure 2.10, a “hyperbola” is the set of all points in a plane the 

difference of whose distances from two fixed points (“foci”) is a positive constant.367 

Let the two foci of a hyperbola be the points (−𝑐, 0) and (𝑐, 0), so that |𝑑1 − 𝑑2| = 2𝑎, 

or 𝑑1 − 𝑑2 = ±2𝑎 (according as 𝑑1 > 𝑑2 or 𝑑1 < 𝑑2). Then a point 𝑃(𝑥, 𝑦) is on this 

hyperbola if and only if  

 

√(𝑥 + 𝑐)2 + (𝑦 − 0)2 −√(𝑥 − 𝑐)2 + (𝑦 − 0)2 = ±2𝑎 

⇒ √(𝑥 + 𝑐)2 + 𝑦2 −√(𝑥 − 𝑐)2 + 𝑦2 = ±2𝑎 

⇒ √(𝑥 + 𝑐)2 + 𝑦2 = ±2𝑎 + √(𝑥 − 𝑐)2 + 𝑦2 

⇒ (𝑥 + 𝑐)2 + 𝑦2 = 4𝑎2 ± 4𝑎√(𝑥 − 𝑐)2 + 𝑦2 + (𝑥 − 𝑐)2 + 𝑦2 

⇒ 𝑐𝑥 − 𝑎2 = ±𝑎√(𝑥 − 𝑐)2 + 𝑦2 

⇒ 𝑐2𝑥2 − 2𝑐𝑥𝑎2 + 𝑎4 = 𝑎2[(𝑥 − 𝑐)2 + 𝑦2] 

⇒
𝑥2

𝑎2
−

𝑦2

𝑐2−𝑎2
= 1. 

 

For 𝑐 > 0 ⇒ 𝑎2 − 𝑐2 < 0, so that, setting 𝑏 = √𝑐2 − 𝑎2, it follows that the standard 

form of the equation of the given hyperbola becomes 

 
𝑥2

𝑎2
−
𝑦2

𝑏2
= 1.  

 

If we set 𝑦 = 0, then we find the 𝑥-intercepts of the hyperbola, say (−𝑎, 0) and (𝑎, 0). 

The segment of the 𝑥-axis joining (−𝑎, 0) and (𝑎, 0) is called the “transverse axis,” and the 

 
367 Ibid. 
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endpoints of the transverse axis are called the “vertices of the hyperbola.” If we set 𝑥 = 0, 

then we find that there are no 𝑦-intercepts. Notice that 

 

𝑥2

𝑎2
−
𝑦2

𝑏2
= 1 ⇒ 𝑦 =

±𝑏𝑥

𝑎
√1 −

𝑎2

𝑥2
, 

 

and, as |𝑥| → ∞, 1 −
𝑎2

𝑥2
→ 1, so that the graph of the hyperbola approaches the lines 

 

𝑦 = ±
𝑏

𝑎
𝑥. 

 

Thus, we have just found the “asymptotes of the hyperbola” (which can be construed as 

the diagonals of rectangle of dimensions 2𝑎 by 2𝑏). In general, if the hyperbola is centered at 

the point (𝑢, 𝑣), and if the transverse axis is parallel to the 𝑥-axis, then the standard form of 

the equation of a hyperbola is 

 
(𝑥−𝑢)2

𝑎2
−
(𝑦−𝑣)2

𝑏2
= 1. 

 

Similarly, if the foci of a hyperbola are the points (0,−𝑐) and (0, 𝑐) on the 𝑦-axis, then 

the standard equation of the hyperbola is 

 
𝑦2

𝑎2
−
𝑥2

𝑏2
= 1, 

 

and its asymptotes are the lines 

 

𝑦 = ±
𝑎

𝑏
𝑥 . 

 

In general, if the hyperbola is centered at the point (𝑢, 𝑣), and if the transverse axis is 

parallel to the 𝑦-axis, then the standard form of the equation of a hyperbola is 

 
(𝑦−𝑣)2

𝑎2
−
(𝑥−𝑢)2

𝑏2
= 1. 

 

 

Figure 2.10. Hyperbola. 
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Given the definition of a hyperbola, the degenerate possibilities for a hyperbola are two 

intersecting straight lines.  

 

Hyperbolic Functions368: The trigonometric or circular functions are 𝑠𝑖𝑛, 𝑐𝑜𝑠, 𝑡𝑎𝑛, 𝑐𝑜𝑡, 

𝑠𝑒𝑐, and 𝑐𝑠𝑐, and they are defined on the trigonometric circle, where the 𝑦-axis is the sine 

axis, and the 𝑥-axis is the cosine axis. The trigonometric circle emerges while we parametrize 

the algebraic equation of the unit circle 𝑥2 + 𝑦2 = 1 setting 𝑥 = 𝑐𝑜𝑠𝜃 and 𝑦 = 𝑠𝑖𝑛𝜃, that is, 

𝑐𝑜𝑠2 + 𝑠𝑖𝑛2𝜃 = 1. The hyperbolic functions are defined in the following way: 

 

Hyperbolic sine of 𝜃: 𝑠𝑖𝑛ℎ𝜃 =
𝑒𝜃−𝑒−𝜃

2
. 

Hyperbolic cosine of 𝜃: 𝑐𝑜𝑠ℎ𝜃 =
𝑒𝜃+𝑒−𝜃

2
. 

Hyperbolic tangent of 𝜃: 𝑡𝑎𝑛ℎ𝜃 =
𝑠𝑖𝑛ℎ𝜃

𝑐𝑜𝑠ℎ𝜃
=

𝑒𝜃−𝑒−𝜃

𝑒𝜃+𝑒−𝜃
. 

Hyperbolic cotangent of 𝜃: 𝑐𝑜𝑡ℎ𝜃 =
𝑐𝑜𝑠ℎ𝜃

𝑠𝑖𝑛ℎ𝜃
=

𝑒𝜃+𝑒−𝜃

𝑒𝜃−𝑒−𝜃
. 

Hyperbolic secant of 𝜃: 𝑠𝑒𝑐ℎ𝜃 =
1

𝑐𝑜𝑠ℎ𝜃
=

2

𝑒𝜃+𝑒−𝜃
. 

Hyperbolic cosecant of 𝜃, for 𝜃 ≠ 0: 𝑐𝑠𝑐ℎ𝜃 =
1

𝑠𝑖𝑛ℎ𝜃
=

2

𝑒𝜃−𝑒−𝜃
. 

 

Given that the standard form of a hyperbola with center at the origin and foci on the 𝑥-

axis is 
𝑥2

𝑎2
−
𝑦2

𝑏2
= 1, the right branch of a hyperbola can be parametrized by 

 

𝑥 = 𝑎𝑐𝑜𝑠ℎ𝜃 and 𝑦 = 𝑏𝑠𝑖𝑛ℎ𝜃 

 

and the left branch can be parametrized by 

 

𝑥 = −𝑎𝑐𝑜𝑠ℎ𝜃 and 𝑦 = 𝑏𝑠𝑖𝑛ℎ𝜃, so that 

𝑐𝑜𝑠ℎ2𝜃 − 𝑠𝑖𝑛ℎ2𝜃 = 1, and 

𝑐𝑜𝑠ℎ2𝜃 + 𝑠𝑖𝑛ℎ2𝜃 = 𝑐𝑜𝑠ℎ2𝜃. 

 

Parabola 

As we can see in Figure 2.11, a “parabola” is the set of all points in a plane whose 

distances from a fixed line (“directrix”) and a fixed point (“focus”) that does not belong to the 

given line (i.e., to the directrix) are equal.369 

For simplicity, as shown in Figure 2.11, let the directrix be the line 𝑥 = −𝑝, and let the 

focus of the parabola be the point (𝑝, 0). Then 𝑃(𝑥, 𝑦) designates an arbitrary point on the 

parabola. Because the points 𝑃1 and 𝑃 have the same 𝑦-coordinate, the distance 𝑑1 is given by 

 

𝑑1 = |𝑥 − (−𝑝)| = |𝑥 + 𝑝|. 

 
368 Ibid. 
369 Ibid. 
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Figure 2.11. Parabola. 

The distance from 𝑃(𝑥, 𝑦) to (𝑝, 0) is given by 

 

𝑑2 = √(𝑥 − 𝑝)2 + (𝑦 − 0)2.  

 

By the definition of a parabola, 

 

𝑑1 = 𝑑2 ⇒ |𝑥 + 𝑝| = √(𝑥 − 𝑝)2 + 𝑦2 ⇒ (𝑥 + 𝑝)2 = (𝑥 − 𝑝)2 + 𝑦2.  

 

Thus,  

 

4𝑝𝑥 = 𝑦2,  

 

which is the standard form of the equation of a parabola with directrix 𝑥 = −𝑝 and focus at 

(𝑝, 0). The 𝑥-axis is the axis of symmetry of the given parabola (and the parabola opens to the 

right). If the axis of symmetry is the 𝑥-axis, but the parabola opens to the left, then the 

parabola’s standard form is given by the equation 

 

𝑦2 = −4𝑝𝑥. 

 

In case the axis of symmetry is the 𝑦-axis, then the parabola’s standard form is 𝑥2 = 4𝑝𝑦 

if it opens upward, or 𝑥2 = −4𝑝𝑦 if it opens downward. Given the definition of a parabola, 

the degenerate possibilities for a parabola are the following: a line, a pair of parallel lines, or 

no graph at all.  

As regards the parabola, in general, it should be mentioned that it has a reflection 

property that causes any ray or wave that originates at the focus and strikes the parabola to be 

reflected parallel to the axis of symmetry. Thus, for instance, flashlights and searchlights use 

a parabolic reflector with the bulb located at the focus. Additionally, due to the reflection 

property of a parabola, any ray or wave that comes into a parabolic reflector parallel to the 

axis of symmetry is directed to the focus point. For this reason, radars, radio antennas, and 

reflecting telescopes operate according to this principle. Finally, due to their great strength, 
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parabolic arches are used extensively in bridges, cathedrals, and elsewhere in architecture and 

engineering, especially in case we have equally spaced load.  

 

Analytic Geometry of Space 

Consider three coordinate axes 𝑂𝑥, 𝑂𝑦, and 𝑂𝑧 that pass through the same point 𝑂(0,0,0) 

and do not lie on the same plane. The 𝑥-axis, or 𝑂𝑥, is called the axis of the “abscissas,” or 

the “abscissa axis”; the 𝑦-axis, or 𝑂𝑦, is called the axis of the “ordinates,” or the “ordinate 

axis”; and the 𝑧-axis, or 𝑂𝑧, is called the axis of the “applicates,” or the “applicate axis.” The 

point 𝑂(0,0,0) is called the origin of the 𝑥𝑦𝑧-coordinate system. The three planes 𝑥𝑂𝑦, 𝑦𝑂𝑧, 

and 𝑧𝑂𝑥, which are determined by the three coordinate axes, are called coordinate planes, and 

they are perpendicular to each other (thus, this coordinate system is called orthogonal). 

Consider a vector 𝑃1𝑃2⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ such that the coordinates of the point 𝑃1 are (𝑥1, 𝑦1, 𝑧1) and the 

coordinates of the point 𝑃2 are (𝑥2, 𝑦2, 𝑧2). We project 𝑃1𝑃2⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ onto each of the three coordinate 

axes 𝑂𝑥, 𝑂𝑦, and 𝑂𝑧, and, each time, it is parallel to the coordinate planes that are determined 

by the other two coordinate axes. Then the coordinate projections of 𝑃1𝑃2⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ are 𝑥2 − 𝑥1 on the 

𝑥-axis, 𝑦2 − 𝑦1 on the 𝑦-axis, and 𝑧2 − 𝑧1 on the 𝑧-axis.  

Consider two points 𝑃1(𝑥1, 𝑦1, 𝑧1) with radius vector 𝑟1 (i.e., 𝑟1 is the vector from the 

origin of the 𝑥𝑦𝑧-coordinate system to the current position of 𝑃1) and 𝑃2(𝑥2, 𝑦2, 𝑧2) with 

radius vector 𝑟2 (i.e., 𝑟2 is the vector from the origin of the 𝑥𝑦𝑧-coordinate system to the 

current position of 𝑃2). Let 𝑃 be an arbitrary point situated on the straight line segment 𝑃1𝑃2 

with radius vector 𝑟. If 𝑘 is the partial ratio of 𝑃1, 𝑃2, and 𝑃, namely, if 𝑘 =
𝑃1𝑃⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗

𝑃𝑃2⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗
 , then the 

position vector 𝑟 of 𝑃 is given by the following formula: 𝑟 =
𝑟1⃗⃗ ⃗⃗ +𝑘𝑟2⃗⃗⃗⃗⃗⃗ ⃗⃗

1+𝑘
. If 𝑃 is the middle point 

of the straight line segment 𝑃1𝑃2, then 𝑘 = 1, and the position vector of 𝑃 is 𝑟 =
𝑟1⃗⃗ ⃗⃗ +𝑟2⃗⃗ ⃗⃗

2
 . The 

coordinates of an arbitrary point 𝑃(𝑥, 𝑦, 𝑧) situated on the straight line segment 𝑃1𝑃2 are 

given by the following formulas:  

 

𝑥 =
𝑥1+𝑘𝑥2

1+𝑘
, 𝑦 =

𝑦1+𝑘𝑦2

1+𝑘
, 𝑎𝑛𝑑 𝑧 =

𝑧1+𝑘𝑧2

1+𝑘
,  

 

and, in case 𝑃 is the middle point of the straight line segment 𝑃1𝑃2, then the coordinates of 𝑃 

are given by the following formulas: 

 

𝑥 =
𝑥1+𝑥2

2
, 𝑦 =

𝑦1+𝑦2

2
, 𝑎𝑛𝑑 𝑧 =

𝑧1+𝑧2

2
. 

 

Two vectors 𝑢⃗⃗ and 𝑣⃗ are “collinear” if and only if there exist two non-negative scalars 

(numbers) 𝑘 and 𝑙 such that 𝑘𝑢⃗⃗ + 𝑙𝑣⃗ = 0. Consider a vector 𝑢⃗⃗ written in component form as 

〈𝑢1, 𝑣1, 𝑤1〉 and a vector 𝑣⃗ written in component form as 〈𝑢2, 𝑣2, 𝑤2〉. If 𝑢⃗⃗ and 𝑣⃗ are collinear, 

then 
𝑢1

𝑢2
=

𝑣1

𝑣2
=

𝑤1

𝑤2
, that is, their coordinate projections are proportional.  

Three vectors 𝑢⃗⃗, 𝑣⃗, and 𝑤⃗⃗⃗ are “coplanar” if and only if there exist three non-negative 

scalars (numbers) 𝑘, 𝑙, and 𝑚 such that 𝑘𝑢⃗⃗ + 𝑙𝑣⃗ + 𝑚𝑤⃗⃗⃗ = 0. Three arbitrary vectors 𝑢⃗⃗, 𝑣⃗, and 

𝑤⃗⃗⃗ whose component forms (i.e., coordinate projections) are〈𝑢1, 𝑣1, 𝑤1〉, 〈𝑢2, 𝑣2, 𝑤2〉, and 

〈𝑢3, 𝑣3, 𝑤3〉, respectively, are coplanar if and only if the determinant 
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|

𝑢1 𝑣1 𝑤1
𝑢2 𝑣2 𝑤2
𝑢3 𝑣3 𝑤3

| = 0. 

 

Length (or magnitude) of a vector: If 𝑢⃗⃗ = 〈𝑢1, 𝑢2, 𝑢3〉, then the length (or the magnitude) 

of 𝑢⃗⃗, denoted by |𝑢⃗⃗| = √𝑢1
2 + 𝑢2

2 + 𝑢3
2, that is, it is equal to the square root of the sum of the 

squares of its coordinate projections. 

 

Dot or Scalar or Inner Product of vectors: Consider two vectors 𝑢⃗⃗ = 〈𝑢1, 𝑢2, 𝑢3〉 and 𝑣⃗ =
〈𝑣1, 𝑣2, 𝑣3〉. Then their “dot (or scalar or inner) product” is given by the following formula: 

 

𝑢⃗⃗ ∙ 𝑣⃗ = 𝑢1𝑣1 + 𝑢2𝑣2 + 𝑢3𝑣3, 

 

so that we obtain a scalar (instead of a vector). The geometric significance of this operation is 

that we multiply the length of 𝑢⃗⃗ times the length of 𝑣⃗ times the cosine of the angle 𝜃 between 

𝑢⃗⃗ and 𝑣⃗. In other words, 

 

𝑢⃗⃗ ∙ 𝑣⃗ = |𝑢⃗⃗||𝑣⃗|𝑐𝑜𝑠𝜃. 

 

Thus, this operation gives us information about the lengths of the vectors under 

consideration as well as about the angle that is formed between these vectors. Notice that the 

sign of 𝑢⃗⃗ ∙ 𝑣⃗ is going to be positive if 𝜃 < 90°, and it is going to be negative if 𝜃 > 90° (𝑢⃗⃗ ∙ 𝑣⃗ 

is going to be equal to 0 if 𝜃 = 90°). 

 

Corollaries: The cosine of the angle 𝜃 between two vectors 𝑢⃗⃗ and 𝑣⃗ is equal to 
𝑢⃗⃗⃗∙𝑣⃗⃗

|𝑢⃗⃗⃗||𝑣⃗⃗|
. Two 

vectors are perpendicular to each other if and only if their dot product is zero (since 𝑐𝑜𝑠90° =

0). 

 

Norm of a vector: The “norm” of a vector 𝑢⃗⃗ = 〈𝑢1, 𝑢2, … , 𝑢𝑛〉 in ℝ𝑛 is the distance of the 

vector from the origin, and it is denoted by ‖𝑢⃗⃗‖. Hence, the Euclidean norm of𝑢⃗⃗ =

〈𝑢1, 𝑢2, … , 𝑢𝑛〉 is (as a consequence of the Pythagorean Theorem): 

 

‖𝑢⃗⃗‖ = √𝑢 ∙ 𝑢 = √𝑢1
2 + 𝑢2

2 +⋯+ 𝑢𝑛2 . 

 

Cross Product of two vectors in a 3-dimensional space: Consider two vectors 𝑢⃗⃗ =

〈𝑢1, 𝑢2, 𝑢3〉 and 𝑣⃗ = 〈𝑣1, 𝑣2, 𝑣3〉, and let 𝑖, 𝑗, and 𝑘⃗⃗ be the unit vectors of the three coordinate 

axes, respectively. Then the cross product of 𝑢⃗⃗ and 𝑣⃗ is a vector given by the following 

determinant: 

 

𝑢⃗⃗ × 𝑣⃗ = |
𝑖 𝑗 𝑘⃗⃗
𝑢1 𝑢2 𝑢3
𝑣1 𝑣2 𝑣3

| ≡ |
𝑢2 𝑢3
𝑣2 𝑣3

| 𝑖 − |
𝑢1 𝑢3
𝑣1 𝑣3

| 𝑗 + |
𝑢1 𝑢2
𝑣1 𝑣2

| 𝑘⃗⃗. 
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The geometric significance of this operation is that, if 𝜃 is the angle between 𝑢⃗⃗ and 𝑣⃗ 

with 0 ≤ 𝜃 ≤ 𝜋, then 

 

𝑢⃗⃗ × 𝑣⃗ = |𝑢⃗⃗||𝑣⃗|𝑠𝑖𝑛𝜃. 

 

Whereas the resultant of the dot product of two vectors 𝑢⃗⃗ and 𝑣⃗ is a scalar quantity, the 

cross product of two vectors 𝑢⃗⃗ and 𝑣⃗ is a third vector whose direction is perpendicular to both 

𝑢⃗⃗ and 𝑣⃗. Whereas the dot product is zero when the vectors are orthogonal, the cross product is 

maximum when the vectors are orthogonal. Two vectors are parallel to each other if and only 

if they are scalar multiples of each other.  

The area of the parallelogram 𝑃 spanned by two vectors 𝑢⃗⃗ and 𝑣⃗ scales with 𝑢⃗⃗ and 𝑣⃗, and 

the proportionality factor is determined by the sine of the angle 𝜃 between 𝑢⃗⃗ and 𝑣⃗, so that the 

length (or magnitude) of the cross product, namely, |𝑢⃗⃗ × 𝑣⃗|, is the area of the parallelogram 

spanned by 𝑢⃗⃗ and 𝑣⃗. Following the same reasoning, if 𝑢⃗⃗ is the base of a triangle, and if 𝑣⃗ is 

the altitude of the given triangle, then the area of the given triangle is equal to 
1

2
|𝑢⃗⃗ × 𝑣⃗|.  

The volume of the parallelepiped 𝑄 spanned by 𝑢⃗⃗, 𝑣⃗, and 𝑥⃗ as a function of 𝑥⃗ is 

proportional to the base parallelogram 𝑃, which is spanned by 𝑢⃗⃗ and 𝑣⃗. In particular, the 

volume of 𝑄 is equal to the dot product between 𝑥⃗ and𝑢⃗⃗ × 𝑣⃗, symbolically,  

 

𝑥⃗ ∙ (𝑢⃗⃗ × 𝑣⃗), 

 

known as the “triple product” of the given 3-dimensional vectors.  

 

The Abstract Concept of a Distance 

We shall use the notation ℝ𝑛 for the real 𝑛-space, namely, the set of all ordered 𝑛-tuples 

of real numbers. As I have already explained, a set of 𝑛 real independent variables 

𝑥1, 𝑥2, … , 𝑥𝑛 can be considered as the coordinates of a given point in the 𝑛-dimensional space 

ℝ𝑛, in the sense that each set of values of the variables defines a point of ℝ𝑛. 

In ℝ𝑛, or, equivalently, in an 𝑛-dimensional vector space 𝑉 over the real field ℝ, we 

define, in accordance with the Pythagorean Theorem, a distance function between points 𝑥 =

(𝑎1, 𝑎2, … , 𝑎𝑛) and 𝑦 = (𝑏1, 𝑏2, … , 𝑏𝑛) by 

 

𝑑𝐸(𝑥, 𝑦) ≡ |𝑥 − 𝑦| = [∑ (𝑎𝑘 − 𝑏𝑘)
2𝑛

𝑘=1 ]1/2, 

 

and, thus, we obtain the 𝑛-dimensional Euclidean space denoted by ℝ𝑛.  

The Euclidean distance 𝑑𝐸 has the following basic properties370: 

 

(i) |𝑥 − 𝑦| ≥ 0; |𝑥 − 𝑦| = 0 ⇔ 𝑥 = 𝑦; 
(ii) |𝑥 − 𝑦| = |𝑦 − 𝑥|; 
(iii) |𝑥 − 𝑦| ≤ |𝑥 − 𝑧| + |𝑧 − 𝑦|. 

 
370 See: Abbott, Understanding Analysis; Baum, Elements of Point Set Topology; Blackett, Elementary Topology; 

Courant, Differential and Integral Calculus; Dieudonné, Treatise on Analysis; Haaser and Sullivan, Real 

Analysis; Kaplansky, Set Theory and Metric Spaces; Kolmogorov and Fomin, Introductory Real Analysis; 

Mendelson, Introduction to Topology; Rudin, Real and Complex Analysis. In fact, these books are my major 

bibliographical sources for the study of metric spaces, topology, real analysis, and complex analysis.  
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Properties (i) and (ii) follow directly from the definition of Euclidean distance 𝑑𝐸. We 

can prove property (iii) as follows: Let 𝑟 be an arbitrary real number. Then 

 

0 ≤ ∑ (𝑎𝑘 − 𝑟𝑏𝑘)
2𝑛

𝑘=1 = ∑ 𝑎𝑘
2 − 2𝑟∑ 𝑎𝑘

𝑛
𝑘=1

𝑛
𝑘=1 𝑏𝑘 + 𝑟

2∑ 𝑏𝑘
2𝑛

𝑘=1 .  

 

If ∑ 𝑏𝑘
2𝑛

𝑘=1 ≠ 0, and if we set 𝑟 = (∑ 𝑎𝑘𝑏𝑘
𝑛
𝑘=1 )(∑ 𝑏𝑘

2𝑛
𝑘=1 )−1, we obtain 

 

(∑ 𝑎𝑘𝑏𝑘
𝑛
𝑘=1 )2 ≤ ∑ 𝑎𝑘

2𝑛
𝑘=1 ∑ 𝑏𝑘

2𝑛
𝑘=1 , 

 

which is the “Cauchy–Schwarz–Buniakowski Inequality.”371 In case ∑ 𝑏𝑘
2𝑛

𝑘=1 = 0, the 

Cauchy–Schwarz–Buniakowski Inequality holds trivially, in the sense that 0 = 0. If we set 

𝑥 − 𝑧 = (𝑎1, 𝑎2, … , 𝑎𝑛) and 𝑧 − 𝑦 = (𝑏1, 𝑏2, … , 𝑏𝑛), then, using the Cauchy–Schwarz–

Buniakowski Inequality, we obtain: 

 

|𝑥 − 𝑦|2 = ∑ (𝑎𝑘 + 𝑏𝑘)
2𝑛

𝑘=1 = ∑ 𝑎𝑘
2 + 2∑ 𝑎𝑘

𝑛
𝑘=1

𝑛
𝑘=1 𝑏𝑘 + ∑ 𝑏𝑘

2𝑛
𝑘=1 ≤ ∑ 𝑎𝑘

2 +𝑛
𝑘=1

2(∑ 𝑎𝑘
2𝑛

𝑘=1 )1/2 (∑ 𝑏𝑘
2𝑛

𝑘=1 )1/2 + ∑ 𝑏𝑘
2𝑛

𝑘=1 = |𝑥 − 𝑧|2 + 2|𝑥 − 𝑧||𝑧 − 𝑦| + |𝑧 − 𝑦|2 =

(|𝑥 − 𝑧| + |𝑧 − 𝑦|)2. 

 

Therefore, |𝑥 − 𝑦| ≤ |𝑥 − 𝑧| + |𝑧 − 𝑦|.  

 

Remark: The Cauchy–Schwarz–Buniakowski Inequality implies the “Minkowski 

Inequality,”372 according to which, if 𝑎𝑘 and 𝑏𝑘 are any real numbers (𝑘 = 1,2,… , 𝑛), then  

 

[∑ (𝑎𝑘 + 𝑏𝑘)
2𝑛

𝑘=1 ]1/2 ≤ (∑ 𝑎𝑘
2𝑛

𝑘=1 )1/2 + (∑ 𝑏𝑘
2𝑛

𝑘=1 )1/2. 

 

For 𝜀 > 0, we can define an “ 𝜀-neighborhood” of point 𝑃 in ℝ𝑛 as the set 𝑋 of points in 

ℝ𝑛 such that the distance 𝑑𝐸(𝑋, 𝑃) < 𝜀. Hence, a neighborhood is an open set. Then we shall 

use the notation 𝛮𝜀(𝑃) in order to denote this set of points, and we shall use the notation 

𝑁𝜀
′(𝑃) in order to denote the “deleted neighborhood,” consisting of 𝛮𝜀(𝑃) with the point 𝑃 

deleted. In terms of the real line ℝ, a deleted neighborhood is an interval on ℝ with the center 

point removed. Notice that, in the 2-dimensional Euclidean space ℝ2, 𝑁𝜀
′(𝑃) is 2-dimensional 

open ball (that is, an open disc) with center 𝑃 and radius 𝜀, and, in the 3-dimensional 

Euclidean space ℝ3, 𝑁𝜀
′(𝑃) is a 3-dimensional open ball with center 𝑃 and radius 𝜀.  

Furthermore, we can observe the following: on the real line ℝ, an open ball with center 𝑃 

and radius 𝜀 is the open interval (𝑃 − 𝜀, 𝑃 + 𝜀), a closed ball with center 𝑃 and radius 𝜀 is the 

closed interval [𝑃 − 𝜀, 𝑃 + 𝜀], and a sphere with center 𝑃 and radius 𝜀 is the set {𝑃 − 𝜀, 𝑃 +

𝜀}. In the 𝑛-dimensional Euclidean space ℝ𝑛, an open ball with center (𝑃1, 𝑃2, … , 𝑃𝑛) and 

radius 𝜀 is, according to the Pythagorean Theorem, analytically expressed by the condition 

 

(𝑄1 − 𝑃1)
2 +⋯+ (𝑄𝑛 − 𝑃𝑛)

2 < 𝜀2, 

 

while the corresponding sphere is analytically expressed by the condition 

 
371 Ibid.  
372 Ibid.  
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(𝑄1 − 𝑃1)
2 +⋯+ (𝑄𝑛 − 𝑃𝑛)

2 = 𝜀2. 

 

Thus, an 𝑛-dimensional closed ball is analytically expressed by the condition 

 

(𝑄1 − 𝑃1)
2 +⋯+ (𝑄𝑛 − 𝑃𝑛)

2 ≤ 𝜀2, 

 

and it is determined by 𝑛 + 1 (independent) variables: the 𝑛 coordinates of its center and its 

radius.  

In general, a point in an 𝑛-dimensional space is determined by 𝑛 coordinates, and a figure 

in an 𝑛-dimensional space is a set of points of the given space that satisfy a specific condition. 

For instance, a 3-dimensional closed ball is the set of all the points in ℝ3 whose distance from 

a given point in ℝ3 is not greater than a given number, and, therefore, it is determined by four 

variables: the three coordinates of its center and its radius. Such a geometry of 3-dimensional 

closed balls may be considered as a 4-dimensional geometry, so that a 3-dimensional closed 

ball may be considered as a point in a 4-dimensional space.  

It is worth pointing out that the Polish-American logician and mathematician Alfred 

Tarski (1901–83) has observed that, after defining “concentric spheres,” points can be 

identified with equivalence classes of concentric spheres, and “equidistance” can be defined 

by arrangements of spheres. In particular, in 1929, Tarski showed that much of Euclidean 

solid geometry can be expressed in terms of a first-order theory whose individuals are spheres 

(a primitive notion), a single primitive binary relation “is contained in,” congruence axioms, 

and betweenness axioms (these axioms imply, among others, that containment partially orders 

the spheres).  

The concept of a “distance function,” known also as a “metric,” such as the Euclidean 

distance function 𝑑𝐸, allows us to compute the distance between arbitrary sets and not only 

between singletons (ordinary geometric points). Let 𝐴 and 𝐵 be two non-empty sets in the 

Euclidean space ℝ𝑛. Then the distance of 𝐴 to 𝐵 is given by 

 

𝑑𝐸(𝐴, 𝐵) = 𝑖𝑛𝑓{𝑑𝐸(𝑥, 𝑦)|𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵}. 

 

The aforementioned definition of distance of a set 𝐴 to a set 𝐵 suggests that 𝑑𝐸(𝐴, 𝐵) can 

be considered as a “generalized straight line.” Moreover, given a non-empty set 𝐴 in the 

Euclidean space ℝ𝑛, the “diameter” of 𝐴 is given by 

 

𝑑𝑖𝑎𝑚(𝐴) = 𝑠𝑢𝑝{𝑑𝐸(𝑥, 𝑦)|𝑥 ∈ 𝐴, 𝑦 ∈ 𝐴}.  

 

A set 𝐴 in the Euclidean space ℝ𝑛 is called “bounded” if 𝑑𝑖𝑎𝑚(𝐴) < ∞. Thus, points in 

a bounded space are all within some fixed distance of each other. If 𝐴 ⊆ 𝐵, then 𝑑𝑖𝑎𝑚(𝐴) ≤

𝑑𝑖𝑎𝑚(𝐵). If 𝐴 contains only one element, then 𝑑𝑖𝑎𝑚(𝐴) = 0. 

In general, a “metric space” (𝑋, 𝑑) is a set 𝑋 endowed with a metric (distance function) 𝑑 

defined on it. The formal definition of a metric is the following373: A “metric,” or “distance 

function,” on a set 𝑋 is a real-valued function 𝑑 defined on 𝑋 × 𝑋 that has the following 

properties for all 𝑥, 𝑦, and 𝑧: 

 
373 Ibid. 
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(D1) 𝑑(𝑥, 𝑦) ≥ 0; 𝑑(𝑥, 𝑦) = 0 ⇔ 𝑥 = 𝑦; 

(D2) 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥); 

(D3) 𝑑(𝑥, 𝑦) ≤ 𝑑(𝑥, 𝑧) + 𝑑(𝑧, 𝑦). 

 

Properties (D1), (D2), and (D3) are known, respectively, as the “positive definite” 

property, the “symmetric property,” and the “triangle inequality.” In other words, a metric on 

𝑋 is a real-valued function that is positive definite and symmetric and satisfies the triangle 

inequality. The systematic study of metric spaces was initiated by the French mathematician 

Maurice Fréchet in 1905. 

 

Remark: 

(i) As a result of the symmetric property and the triangle inequality, the definition of a 

metric implies that, for any points 𝑥, 𝑦, 𝑧 in a metric space, 

 

|𝑑(𝑥, 𝑧) − 𝑑(𝑦, 𝑧)| ≤ 𝑑(𝑥, 𝑦), 

 

which is Euclid’s triangle inequality (for any triangle, the sum of the lengths of any two sides 

must be greater than or equal to the length of the remaining side).  

(ii) It is possible to define more than one metrics on the same set 𝑋, and, in general, 

different metrics define different metric spaces on 𝑋. Let ℝ2 be the usual Euclidean plane, 

where the set of all ordered pairs are real numbers. Two typical points of ℝ2 are 𝑝 = (𝑥1, 𝑦1) 

and 𝑞 = (𝑥2, 𝑦2). The Euclidean distance is given by 

 

𝑑𝐸(𝑝, 𝑞) = √(𝑥1 − 𝑥2)2 + (𝑦1 − 𝑦2)2; (a) 

 

and, in the metric space (ℝ2, 𝑑𝐸), the open region (neighborhood) with center (0,0) and 

radius 1 is a unit disk, as shown in Figure 2.12(a).  

 

 

Figure 2.12. Different Metrics. 

Two alternative distance functions in ℝ2 are the following: 

 

𝑑𝑚(𝑝, 𝑞) = max (|𝑥1 − 𝑥2|, |𝑦1 − 𝑦2|); (b) 

 

and, in the metric space (ℝ2, 𝑑𝑚), the open region (neighborhood) with center (0,0) and 

radius 1 is a unit square, as shown in Figure 2.12(b). 

 



Dr. Nicolas Laos, The Dialectic of Rational Dynamicity 218 

𝑑𝑠(𝑝, 𝑞) = |𝑥1 − 𝑥2| + |𝑦1 − 𝑦2|; (c) 

 

and, in the metric space (ℝ2, 𝑑𝑠), the open region (neighborhood) with center (0,0) and 

radius 1 is a unit rhombus, as shown in Figure 2.12(c). 

Let (𝑋1, 𝑑1) and (𝑋2, 𝑑2) be two metric spaces. Then a function 𝑓 from 𝑋1 to 𝑋2 is said to 

be an “isometry” if  

 

𝑑2(𝑓(𝑥), 𝑓(𝑦)) = 𝑑1(𝑥, 𝑦) ∀𝑥, 𝑦 ∈ 𝑋1. 

 

In other words, an isometry between two metric spaces preserves distance between 

points, and it is injective (if it were not injective, then it would contradict the property (D1) of 

the metric). An “isometric isomorphism” (known also as a “global isometry”) between two 

metric spaces is a bijective isometry. Two metric spaces (𝑋1, 𝑑1) and (𝑋2, 𝑑2) are said to be 

“isometric” if there exists a bijective isometry (i.e., an isometric isomorphism) from 𝑋1 to 𝑋2. 

Notice that a mapping 𝑇:ℝ𝑛 → ℝ𝑛 that maps every point 𝑝 ∈ ℝ𝑛 to 𝑝 + 𝑎 for a fixed 𝑎 ∈

ℝ𝑛 is called a “translation.” Moreover, notice that an orientation preserving linear mapping 

𝑇:ℝ𝑛 → ℝ𝑛 that carries a set {𝑒1, 𝑒2, … , 𝑒𝑛} of orthogonal unit vectors at 0 to another set 

{𝑒1
′ , 𝑒2

′ , … , 𝑒𝑛
′ } of orthogonal unit vectors at 0 in such a way that 𝑇(𝑒𝑖) = 𝑒𝑖

′, where 𝑖 =

1,2,… , 𝑛, is called a “rotation” (about 0). It is easily verified that translations and rotations are 

isometries. Moreover, since the product of two isometries 𝑇1𝑇2 on ℝ𝑛 is an isometry (in the 

sense that 𝑑(𝑇2  ⃘ 𝑇1(𝑝), 𝑇2  ⃘ 𝑇1(𝑞)) = 𝑑(𝑇1(𝑝), 𝑇1(𝑞)) = 𝑑(𝑝, 𝑞)), the inverse 𝑇−1:ℝ𝑛 → ℝ𝑛 

of an isometry 𝑇:ℝ𝑛 → ℝ𝑛 is also an isometry, and the identity mapping is obviously an 

isometry, it follows that the collection of all isometric mappings of ℝ𝑛 forms a group, called 

the group of “Euclidean (rigid) motions.”  

If 𝑋 and 𝑌 are metric spaces with metrics 𝑑1 and 𝑑2, respectively, then a function 𝑓 from 

𝑋 to 𝑌 is said to be “continuous” at a point 𝑥0 in 𝑋 if, for each open ball (i.e., for each 

neighborhood) 𝐵𝜀(𝑓(𝑥0)) centered at 𝑓(𝑥0) with radius 𝜀, there exists an open ball (i.e., a 

neighborhood) 𝐵𝛿(𝑥0) centered at 𝑥0 with radius 𝛿 such that 𝑓(𝐵𝛿(𝑥0)) ⊆ 𝐵𝜀(𝑓(𝑥0)). If 𝑓 is 

continuous at each point in its domain, then it is said to be a “continuous mapping.” It is 

easily verified that 𝑓:𝑋 → 𝑌 is continuous over 𝑋 if and only if 𝑓−1(𝐴) is open in 𝑋 

whenever 𝐴 is open in 𝑌 (i.e., continuous functions associate open sets with open sets).  

 

 

2.3. TOPOLOGY OF REAL NUMBERS 
 

Topology is a highly abstract kind of qualitative geometric knowledge, in the sense that it 

deals with the qualitative concept of nearness to spaces that might be conceptually close, 

without, however, using the quantitative concept of a distance function. Hence, intuitively, 

topology offers tools to model the concept of nearness in a set, just as, for instance, group 

theory offers tools to model the concept of symmetry. In the context of topology, instead of 

using a ruler, we can think of two points 𝑥 and 𝑦 as being near each other if there are many 

open sets that contain both 𝑥 and 𝑦, whereas, if there are no open sets containing two given 

points, then these two points are far apart (of course, the whole space is considered to be an 

open set containing every point under consideration). It is conventional to call the qualitative 
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properties “topological properties.” In order to understand what we mean by the qualitative 

properties of geometric figures, one can imagine a sphere to be a rubber ball that can be 

stretched and shrunk in any manner without being torn or gluing any two of its points 

together. Such transformations of a sphere are called homeomorphisms, and the different 

replicas that can be obtained as a result of homeomorphisms are said to be homeomorphic to 

each other. In other words, “homeomorphisms” are isomorphisms in the category of 

topological spaces. Hence, the qualitative properties of the sphere are those that it shares with 

all its homeomorphic replicas, that is, those which are preserved under homeomorphisms. For 

instance, one of the qualitative (“topological”) properties of the sphere is its integrity 

(namely, “connectedness”). Some of the most important pioneers and founders of topology 

are the French mathematician, epistemologist, and theoretical physicist Henri Poincaré 

(1854–1912), the German mathematician Felix Hausdorff (1868–1942), and the 

Russian/Soviet mathematicians Pavel Sergeyevich Alexandrov (1896–1982), and Andrey 

Nikolayevich Tikhonov (1906–93). 

Topology is the weakest structure (that is, the most “economical” structure in terms of 

assumption) that can be established on a set and secure a good definition of continuity of 

mappings. By the term “topological space,” we mean a set endowed with a topology defined 

on it. By the term “topology,” we mean a collection of subsets of the given set that are 

declared to be open. However, it does not suffice to declare a set open, since we want our 

open sets to have additional qualities, and we want to be able to perform set operations on 

them to preserve the given sets’ qualities. In fact, in ℝ𝑛, the union of any collection of open 

sets is an open set, and the intersection of a finite collection of open sets is an open set. Thus, 

with these conditions and with the declarations that the empty set and the whole set are open 

sets, we come up with the “Euclidean topology” 𝒯𝐸 of ℝ𝑛. In general, a topology endows a 

set with a structure based on the concept of a neighborhood. The formal definition of a 

topology is the following374: A “topology” 𝒯 on a non-empty set 𝑋 is a collection of subsets 

of 𝑋, called open sets, such that: 

 

(T1)  the empty set, ∅, and 𝑋 are open, symbolically, ∅,𝑋 ∈ 𝒯; 

(T2)  the union of any collection of open sets is open, symbolically, if 𝑈𝑎 ∈ 𝒯 for 𝑎 ∈

𝒜, then ∪𝑎∈𝒜 𝑈𝑎 ∈ 𝒯;  

(T3)  the intersection of a finite collection of open sets is open, symbolically, if 𝑈𝑖 ∈ 𝒯 

for 𝑖 = 1,2,… , 𝑛, then ∩𝑖=1
𝑛 𝑈𝑖 ∈ 𝒯. 

 

Then the pair (𝑋, 𝒯) is called a “topological space.” Whereas the concept of a metric 

space is based on the concept of a distance (or, more specifically, on the concept of a distance 

function), the concept of a topological space is based on the more abstract concept of 

closeness (or, more specifically, on the concept of a neighborhood). 

For instance, given the set 𝑋 = {1,2,3,4,5}, the family 𝐹1 = {∅, 𝑋, {1}, {1,2}, {1,3}} is not 

a topology on 𝑋, because {1,2} and {1,3} belong to 𝐹1, but {1,2} ∪ {1,3} = {1,2,3} ∉ 𝐹1, 

whereas the family 𝐹2 = {∅, 𝑋, {1}, {1,2}, {1,3,4}, {1,2,3,4}, {1,2,5}} is a topology on 𝑋.  

Given a metric space (𝑋, 𝑑), the set of all open sets (as defined in section 2.2.6) is a 

topology on 𝑋, and it is called the “metric topology” on 𝑋. The open sets of the Euclidean 

 
374 Ibid. 
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topology 𝒯𝐸 on ℝ𝑛 are given by arbitrary unions of the open balls 𝐵𝑟(𝑝), defined as 𝐵𝑟(𝑝) =
{𝑥 ∈ ℝ𝑛|𝑑𝐸(𝑝, 𝑥) < 𝑟}, for all 𝑟 > 0 and for all 𝑝 ∈ ℝ𝑛, where 𝑑𝐸 is the Euclidean metric. In 

fact, the circle 𝑆1 is a topological space, in the sense that all the points that are on the circle 

lie in the set 𝑆1, and, by analogy, the sphere 𝑆2, which is embedded in ℝ3, and inherits the 

topology 𝒯𝐸 from the embedding topological space (ℝ3, 𝒯𝐸), is a topological space, too.  

Notice that, given a non-empty set 𝑋, the collection {∅, 𝑋}, consisting of the empty set 

and the whole set, is a topology on 𝑋, and it is known as the “trivial topology” on 𝑋. The 

power set ℘(𝑋) of 𝑋, consisting of all the subsets of 𝑋, is a topology on 𝑋, and it is called the 

“discrete topology” on 𝑋.  

If 𝑋 and 𝑌 are topological spaces, then a mapping 𝑓 from 𝑋 to 𝑌 is said to be a 

“continuous mapping” if 𝑓−1(𝐴) is open in 𝑋 whenever 𝐴 is open in 𝑌.  

 

 

2.3.1. Neighborhoods  

 

A subset 𝑁 of ℝ is said to be a “(topological) neighborhood” of a real number 𝑝 if there 

exists an open interval (𝑎, 𝑏) such that it contains 𝑝 and is itself contained in 𝑁, symbolically:  

 

𝑝 ∈ (𝑎, 𝑏) ⊆ 𝑁. (∗) 

 

Thus, we symbolize a neighborhood of 𝑝 by 𝑁(𝑝). According to (∗), the only subsets of 

ℝ that can be neighborhoods are those which have open intervals as their subsets. By analogy, 

using the concept of an open ball (mentioned in section 2.2.6) instead of the concept of an 

open interval, we can think of a topological neighborhood in ℝ𝑛 (moreover, as I explained in 

section 2.2.6, for 𝜀 > 0, we can quantitatively define an “𝜀-neighborhood” of point 𝑝 in ℝ𝑛 as 

the set 𝑋 of points in ℝ𝑛 such that the distance 𝑑𝐸(𝑋, 𝑝) < 𝜀). 

For instance, the closed interval [1,3] is a neighborhood of point 2, since it contains, for 

instance, the open interval (
3

2
,
5

2
), which contains 2. However, the closed interval [1,3] is not 

a neighborhood of its endpoints 1 and 3, because, in both of these cases, there is not an open 

interval satisfying (∗). In general, any closed interval [𝑎, 𝑏] of the real line is a neighborhood 

of each of its elements except the endpoints 𝑎 and 𝑏. However, any open interval (𝑎, 𝑏) of the 

real line is a neighborhood of each of its elements.  

Notice that none of the sets ℕ, ℤ, ℚ, and ℚ~ is a neighborhood of any of its elements, 

whereas ℝ is a neighborhood of each of its elements. Moreover, no non-empty finite set is a 

neighborhood of any of its elements, because no open interval of the real line can be a subset 

of a finite set. The empty set, ∅, is considered to be a neighborhood of each of its points, 

namely, of “emptiness,” because it contains no elements, and there exists no element of ∅ of 

which ∅ it is not a neighborhood.  

Assume that 𝜀 is a positive real number, that is, 𝜀 > 0. Then, in the expression (∗), let 

𝑁 = (𝑝 − 𝜀, 𝑝 + 𝜀). Hence, 𝑝 ∈ (𝑎, 𝑏) ⊆ (𝑝 − 𝜀, 𝑝 + 𝜀).If this is the case, then (𝑝 − 𝜀, 𝑝 + 𝜀) 

is called the 𝜀-neighborhood of the point 𝑝, and it is denoted by 𝛮𝜀(𝑝). In other words, the 𝜀-

neighborhood of a point 𝑝 on the real line is the set of all those real numbers which are within 

an 𝜀 distance of 𝑝 on either side of it; 𝑝 is the midpoint or the center of 𝛮𝜀(𝑝); 𝜀 is the radius 

of 𝛮𝜀(𝑝). Hence, 𝑥 ∈ 𝛮𝜀(𝑝) ⇔ |𝑥 − 𝑝| < 𝜀. As I mentioned in section 2.2.6, a “deleted 



Dr. Nicolas Laos, The Dialectic of Rational Dynamicity 221 

neighborhood” of a point 𝑝 is a neighborhood of 𝑝 from which 𝑝 itself is deleted, and it is 

denoted by 𝑁𝜀
′(𝑝), symbolically, 𝑁𝜀

′(𝑝) = 𝛮𝜀(𝑝) − {𝑝} = (𝑝 − 𝜀, 𝑝) ∪ (𝑝, 𝑝 + 𝜀). 

 

Theorem375: If 𝑁 is a neighborhood of 𝑝, and 𝑁 ⊆ 𝑆, then 𝑆 is also a neighborhood of 𝑝. 

 

Proof: Assume that 𝑁 is a neighborhood of 𝑝, and, therefore, 

 

∃𝜀 > 0|(𝑝 − 𝜀, 𝑝 + 𝜀) ⊆ 𝛮. 

 

Moreover, 𝑁 ⊆ 𝑆 ⇒ (𝑝 − 𝜀, 𝑝 + 𝜀) ⊆ 𝑆, which proves that 𝑆 is also a neighborhood of 

𝑝.■ 

 

Theorem376: If 𝑁𝜀1 and 𝛮𝜀2 are neighborhoods of 𝑝, then 𝑁𝜀1 ∩ 𝛮𝜀2 is also a 

neighborhood of 𝑝. 

 

Proof: Given that 𝑁𝜀1 and 𝛮𝜀2 are neighborhoods of 𝑝, 

 

∃𝜀1 > 0|(𝑝 − 𝜀1, 𝑝 + 𝜀1) ⊆ 𝑁𝜀1 and 

∃𝜀2 > 0|(𝑝 − 𝜀2, 𝑝 + 𝜀2) ⊆ 𝑁𝜀2. 

 

If 𝜀 is the smallest of the two 𝜀1 and 𝜀2, then 

 

(𝑝 − 𝜀, 𝑝 + 𝜀) ⊆ (𝑝 − 𝜀1, 𝑝 + 𝜀1) ⊆ 𝑁𝜀1 and 

(𝑝 − 𝜀, 𝑝 + 𝜀) ⊆ (𝑝 − 𝜀2, 𝑝 + 𝜀2) ⊆ 𝑁𝜀2. 

 

Hence, (𝑝 − 𝜀, 𝑝 + 𝜀) ⊆ 𝑁𝜀1 ∩ 𝛮𝜀2, meaning that 𝑁𝜀1 ∩ 𝛮𝜀2 is also a neighborhood of 

𝑝.■ 

 

Given a set 𝑆, a real number 𝑝 is said to be an “interior point” of 𝑆 if 𝑆 is a neighborhood 

of 𝑝, symbolically, if 𝑝 ∈ (𝑎, 𝑏) ⊆ 𝑆. Obviously, an interior point of a set 𝑆 belongs to 𝑆. The 

set of all interior points of a given set 𝑆 is called the “interior” of 𝑆, and it is denoted by 

𝐼𝑛𝑡(𝑆). In general, a point 𝑝 ∈ ℝ𝑛 is said to be an “interior point” of 𝑈 if some neighborhood 

(open ball)𝛮𝜀(𝑝) with center 𝑝 is contained in 𝑈.  

For instance, if 𝑆 = [2,5], then 
7

2
 is an interior point of 𝑆, whereas neither 2 nor 5 is an 

interior point of 𝑆, because [2,5] is not a neighborhood of 2 and 5. The interior of [2,5] is 

(2,5). In general, 𝐼𝑛𝑡([𝑎, 𝑏]) = (𝑎, 𝑏) = 𝐼𝑛𝑡([𝑎, 𝑏)) = 𝐼𝑛𝑡((𝑎, 𝑏]). Notice that, because the 

set ℕ of all natural numbers is not a neighborhood of any of its elements, 𝐼𝑛𝑡(ℕ) = ∅, and, 

similarly, 𝐼𝑛𝑡(ℤ) = ∅, 𝐼𝑛𝑡(ℚ) = ∅, and 𝐼𝑛𝑡(ℚ~) = ∅. However, because the set ℝ of all real 

numbers is a neighborhood of each of its elements, 𝐼𝑛𝑡(ℝ) = ℝ. For any subsets 𝐴 and 𝐵 of 

ℝ, it can be easily verified that 𝐼𝑛𝑡(𝐴 ∩ 𝐵) = 𝐼𝑛𝑡(𝐴) ∩ 𝐼𝑛𝑡(𝐵), and 𝐼𝑛𝑡(𝐴 ∪ 𝐵) ⊇ 𝐼𝑛𝑡(𝐴) ∩

𝐼𝑛𝑡(𝐵). Moreover, 𝐼𝑛𝑡(∅) = ∅.  

 
375 Ibid.  
376 Ibid. 
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Given a set 𝑆, a real number 𝑝 is said to be an “exterior point” of 𝑆 if there exists a 

neighborhood of 𝑝 that contains only points that belong to the complement of 𝑆 (as I 

mentioned in section 2.1.2, the complement of a set, denoted by 𝑆~, is the set of all elements 

in the given universal set that do not belong to 𝑆). The set of all exterior points of 𝑆 is called 

the “exterior” of 𝑆, and it is denoted by 𝐸𝑥𝑡(𝑆). Hence, 𝐸𝑥𝑡(𝑆) = 𝐼𝑛𝑡(𝑆~). For instance, 

𝐸𝑥𝑡(ℚ) = 𝐼𝑛𝑡(ℚ~) = ∅. In general, a point 𝑝 ∈ ℝ𝑛 is said to be an “exterior point” of 𝑈 if 

some neighborhood (open ball)𝛮𝜀(𝑝) with center 𝑝 is contained in 𝑈∼ (the complement of 

𝑈), that is, if there is a neighborhood𝛮𝜀(𝑝) with center 𝑝 such that 𝛮𝜀(𝑝) ∩ 𝑈 = ∅. Using De 

Morgan’s Laws, it can be easily verified that 𝐸𝑥𝑡(𝐴 ∪ 𝐵) = 𝐸𝑥𝑡(𝐴) ∩ 𝐸𝑥𝑡(𝐵). 

Given a set 𝑆, if every neighborhood of a real number 𝑝 contains points that belong to 

both the set 𝑆 and the set 𝑆~ (i.e., the complement of 𝑆), then 𝑝 is said to be a “boundary 

point” of 𝑆. The set of all boundary points of 𝑆 is called the ‘boundary” of 𝑆, and it is denoted 

by 𝐵𝑑𝑦(𝑆), or 𝜕(𝑆). A boundary point of 𝑈 may belong to either 𝑈 or 𝑈∼. Notice that 

𝐼𝑛𝑡(𝑆), 𝐸𝑥𝑡(𝑆), and 𝐵𝑑𝑦(𝑆) constitute a “partition” of ℝ, in the sense that they are pairwise 

disjoint, and  

 

ℝ = 𝐼𝑛𝑡(𝑆) ∪ 𝐸𝑥𝑡(𝑆) ∪ 𝐵𝑑𝑦(𝑆).  

 

Because every neighborhood of a real number contains rational and irrational numbers, it 

follows that each real number is a boundary point of the set ℚ, symbolically, 𝐵𝑑𝑦(ℚ) = ℝ. 

Moreover, 𝑆 ⊆ 𝐼𝑛𝑡(𝑆) ∪ 𝐵𝑑𝑦(𝑆). In general, a point 𝑝 ∈ ℝ𝑛 is said to be a “boundary point” 

of 𝑈 if every neighborhood (open ball) with center 𝑝 contains at least one point of 𝑈 and at 

least one point of 𝑈∼ (the complement of 𝑈), that is, if, for every𝛮𝜀(𝑝) with center 𝑝, 

𝛮𝜀(𝑝) ∩ 𝑈 ≠ ∅ and 𝛮𝜀(𝑝) ∩ 𝑈
∼ ≠ ∅. 

A point 𝑝 ∈ 𝑆 is said to be an “isolated point” of 𝑆 if there exists a neighborhood of 𝑝 that 

contains no point of 𝑆 other than 𝑝 itself. In general, a point 𝑝 ∈ ℝ𝑛 is said to be an “isolated 

point” of 𝑈 if there is a neighborhood (open ball)𝛮𝜀(𝑝) with center 𝑝 such that 𝛮𝜀(𝑝) ∩ 𝑈 =
{𝑝}. If all the elements of a set are isolated points, then this set is said to be a “discrete set.”  

 

 

2.3.2. Open Sets 

 

Theorem377: Let 𝑆 be an arbitrary subset of ℝ. Then: (i) 𝐼𝑛𝑡(𝑆) is an open subset of ℝ, 

and (ii) 𝐼𝑛𝑡(𝑆) is the largest open set contained in 𝑆.  

 

Proof: 

(i) Suppose that 𝑝 is an arbitrary element of 𝐼𝑛𝑡(𝑆), so that 𝑆 is a neighborhood of 𝑝, and 

𝑝 ∈ (𝑝 − 𝜀, 𝑝 + 𝜀) ⊆ 𝑆 for some 𝜀 > 0. Because (𝑝 − 𝜀, 𝑝 + 𝜀) is an open interval, it is a 

neighborhood of each of its points, and, therefore, its superset 𝑆 is also a neighborhood of 

each point of (𝑝 − 𝜀, 𝑝 + 𝜀). Consequently, 

 

 

 

 
377 Ibid.  
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(𝑝 − 𝜀, 𝑝 + 𝜀) ⊆ 𝐼𝑛𝑡(𝑆) ⇒ 𝑝 ∈ (𝑝 − 𝜀, 𝑝 + 𝜀) ⊆ 𝐼𝑛𝑡(𝑆) 

⇒ 𝐼𝑛𝑡(𝑆) 𝑖𝑠 𝑎 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟ℎ𝑜𝑜𝑑 𝑜𝑓 𝑝 

⇒ 𝐼𝑛𝑡(𝑆) 𝑖𝑠 𝑎 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟ℎ𝑜𝑜𝑑 𝑜𝑓 𝑒𝑎𝑐ℎ 𝑜𝑓 𝑖𝑡𝑠 𝑝𝑜𝑖𝑛𝑡𝑠. 

 

This means that 𝐼𝑛𝑡(𝑆) is an open subset of ℝ.  

(ii) Suppose that 𝐴 is an arbitrary open subset of 𝑆 and that 𝑝 ∈ 𝐴, so that 𝑝 ∈ 𝐴 ⊆ 𝑆. 

Because 𝐴 is an open set, it is a neighborhood of 𝑝, and, therefore, its superset 𝑆 is also a 

neighborhood of 𝑝, meaning that 𝑝 ∈ 𝐼𝑛𝑡(𝑆). Consequently, 𝑝 ∈ 𝐴 ⇒ 𝑝 ∈ 𝐼𝑛𝑡(𝑆) ⇒ 𝐴 ⊆

𝐼𝑛𝑡(𝑆), and, therefore, 𝐼𝑛𝑡(𝑆) contains every open subset of 𝑆. This means that 𝐼𝑛𝑡(𝑆) is the 

largest open set contained in 𝑆.■ 

 

Theorem378: The union of any collection of open sets is an open set. 

 

Proof: Suppose that {𝑈𝑎|𝑎 ∈ 𝒜} is an arbitrary collection of open sets 𝑈𝑎, and that 𝑉 =

∪𝑎 𝑈𝑎. If 𝑉 = ∅, then obviously 𝑉 is an open set. If 𝑉 ≠ ∅, then let 𝑥 be an arbitrary element 

of 𝑉, so that 𝑥 ∈ 𝑈𝑎 for some 𝑎 ∈ 𝒜. Because 𝑈𝑎 is an open set, it follows that 𝑈𝑎 is a 

neighborhood of 𝑥. Consequently, for some 𝜀 > 0, and because 𝑈𝑎 ⊆ 𝑉, 

 

𝑥 ∈ (𝑥 − 𝜀, 𝑥 + 𝜀) ⊆ 𝑈𝑎 ⇒ 𝑥 ∈ (𝑥 − 𝜀, 𝑥 + 𝜀) ⊆ 𝑉 

⇒ 𝑉 𝑖𝑠 𝑎 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟ℎ𝑜𝑜𝑑 𝑜𝑓 𝑥 

⇒ 𝑉 𝑖𝑠 𝑎 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟ℎ𝑜𝑜𝑑 𝑜𝑓 𝑒𝑎𝑐ℎ 𝑜𝑓 𝑖𝑡𝑠 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠. 

 

This means that 𝑉 is an open set.■ 

 

Theorem379: The intersection of a finite collection of open sets is an open set. 

 

Proof: Consider two open sets 𝑈1 and 𝑈2. If 𝑈1 ∩ 𝑈2 = ∅, then 𝑈1 ∩ 𝑈2 is an open set. If 

𝑈1 ∩ 𝑈2 ≠ ∅, then let 𝑥 be an arbitrary element of 𝑈1 ∩ 𝑈2, that is, 𝑥 ∈ 𝑈1 and 𝑥 ∈ 𝑈2. 

Because 𝑈1 and 𝑈2 are open sets, 𝑈1 is a neighborhood of 𝑥, and 𝑈2 is also a neighborhood of 

𝑥. Because 𝑥 is an arbitrary element of 𝑈1 ∩ 𝑈2, it follows that 𝑈1 ∩ 𝑈2 is a neighborhood of 

each of its points. This means that 𝑈1 ∩ 𝑈2 is an open set. This proof can be extended to any 

finite number of open sets.■ 

 

Remark: The intersection of an infinite collection of open sets need not be open. For 

instance, the intersection of the open intervals (−
1

𝑛
,
1

𝑛
) in ℝ, where 𝑛 is any positive integer, 

is the set {0}, which is not open, since [𝑎, 𝑎] = {𝑎}. Moreover, if  

𝑈𝑛 = (2 −
1

𝑛
, 3 +

1

𝑛
), where 𝑛 ∈ ℕ, then ∩𝑛∈ℕ 𝑈𝑛 = [2,3], which is not an open set. 

 

 

 

 

 

 
378 Ibid.  
379 Ibid.  
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2.3.3. Nested Intervals and Cantor’s Intersection Theorem 

 

Let [𝑎1, 𝑏1] ⊇ [𝑎2, 𝑏2] ⊇ ⋯, that is, [𝑎𝑛, 𝑏𝑛] ⊇ [𝑎𝑛+1, 𝑏𝑛+1] ∀𝑛 ∈ ℕ. Then these intervals 

are called “nested intervals,” since each interval contains its successor.  

Cantor’s Intersection Theorem380: If {𝐼𝑛 = [𝑎𝑛, 𝑏𝑛]|𝑛 ∈ ℕ} is a family of nested closed 

intervals such that the length of the 𝑛th subinterval, namely, 𝑏𝑛 − 𝑎𝑛, tends to zero as 𝑛 tends 

to infinity, then there exists an 𝜀 such that: 

 

i. ∀𝛿 > 0, ∃𝑚|(𝜀 − 𝛿, 𝜀 + 𝛿) ⊇ 𝐼𝑛 ∀𝑛 ≥ 𝑚 and 

ii. ∩𝑛∈ℕ 𝐼𝑛 = {𝜀}. 

 

Proof: The fact that the intervals of the given family are nested implies that 

 

𝑎1 ≤ 𝑎2 ≤ 𝑎3 ≤ ⋯ ≤ 𝑏3 ≤ 𝑏2 ≤ 𝑏1, so that 

𝑎𝑛 ≤ 𝑎𝑛+1 ≤ 𝑏𝑛+1 ≤ 𝑏𝑛 ∀𝑛 ∈ ℕ. 

 

Let 𝐴 = {𝑎1, 𝑎2, 𝑎3, … } and 𝐵 = {𝑏1, 𝑏2, 𝑏3, … }. Then 𝐴 and 𝐵 are non-empty bounded 

subsets of ℝ. Therefore, due to the Completeness Axiom of ℝ (mentioned in section 2.2.4), 𝐴 

has a supremum in ℝ, and 𝐵 has an infimum in ℝ. Let sup (𝐴) = 𝑎 and inf (𝐵) = 𝑏, so that 

𝑎𝑛 ≤ 𝑎 and 𝑏𝑛 ≥ 𝑏 for any 𝑛 ∈ ℕ. Hence,  

 

0 ≤ 𝑏 − 𝑎 ≤ 𝑏𝑛 − 𝑎𝑛. 

 

Because, by hypothesis, 𝑏𝑛 − 𝑎𝑛 → 0 as 𝑛 → ∞, 𝑏 − 𝑎 = 0, and, then, let 𝜀 = 𝑏 = 𝑎. 

Consequently, (𝜀 − 𝛿, 𝜀) contains 𝑎𝑛 ∀𝑛 ≥ 𝑚1, and (𝜀, 𝜀 + 𝛿) contains 𝑏𝑛 ∀𝑛 ≥ 𝑚2, so that 

(𝜀 − 𝛿, 𝜀 + 𝛿) contains 𝑎𝑛, 𝑏𝑛 ∀𝑛 ≥ 𝑚 where 𝑚 = 𝑚𝑎𝑥{𝑚1, 𝑚2}. Therefore, (𝜀 − 𝛿, 𝜀 +

𝛿) ⊇ 𝐼𝑛 ∀𝑛 ≥ 𝑚. Moreover, the fact that, ∀𝑛 ∈ ℕ, 𝑎𝑛 ≤ 𝜀 and 𝑏𝑛 ≥ 𝜀 implies that 𝑎𝑛 ≤ 𝜀 ≤

𝑏𝑛, so that 𝜀 ∈ [𝑎𝑛, 𝑏𝑛] ∀𝑛 ∈ ℕ, and, since the intervals are nested, 𝜀 ∈∩𝑛∈ℕ [𝑎𝑛, 𝑏𝑛], that is, 

𝜀 ∈∩𝑛∈ℕ 𝐼𝑛.  

We can prove the uniqueness of this 𝜀 by reductio ad absurdum as follows: Suppose that 

there exists another element 𝜀′ ≠ 𝜀 in the intersection ∩𝑛∈ℕ 𝐼𝑛. If 𝜀′ > 𝜀, then (𝜀′ − 𝜀) > 0. 

Given that 𝑎𝑛 ≤ 𝜀 < 𝜀
′ ≤ 𝑏𝑛, it follows that (𝑏𝑛 − 𝑎𝑛) ≥ (𝜀

′ − 𝜀) > 0, which contradicts the 

hypothesis that 𝑏𝑛 − 𝑎𝑛 → 0 as 𝑛 → ∞. Hence, 𝜀′ ≯ 𝜀. Similarly, we can show that 𝜀′ ≮ 𝜀. 

Hence, 𝜀′ = 𝜀, which implies that ∩𝑛∈ℕ 𝐼𝑛 = {𝜀}.■ 

 

Remark: If the intervals are not closed, then Cantor’s Intersection Theorem may not be 

valid. For instance, consider the following family of open intervals: 

 

{𝐼𝑛 = (𝑎, 𝑎 +
1

𝑛
) |𝑛 ∈ ℕ}. 

 

Then 𝐼𝑛 ⊇ 𝐼𝑛+1 ∀𝑛 ∈ ℕ, but ∩𝑛∈ℕ 𝐼𝑛 = ∅, which is not a singleton.  

 

 

 
380 Ibid. 
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2.3.4. Closure Points and Accumulation Points 

 

A real number 𝑝 is called a “closure point” of a set 𝑆 ⊆ ℝ if every neighborhood of 𝑝 

contains a point of 𝑆. The set of all closure points of 𝑆 is called the “closure” of 𝑆, and it is 

denoted by 𝐶𝑙𝑠(𝑆). Therefore, every point of 𝑆 ⊆ ℝ is a closure point of 𝑆.  

A real number 𝑝 is called an “accumulation point,” or a “limit point,” or a “cluster point” 

of 𝑆 if every deleted neighborhood of 𝑝 contains at least one point of 𝑆, symbolically, 𝑆 ∩

𝑁𝜀
′(𝑝) ≠ ∅ ∀𝜀 > 0 (i.e., every neighborhood of 𝑝 contains at least one point of 𝑆 other than 

𝑝). For instance, if 𝐴 = [𝑎, 𝑏] and 𝐵 = (𝑎, 𝑏), then every member of 𝐴 is an accumulation 

point of 𝐴 and of 𝐵, since, for instance, ∀𝜀 > 0, the neighborhood (𝑎 − 𝜀, 𝑎 + 𝜀) of 𝑎 

contains infinitely many elements of 𝐴 and of 𝐵. Moreover, every real number is an 

accumulation point of the set ℚ of all rational numbers as well as of the set ℝ of all real 

numbers, since, for instance, given an arbitrary real number 𝑝, ∀𝜀 > 0, the neighborhood 

(𝑝 − 𝜀, 𝑝 + 𝜀) contains infinitely many real numbers as well as infinitely many rational 

numbers. On the other hand, the set ℕ of all natural numbers, the set ℤ of all integral 

numbers, and the empty set have no accumulation point. Moreover, no finite set has any 

accumulation point, because, if, for instance, 𝐴 = {𝑎1, 𝑎2, 𝑎3, … , 𝑎𝑛}, and if 𝑝 is an arbitrary 

real number, then, if we define 𝑑1 = |𝑎1 − 𝑝|, 𝑑2 = |𝑎2 − 𝑝|,… , 𝑑𝑛 = |𝑎𝑛 − 𝑝|, and if 𝑘 =

𝑚𝑖𝑛{𝑑1, 𝑑2, … , 𝑑𝑛}, we realize that the neighborhood 𝑁 with center 𝑝 and radius 
𝑘

2
 contains 

no point of 𝐴, and, therefore, 𝑝, which is an arbitrary real number, is not an accumulation 

point of 𝐴.  

Notice that, if 𝐴 is a non-empty subset of ℝ, then: 

 

i. if 𝐴 is bounded from above and sup (𝐴) ∉ 𝐴, then sup (𝐴) is an accumulation point 

of 𝐴; 

ii. if 𝐴 is bounded from below and inf (𝐴) ∉ 𝐴, then inf (𝐴) is an accumulation point of 

𝐴.  

 

Every accumulation point of a set is also a closure point of that set, but not conversely. 

For instance, given the set 𝐴 = {
1

𝑛
|𝑛 ∈ ℕ}, 0 = inf (A) and 0 ∉ 𝐴, and, therefore, 0 is an 

accumulation point of 𝐴, but 1 is a closure point of 𝐴 without being an accumulation point of 

𝐴, since the neighborhood (1 − 𝜀, 1 + 𝜀), where 𝜀 > 0, does not contain a member of 𝐴 other 

than 1. 

If all the elements of a set 𝑆 are accumulation points of 𝑆, then 𝑆 is said to be “dense-in-

itself.” For instance, the open interval (𝑎, 𝑏) is dense-in-itself, because all its members are 

accumulation points of (𝑎, 𝑏). Moreover, the closed interval [𝑎, 𝑏] and ℚ are dense-in-

themselves.  

The set of all accumulation points of a set 𝑆 is called the “derived set” of 𝑆, and it is 

denoted by 𝐷(𝑆). For instance, 𝐷(ℕ) = ∅, 𝐷(ℤ) = ∅, 𝐷(ℝ) = ℝ, 𝐷((𝑎, 𝑏)) = [𝑎, 𝑏], and 

𝐷([𝑎, 𝑏]) = [𝑎, 𝑏]. If, for a set 𝑆, 𝐷(𝑆) = 𝑆, then 𝑆 is said to be a “perfect set.” In other 

words, a perfect set is a set that is dense-in-itself, and it contains all its accumulation points. 

For instance, ℝ and the closed interval [𝑎, 𝑏] are perfect sets. 

By the definition of a derived set, the following can be easily verified: 
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Theorem381: If 𝐴 and 𝐵 are non-empty subsets of ℝ, then  

 

𝐴 ⊆ 𝐵 ⇒ 𝐷(𝐴) ⊆ 𝐷(𝐵), 

𝐷(𝐴 ∪ 𝐵) = 𝐷(𝐴) ∪ 𝐷(𝐵), 

𝐷(𝐴 ∩ 𝐵) = 𝐷(𝐴) ∩ 𝐷(𝐵).  

 

The following theorem is a very important result regarding accumulation points, and it 

was originally proved by Bernard Bolzano (1781–1848), who was a Roman Catholic priest, a 

professor of theology at the Philosophical Faculty of the University of Prague, and a 

prominent mathematician, and, subsequently, its meaning and ramifications were investigated 

and highlighted by Karl Weierstrass (1815–97), who was a prominent German 

mathematician, and he taught at the University of Berlin. 

 

Bolzano–Weierstrass Theorem382: Every infinite and bounded subset of ℝ has at least one 

accumulation point. 

 

Proof: Suppose that𝑆 is a bounded and infinite set in ℝ, so that ∃𝑎, 𝑏 ∈ ℝ|𝑥 ∈
[𝑎, 𝑏] ∀𝑥 ∈ 𝑆, and 𝑆 ⊆ [𝑎, 𝑏]. Let us bisect the interval [𝑎, 𝑏] at point 𝑐, so that we obtain two 

subintervals [𝑎, 𝑐] and [𝑐, 𝑏]. Then at least one of these subintervals contains infinitely many 

elements of 𝑆, and we rename this subinterval as [𝑎1, 𝑏1]. The length of [𝑎1, 𝑏1] is 𝑏1 − 𝑎1 =
𝑏−𝑎

2
. Subsequently, we bisect [𝑎1, 𝑏1] at point 𝑐1, so that we obtain two new subintervals 

[𝑎1, 𝑐1] and [𝑐1, 𝑏1]. Then at least one of these new subintervals contains infinitely many 

elements of 𝑆, and we rename this subinterval as [𝑎2, 𝑏2]. The length of [𝑎2, 𝑏2] is 𝑏2 − 𝑎2 =
𝑏−𝑎

22
. Repeating the same process of bisection and selection, we obtain a set of intervals 

 

[𝑎1, 𝑏1], [𝑎2, 𝑏2], … such that:  

 

the intervals are nested (i.e., each is contained in the preceding), and the length of the 𝑛th 

subinterval, namely, of [𝑎𝑛, 𝑏𝑛], is 𝑏𝑛 − 𝑎𝑛 =
𝑏−𝑎

2𝑛
, and it tends to 0 as 𝑛 tends to ∞. 

Therefore, by Cantor’s Intersection Theorem, it holds that, for some 𝜀, 

 

∩𝑛∈ℕ [𝑎𝑛, 𝑏𝑛] = {𝜀}. 

 

Having shown that ∩𝑛∈ℕ [𝑎𝑛, 𝑏𝑛] is the singleton of 𝜀, we shall show that this 𝜀 is an 

accumulation point of 𝑆. Assume that 𝑏𝑛 − 𝑎𝑛 < 𝑘, where 𝑘 > 0, so that [𝑎𝑛, 𝑏𝑛] ⊆
(𝜀 − 𝑘, 𝜀 + 𝑘). Given that each [𝑎𝑛, 𝑏𝑛] contains infinitely many elements of 𝑆, it follows that 

(𝜀 − 𝑘, 𝜀 + 𝑘), which is a neighborhood of 𝜀, contains infinitely many elements of 𝑆, and, 

therefore, 𝜀 is an accumulation point of 𝑆.■  

 

 
381 Ibid. 
382 Ibid.  
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Remark: The converse of the Bolzano–Weierstrass Theorem is not true, since, for 

instance, the set ℚ of all rational numbers has every real number as its accumulation point, 

but ℚ is not bounded.  

 

 

2.3.5. Closed Sets 

 

The concept of a closed set is dual to the concept of an open set, in the sense that closed 

sets are the complements of open sets. A set 𝑆 ⊆ ℝ is called “closed” if it contains all its 

accumulation points. Hence, the derived set 𝐷(𝑆) of a closed set 𝑆 is a subset of 𝑆, and all 

perfect sets are closed. As I have already mentioned, the “closure” of 𝑆 is denoted by 𝐶𝑙𝑠(𝑆), 

where 𝐶𝑙𝑠(𝑆) = 𝑆 ∪ 𝐷(𝑆), that is, 𝐶𝑙𝑠(𝑆) is the set of all closure points of 𝑆. Thus, 𝑆 is 

closed if and only if 𝐶𝑙𝑠(𝑆) = 𝑆. If 𝐴 and 𝐵 are non-empty subsets of ℝ, it can be easily 

verified that 

 

i. 𝐴 ⊆ 𝐵 ⇒ 𝐶𝑙𝑠(𝐴) ⊆ 𝐶𝑙𝑠(𝐵). 

ii. 𝐶𝑙𝑠(𝐴 ∪ 𝐵) = 𝐶𝑙𝑠(𝐴) ∪ 𝐶𝑙𝑠(𝐵). 

iii. 𝐶𝑙𝑠(𝐴 ∩ 𝐵) ⊆ 𝐶𝑙𝑠(𝐴) ∩ 𝐶𝑙𝑠(𝐵). 

iv. 𝐶𝑙𝑠(𝐶𝑙𝑠(𝐴)) = 𝐶𝑙𝑠(𝐴). 

 

For instance, the empty set has no accumulation point, and, therefore, 𝐷(∅) = ∅; and, 

from this perspective, namely, because 𝐷(∅) = ∅, the empty set is a perfect and, thus, closed 

set. Moreover, the sets ℕ and ℤ are closed sets, since 𝐷(ℕ) = ∅ = 𝐷(ℤ). Because 

𝐷([𝑎, 𝑏]) = [𝑎, 𝑏], all closed intervals are perfect and, thus, closed sets, whereas open 

intervals (𝑎, 𝑏) are not closed sets, because two of their accumulation points, namely, 𝑎 and 

𝑏, do not belong to (𝑎, 𝑏). Notice that, because 𝐷(ℚ) = ℝ and, thus, 𝐷(ℚ) ∉ ℚ, the set ℚ is 

not closed (hence, we realize that the set ℚ is neither open nor closed). Moreover, given that 

finite sets have no accumulation point, every finite set is closed. 

Notice that the set ℝ of all real numbers and the empty set ∅ are both open and closed.  

In general, a subset 𝑆 of ℝ is said to be “dense” in a subset 𝐵 of ℝ if 𝐵 is a subset of the 

closure of 𝑆. In particular, 𝑆 is dense in ℝ if and only if 𝐶𝑙𝑠(𝑆) = ℝ. Because 𝐷(ℚ) = ℝ and, 

thus, 𝐶𝑙𝑠(ℚ) = ℚ ∪ 𝐷(ℚ) = ℝ, it follows that ℚ is a dense subset of ℝ. On the other hand, a 

subset 𝑆 of ℝ is said to be “nowhere dense” in ℝ if 𝐼𝑛𝑡(𝐶𝑙𝑠(𝑆)) = ∅. For instance, if 𝑆 =

{1,
1

2
,
1

3
, … }, then 𝐷(𝑆) = {0}, and 𝐶𝑙𝑠(𝑆) = 𝑆 ∪ 𝐷(𝑆) = {0,1,

1

2
,
1

3
, … }, which implies that 

𝐼𝑛𝑡(𝐶𝑙𝑠(𝑆)) = ∅, since 𝐶𝑙𝑠(𝑆) is not a neighborhood of any of its elements, and, thus, the set 

𝑆 is nowhere dense in ℝ.  

The supremum (least upper bound) and the infimum (greatest lower bound) of the 

derived set 𝐷(𝑆) of a subset 𝑆 of ℝ are respectively called the “limit superior” and the “limit 

inferior” of the set 𝑆. Every bounded infinite set has limit superior and limit inferior. 

Obviously, the endpoints 𝑎 and 𝑏 of the intervals (𝑎, 𝑏) and [𝑎, 𝑏] are, respectively, the limit 

inferior and the limit superior of these intervals.  

As I have already explained, it can be easily verified that a set 𝑆 is closed if and only if its 

complement, 𝑆~, is open.  
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Theorem383: The union of a finite collection of closed sets is a closed set. 

 

Proof: Let 𝑆 = 𝑈1 ∪ 𝑈2 ∪ …∪ 𝑈𝑛 where 𝑈𝛼 (with 𝛼 = 1,2, . . , 𝑛) is a closed set. Then 

𝑆~ = (𝑈1 ∪ 𝑈2 ∪ …∪ 𝑈𝑛)
~, which, by De Morgan’s Laws (mentioned in section 2.1.2), is 

equal to 𝑈1
~ ∩ 𝑈2

~ ∩ …∩ 𝑈𝑛
~. Because 𝑈𝛼 (with 𝛼 = 1,2, . . , 𝑛) is a closed set, each 𝑈𝛼

~ is an 

open set, and, because the intersection of a finite collection of open sets is an open set (as 

proved in section 2.3.2), 𝑆~ is an open set, and, thus, 𝑆 is a closed set.■  

 

Remark: The union of an infinite collection of closed sets need not be closed. For 

instance, the union of the closed intervals 𝑈𝑛 = [
1

𝑛
, 1] in ℝ, where 𝑛 = 1,2,…, is 𝑈1 ∪ 𝑈2 ∪

… = (0,1], which is not closed.  

 

Theorem384: The intersection of any collection of closed sets is a closed set.  

 

Proof: Let {𝑈𝛼|𝛼 ∈ 𝒜} be an arbitrary collection of closed sets, and 𝑆 =∩𝛼∈𝒜 𝑈𝛼. Then 

𝑆~ = (∩𝛼∈𝒜 𝑈𝛼)
~ =∪𝛼∈𝒜 𝑈𝛼

~, by De Morgan’s Laws (mentioned in section 2.1.2). Because 

∪𝛼∈𝒜 𝑈𝛼
~ is the union of an arbitrary collection of open sets, which is an open set (as proved 

in section 2.3.2), it follows that 𝑆~ is an open set, and, thus, 𝑆 is a closed set.■  

 

 

2.3.6. Compactness 

 

Let 𝒞 = {𝑈𝛼|𝛼 ∈ 𝒜} be a family of sets, and let 𝑆 be a subset of ℝ. Then 𝒞 is said to be a 

“cover” of 𝑆 if 𝑆 is contained in the union of the members of 𝒞, that is, if every element of 𝑆 

belongs to some member of 𝒞; symbolically: 𝑆 ⊆∪𝛼∈𝒜 𝑈𝛼. For instance, if 𝑈1 is the set of all 

odd numbers (1,3,5,…), if 𝑈2 is the set of all even numbers (0,2,4,6,…), and if 𝒞 = {𝑈1, 𝑈2}, 

then every element of the set 𝑈 = {0,1,2,3,4,5,6} belongs either to 𝑈1 or to 𝑈2, that is, 𝑈 ⊂

𝑈1 ∪ 𝑈2, and, therefore, 𝒞 is a cover of the set 𝑈.  

If 𝒞1 and 𝒞2 are covers of a set 𝑆, and if 𝒞1 ⊆ 𝒞2, then 𝒞1 is said to be a “subcover” of 𝑆. 

In other words, a subcollection of members of 𝒞2 that also covers the set 𝑆 is called a 

subcover of 𝑆. A cover is called “finite” if it contains only a finite number of sets. A cover 𝒞 

of a set 𝑆 is said to be an “open cover” of 𝑆 if each member of 𝒞 is an open set.  

For instance, let us consider ℝ. Then the family 𝒞 = {(−𝑛, 𝑛)|𝑛 ∈ ℕ} is an open cover of 

ℝ, since ℝ ⊆∪𝑛∈ℕ (−𝑛, 𝑛). Suppose that there exists a subcover 𝒞′ =
{(−𝑛1, 𝑛1), (−𝑛2, 𝑛2),… , (−𝑛𝑘, 𝑛𝑘)}, and let 𝑀 = 𝑚𝑎𝑥{𝑛1, 𝑛2, … , 𝑛𝑘}. Then 𝑀 ∈ ℝ, but 

𝑀 ∉ 𝒞′, that is, 𝑀 remains uncovered by 𝒞′, which is a contradiction, and, therefore, 𝒞′ is not 

a subcover of ℝ. Notice that the set ℝ is closed but not bounded. Hence, an open cover of a 

closed but unbounded set (e.g, ℝ) may not provide a finite subcover.  

Let us consider the closed interval 𝑈 = {𝑥 ∈ ℝ|0 ≤ 𝑥 ≤ 1}. If 𝜀 > 0 is fixed, then the 

family 𝒞 = {(𝛼 − 𝜀, 𝛼 + 𝜀)|𝛼 ∈ 𝑈} is an open cover of 𝑈. This open cover provides many 

subcovers. For instance, we may choose the family 𝒞′ = {(𝛽 − 𝜀, 𝛽 + 𝜀)|𝛽 ∈ {𝑥 ∈ ℚ|0 ≤

𝑥 ≤ 1}}, which is an open cover of 𝑈, since every irrational number 𝑥 ∈ [0,1] can be 

 
383 Ibid. 
384 Ibid. 
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approximated to within 𝜀 by some rational number, and 𝒞′ is a subset of 𝒞, meaning that 𝒞′ is 

a subcover of 𝑈. Similarly, the family 𝒞′′ = {(𝛾 − 𝜀, 𝛾 + 𝜀)|𝛾 ∈ {𝑥 ∈ ℚ~|0 ≤ 𝑥 ≤ 1}} is an 

open cover of 𝑈, and it consists of uncountably many sets. 

However, consider 𝒞 = {[
1

𝑛
,
2

𝑛
] , {0}|𝑛 ∈ ℕ − {0}}, which is a closed cover of the closed 

and bounded set 𝑈 = {𝑥 ∈ ℝ|0 ≤ 𝑥 ≤ 1}. Suppose that there exists a subcover 

 

𝒞′ = {[
1

𝑛1
,
2

𝑛1
] , [

1

𝑛2
,
2

𝑛2
] , … , [

1

𝑛𝑘
,
2

𝑛𝑘
] , {0}}, 

 

and let 𝑀 = 𝑚𝑎𝑥{𝑛1, 𝑛2, … , 𝑛𝑘}. Then 
1

𝑀+1
∈ 𝑈, but 

1

𝑀+1
∉ 𝒞′, which is a contradiction, and, 

therefore, 𝒞′ is not a subcover of 𝑈. Hence, a closed cover of a closed and bounded set (e.g., 

𝑈) may not provide a finite subcover.  

Let us consider the open interval 𝐼 = (0,1), which is a bounded but not closed set. 

Because it is not closed, it does not contain all its accumulation points (specifically, the two 

accumulation points that it does not contain are 0 and 1). Then we can construct an open 

cover 𝒞 of (0,1) such that its open sets get infinitely close to at least one (or maybe both) of 

the endpoints of 𝐼, but 𝒞 never quite reaches any of the endpoints of 𝐼. The family 

 

𝒞 = {(
1

𝑛
, 1) |𝑛 ∈ ℕ − {0}} 

 

is an open cover of 𝐼 = (0,1). We can prove that 𝒞 does not provide a finite subcover by 

reductio ad absurdum as follows: Suppose that there exists a finite subcover  

 

𝒞′ = {(
1

𝑛1
, 1) , (

1

𝑛2
, 1) , … , (

1

𝑛𝑘
, 1)}, 

 

and let𝑀 = 𝑚𝑎𝑥{𝑛1, 𝑛2, … , 𝑛𝑘} < ∞. Then 
1

𝑀
∈ (0,1), but 

1

𝑀
∉ 𝒞′, which is a contradiction, 

and, therefore, 𝒞′ is not a subcover. Hence, an open cover of a bounded but not closed set 

(e.g., 𝐼) may not provide a finite subcover.  

A set 𝑆 is said to be “compact” if each open cover of 𝑆 admits a finite subcover. It is 

widely acknowledged that “compactness’ is a topological generalization of the concept of 

finiteness. Topology is preoccupied with the behavior of an object on an open set, and 

compactness implies that there are only finitely many possible behaviors. In particular, 

“finiteness” is a very important concept, because finiteness implies that something is 

constructible “by hand” (thus giving rise to constructive results), and finite objects (being 

“pseudo-finite” in their nature) are well-behaved ones. In other words, even though 

“compactness” is not exactly “finiteness,” a compact object behaves like a finite set with 

regard to important topological properties.  

 

Heine–Borel Theorem385: A set is compact if and only if it is closed and bounded. 

 
385 Ibid. This theorem is named after the German mathematician Heinrich Eduard Heine (1821–81) and the French 

mathematician (and politician) Félix Édouard Justin Émile Borel (1871–1956). 



Dr. Nicolas Laos, The Dialectic of Rational Dynamicity 230 

Proof: First, we shall prove that every open cover of a closed and bounded set admits a 

finite subcover by reductio ad absurdum as follows: In particular, let 𝑆 be a closed and 

bounded set, and let 𝒞 = {𝑈𝛼|𝛼 ∈ 𝒜} be an open cover of 𝑆, so that 𝑆 ⊆∪𝛼∈𝒜 𝑈𝛼. Moreover, 

because 𝑆 is bounded (by hypothesis), there exist two real numbers 𝑎 and 𝑏 such that 𝑆 ⊆
[𝑎, 𝑏]. For the sake of contradiction, assume that 𝑆 does not have a finite subcover. Let us 

bisect [𝑎, 𝑏] at 𝑐, so that we obtain two subintervals [𝑎, 𝑐] and [𝑐, 𝑏]. Then at least one of 

these subintervals contains a subset of 𝑆 that does not have a finite subcover, and we rename 

this subinterval as [𝑎1, 𝑏1].The length of [𝑎1, 𝑏1] is 𝑏1 − 𝑎1 =
𝑏−𝑎

2
. Subsequently, we bisect 

[𝑎1, 𝑏1] at point 𝑐1, so that we obtain two new subintervals [𝑎1, 𝑐1] and [𝑐1, 𝑏1]. Then at least 

one of these new subintervals contains a subset of 𝑆 that does not have a finite subcover, and 

we rename this subinterval as [𝑎2, 𝑏2]. Repeating this process of bisection and selection, we 

obtain nested closed intervals [𝑎𝑛, 𝑏𝑛], where 𝑛 = 1,2,…, such that:  

 

i. the length of [𝑎𝑛, 𝑏𝑛], which is equal to 
𝑏−𝑎

2𝑛
, tends to 0 as 𝑛 → ∞, and  

ii. each [𝑎𝑛, 𝑏𝑛] contains a subset of 𝑆 that does not have a finite subcover. 

 

Hence, applying Cantor’s Intersection Theorem, we obtain [𝑎𝑛, 𝑏𝑛] ⊂ (𝜀 − 𝛿, 𝜀 + 𝛿) for 

𝛿 > 0, and ∩𝑛∈ℕ [𝑎𝑛, 𝑏𝑛] = {𝜀}, so that 𝜀 is an accumulation point of the set 𝑆. Because 𝑆 is a 

closed set (by hypothesis), 𝜀 ∈ 𝑆. Moreover, 𝒞 is an open cover of 𝑆, so that, for some 𝑛, 𝜀 ∈

𝑈𝑛, and, since 𝑈𝑛 is an open set, 𝜀 ∈ (𝜀 − 𝛿, 𝜀 + 𝛿) ⊂ 𝑈𝑛. Hence, because of (i), [𝑎𝑛, 𝑏𝑛] ⊂

𝑈𝑛 for some 𝑛, so that [𝑎𝑛, 𝑏𝑛] is covered by a single member 𝑈𝑛 of 𝒞, which contradicts (ii). 

Therefore, 𝑆 has a finite subcover. In other words, a closed and bounded set is compact.  

Now, we shall prove that every compact set is closed and bounded.  

We can prove that every compact set is bounded as follows: If 𝑆 is a compact set, then 

every open cover of 𝑆 has a finite subcover. Let 𝒞 = {(−𝑛, 𝑛)|𝑛 ∈ ℕ}, so that 𝒞 is an open 

cover of 𝑆 that provides a finite subcover 𝒞1 = {(−𝑛1, 𝑛1), (−𝑛2, 𝑛2),… , (−𝑛𝑘, 𝑛𝑘)}. Then, 

by the definition of a cover, 𝑆 ⊆∪𝑖=1
𝑘 (−𝑛𝑖, 𝑛𝑖) = (−𝑀,𝑀), where 𝑀 = 𝑚𝑎𝑥{𝑛1, 𝑛2, … , 𝑛𝑘}. 

Hence, 𝑆 ⊆ (−𝑀,𝑀), which proves that 𝑆 is bounded. 

We can prove that every compact set is closed as follows: If 𝑆 is a compact set, and if 𝑎 ∉

𝑆, then let  

 

𝑈𝑛 = (−∞,𝑎 −
1

𝑛
) ∪ (𝑎 +

1

𝑛
, ∞), where 𝑛 ∈ ℕ − {0},  

 

so that each 𝑈𝑛 is an open set (since it is the union of two open sets). Let 𝒞 = {𝑈𝑛|𝑛 ∈ ℕ}, so 

that 𝒞 is an open cover of 𝑆. Because 𝑆 is compact, it admits a finite subcover, say 𝒞1 =

{𝑈𝑛1 , 𝑈𝑛2 , … , 𝑈𝑛𝑘}. If 𝑀 = 𝑚𝑎𝑥{𝑛1, 𝑛2, … , 𝑛𝑘}, then 

 

𝑆 ⊆∪𝑖=1
𝑘 𝑈𝑛𝑖 = 𝑈𝑀 ⇒ 𝑆 ⊂ (−∞,𝑎 −

1

𝑀
) ∪ (𝑎 +

1

𝑀
, ∞), 

 

so that (𝑎 −
1

𝑀
, 𝑎 +

1

𝑀
) does not contain any point of 𝑆. This fact implies that a neighborhood 

of 𝑎 does not contain a point of 𝑆, and, therefore, 𝑎 is not an accumulation point of 𝑆. 
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Because 𝑎 is an arbitrary point that does not belong to 𝑆, no point outside 𝑆 can be an 

accumulation point of 𝑆, and, therefore, 𝑆 is a closed set.■ 

For instance, the sets ℕ, ℤ, ℚ, ℝ and any open interval (𝑎, 𝑏) are not compact sets, 

whereas any finite subset of ℝ and any closed interval [𝑎, 𝑏] are compact sets (i.e., every open 

cover of a finite subset of ℝ and every open cover of a closed interval [𝑎, 𝑏] provide a finite 

subcover). 

 

 

2.3.7. Relative Topology and Connectedness  

 

If 𝑆 is a set of real numbers, and if 𝐴 ⊆ 𝑆, then the set 𝐴 is said to be “open relative to the 

set 𝑆” if there exists an open set 𝑋 such that 𝐴 = 𝑆 ∩ 𝑋. A set 𝐵 ⊆ 𝑆 is said to be “closed 

relative to the set 𝑆” if there exists a closed set 𝑌 such that 𝐵 = 𝑆 ∩ 𝑌. Notice that ∅ is both 

open and closed relative to any subset 𝑆 of ℝ, and that every subset of ℝ is both open and 

closed relative to itself. If, for instance, 𝑆 = {1,2,3}, then: (i) 𝑆 is open relative to ℤ+, since 

𝑆 = ℤ+ ∩ (0,4); (ii) 𝑆 is not open relative to ℝ, since 𝑆 ≠ ℝ ∩ (0,4); (iii) 𝑆 is closed relative 

to ℤ, since 𝑆 = ℤ ∩ [1,3], and, simultaneously, 𝑆 is open relative to ℤ, since 𝑆 = ℤ ∩ (0,4). 

“Connectedness” is a topological term that means that a set (or a metric space, or a 

topological space) is “one piece,” or, in other words, that it is not made up of two or more 

pieces.386 As I mentioned in section 2.1.2, two sets 𝐴 and 𝐵 are said to be disjoint if their 

intersection is the empty set. However, there is a stronger condition on 𝐴 and 𝐵 than 

disjointness, and this condition is known as “separation.” Two sets 𝐴 and 𝐵 are said to be 

“separated” if 𝐶𝑙𝑠(𝐴) ∩ 𝐵 = ∅ and 𝐴 ∩ 𝐶𝑙𝑠(𝐵) = ∅, that is, if each is disjoint from the 

other’s closure. For instance, in ℝ, the sets [0,1] and (1,2] are disjoint but not separated, 

whereas the sets [0,1) and (1,2] are separated between them (the number 1 belongs to both of 

their closures). Obviously, any two separated sets are automatically disjoint. However, the 

condition of separation is not as strong as requiring that the distance between separated sets 

should be positive. For instance, the distance between the separated sets [0,1) and (1,2] is 

zero. Therefore, a set (or a metric space, or a topological space) is “connected” if it is not 

possible to be represented as the union of two separated sets 𝐴 and 𝐵. For instance, a region 𝑈 

in ℝ2 is connected if and only if any point in 𝑈 can be joined to any other point in 𝑈 by a 

polygonal path lying within 𝑈.  

A set or space 𝑋 is said to be disconnected if there exist two non-empty sets 𝐴 and 𝐵 such 

that 𝑋 = 𝐴 ∪ 𝐵, and 𝐶𝑙𝑠(𝐴) ∩ 𝐵 = ∅, and 𝐴 ∩ 𝐶𝑙𝑠(𝐵) = ∅. In this case, 𝐶𝑙𝑠(𝐴) = 𝐵~ = 𝐴, 

and, therefore, 𝐴 is closed. Similarly, 𝐵 must be a closed set. If both 𝐴 and 𝐵 are closed sets, 

then the statements 𝐶𝑙𝑠(𝐴) ∩ 𝐵 = ∅ and 𝐴 ∩ 𝐶𝑙𝑠(𝐵) = ∅ are both equivalent to the single 

statement 𝐴 ∩ 𝐵 = ∅. Therefore, a set or space 𝑋 is said to be connected if there exists no pair 

of closed sets 𝐴 and 𝐵 such that 𝑋 = 𝐴 ∪ 𝐵 and 𝐴 ∩ 𝐵 = ∅, and, since, in such a case, the 

sets 𝐴 and 𝐵 are complementary, we can equally say that they are both open. Consequently, 

we obtain the following general definition of connectedness387: A set or space 𝑋 (𝑋 being a 

subset in ℝ𝑛) is “connected” if it cannot be expressed as 𝑋 = 𝐴 ∪ 𝐵 where 𝐴 and 𝐵 are non-

empty disjoint sets, and both 𝐴 and 𝐵 are open relative to 𝑋 (or, equivalently, both 𝐴 and 

 
386 Ibid. 
387 Ibid. 
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𝐵are closed relative to 𝑋); otherwise, 𝑋 is “disconnected.” In view of the foregoing, a set or 

space 𝑋 is connected if and only if ∅ and 𝑋 are the only sets in 𝑋 that are both open and 

closed. 

For instance, the set 𝑆 = (0,1) ∩ ℚ is a disconnected set, since, if 𝐴 = (0,
1

√2
) ∩ ℚ and 

𝐵 = (
1

√2
, 1) ∩ ℚ, then 𝑆 = 𝐴 ∪ 𝐵 and 𝐴 ∩ 𝐵 = ∅. On the other hand, the empty set and the 

singleton of any real number are connected sets.  

 

Theorem388: A non-empty, non-singleton set 𝑆 in ℝ is connected if and only if it is an 

interval. Notice that the assumption that 𝑆 is an interval means that, if 𝑥 < 𝑧 < 𝑦, and if 𝑥 ∈

𝑆 and 𝑦 ∈ 𝑆, then 𝑧 ∈ 𝑆.  

 

Proof: Let 𝑆 be connected, and, for the sake of contradiction, suppose that 𝑆 is not an 

interval. Then, for some points 𝑥, 𝑦 ∈ 𝑆 with 𝑥 < 𝑦, there exists a point 𝑧 ∈ (𝑥, 𝑦) such that 

𝑧 ∉ 𝑆 (if 𝑆 were an interval, then 𝑧 ∈ 𝑆). Hence, 𝑈1 = 𝑆 ∩ (−∞, 𝑧) and 𝑈2 = 𝑆 ∩ (𝑧,∞) are 

non-empty open sets in 𝑆 such that 𝑆 = 𝑈1 ∪ 𝑈2 and 𝑈1 ∩ 𝑈2 = ∅. Consequently, if 𝑆 is not 

an interval, then it is not connected. The aforementioned contradiction implies that 𝑆 is an 

interval. 

Now, let us assume that 𝑆 is an interval. We shall prove that 𝑆 is connected by reductio 

ad absurdum. Suppose that 𝑆 is not connected. Then 𝑆 = 𝐴 ∪ 𝐵, 𝐴 ≠ ∅, 𝐵 ≠ ∅, 𝐶𝑙𝑠(𝐴) ∩

𝐵 = ∅, and 𝐴 ∩ 𝐶𝑙𝑠(𝐵) = ∅. Let 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵 with 𝑎 < 𝑏. Suppose that 𝐼 = [𝑎, 𝑏], 𝐴1 =

𝐴 ∩ 𝐼, and 𝐵1 = 𝐵 ∩ 𝐼. Hence, 𝐼 = 𝐴1 ∪ 𝐵1 is a disconnection of 𝐼. If 𝑐 = 𝑠𝑢𝑝(𝐴1), then 𝑐 ∈

𝐶𝑙𝑠(𝐴1), and 𝑐 ∉ 𝐵1. But, if 𝑐 < 𝑥 ≤ 𝑏, then 𝑥 ∉ 𝐴1, since we have assumed that 𝑐 =

𝑠𝑢𝑝(𝐴1). Thus, (𝑥, 𝑏] ⊂ 𝐵1, which implies that 𝑐 ∈ 𝐶𝑙𝑠(𝐵1), so that 𝑐 ∉ 𝐴1. But, given that 𝑆 

is an interval, and since 𝑐 ∈ 𝐼 = 𝐴1 ∪ 𝐵1, 𝑐 must belong to either 𝐴1 or 𝐵1. The 

aforementioned contradiction implies that 𝑆 is connected.■ 

 

Generalization: From the aforementioned theorem, ℝ𝑛 is connected (𝑛 = 1,2,3,…). 

 

 

2.4. SEQUENCES OF REAL NUMBERS 
 

By the term “sequence of real numbers,” we mean a function whose domain is ℕ and 

whose range is any subset of ℝ. If, ∀𝑛 ∈ ℕ, there exists a unique real number 𝑢𝑛, then 

(𝑢𝑛)𝑛∈ℕ, or simply (𝑢𝑛), is said to be a sequence of real numbers, and, in essence, it is a set 

of real numbers 𝑢1, 𝑢2, 𝑢3, … put in a definite order and formed according to a definite rule. 

The range of a sequence (𝑢𝑛)𝑛∈ℕ is often denoted by {𝑢𝑛}𝑛∈ℕ. If a sequence has a finite 

number of terms, then it is called a finite sequence; otherwise, it is called an infinite sequence.  

Two sequences (𝑢𝑛) and (𝑣𝑛) are said to be “equal” if 𝑢𝑛 = 𝑣𝑛 ∀𝑛 ∈ ℕ. A sequence 

(𝑢𝑛) is said to be a “constant sequence” if 𝑢𝑛 = 𝑐 ∀𝑛 ∈ ℕ. If a sequence (𝑢𝑛) is such that, 

∀𝜀 > 0, ∃𝑚 ∈ ℕ||𝑢𝑛| < 𝜀 ∀𝑛 ≥ 𝑚, then the sequence is said to be a “null sequence.”  

A sequence (𝑢𝑛) is said to be “bounded from above” if there exists some real number 𝑘 

such that 𝑢𝑛 ≤ 𝑘 ∀𝑛 ∈ ℕ, and (𝑢𝑛) is said to be “bounded from below” if there exists some 

 
388 Ibid. 
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real number 𝑙 such that 𝑢𝑛 ≥ 𝑙 ∀𝑛 ∈ ℕ. A sequence (𝑢𝑛) is said to be “bounded” if there exist 

real numbers 𝑘 and 𝑙 such that 𝑙 ≤ 𝑢𝑛 ≤ 𝑘 ∀𝑛 ∈ ℕ. Obviously, the boundedness of a 

sequence can be defined in terms of its range also, in the sense that a sequence is bounded if 

its range is bounded. For instance, the sequence (𝑢𝑛) where 𝑢𝑛 = 𝑛
2 ∀𝑛 ∈ ℕ is bounded 

from below, but it is not bounded from above; the sequence (𝑢𝑛) where 𝑢𝑛 = −𝑛
2 ∀𝑛 ∈ ℕ is 

bounded from above, but it is not bounded from below; the sequence (𝑢𝑛) =
(2,−2,1,−1,1 − 1,1,−1,… ), whose range is the set {𝑢𝑛} = {−2,−1,1}, is bounded with 

infimum equal to −2 and supremum equal to 1. The sequence (𝑢𝑛)𝑛∈ℕ where 𝑢𝑛 = 1 −
1

𝑛
is 

bounded with inf (𝑢𝑛) = 0 and sup (𝑢𝑛) = 1 

A real number 𝑝 is said to be an “accumulation point,” or a “limit point,” of a sequence 

(𝑢𝑛) if the (open) neighborhood (𝑝 − 𝜀, 𝑝 + 𝜀) contains infinitely many terms of 𝑢𝑛 for every 

𝜀 > 0. An accumulation point of (𝑢𝑛) need to be an accumulation point of its range {𝑢𝑛}. For 

instance, the sequence (𝑢𝑛) = (−1)
𝑛 = (1,−1,1 − 1,1,−1,… ) ∀𝑛 ∈ ℕ has two 

accumulation points, namely, −1 and 1, but the range of this sequence, namely, the set 

{𝑢𝑛} = {−1,1}, has not accumulation point, since it is a finite set.  

 

Limit and Convergence of a Sequence389 

A real number 𝑙 is said to be the “limit” of a sequence (𝑢𝑛)𝑛∈ℕ if, 

 

∀𝜀 > 0, ∃𝑚 ∈ ℕ||𝑢𝑛 − 𝑙| < 𝜀 ∀𝑛 ≥ 𝑚. 

 

If this is the case, then we write 𝑙𝑖𝑚𝑛→∞𝑢𝑛 = 𝑙, and we say that the sequence (𝑢𝑛)𝑛∈ℕ 

“converges” to 𝑙.  

On the other hand, if,  

 

∀𝐿 > 0, ∃𝑚 ∈ ℕ|𝑢𝑛 > 𝐿 ∀𝑛 ≥ 𝑚, 

 

then 𝑢𝑛 → ∞ as 𝑛 → ∞, and then we say that the sequence (𝑢𝑛)𝑛∈ℕ “diverges” to ∞. If,  

 

∀𝐿 > 0, ∃𝑚 ∈ ℕ| − 𝑢𝑛 > 𝐿 ∀𝑛 ≥ 𝑚, 

 

then 𝑢𝑛 → −∞ as 𝑛 → ∞, and then we say that the sequence (𝑢𝑛)𝑛∈ℕ “diverges” to −∞. For 

instance, the sequence (𝑢𝑛)𝑛∈ℕ = (𝑛)𝑛∈ℕ diverges to ∞, and the sequence (𝑢𝑛)𝑛∈ℕ =
(−𝑛)𝑛∈ℕ diverges to −∞.  

If a sequence (𝑢𝑛)𝑛∈ℕ neither converges nor diverges to ∞ or −∞, then it is said to 

“oscillate.” If a bounded sequence oscillates, then it is said to “oscillate finitely.” If an 

unbounded sequence oscillates, then it is said to “oscillate infinitely.” For instance, the 

sequence(𝑢𝑛)𝑛∈ℕ = ((−1)
𝑛)𝑛∈ℕ oscillates finitely, and the sequence (𝑢𝑛)𝑛∈ℕ =

((−1)𝑛𝑛)𝑛∈ℕ oscillates infinitely.  

 

 
389 See: Apostol, Mathematical Analysis; Fraleigh, Calculus with Analytic Geometry; Landau, Foundations of 

Analysis; Nikolski, A Course of Mathematical Analysis; Rudin, Principles of Mathematical Analysis; Spivak, 

Calculus; in conjunction with Cauchy, Cours d’Analyse. 
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Properties of the Limit of a Sequence390: Let (𝑢𝑛)𝑛∈ℕ and (𝑣𝑛)𝑛∈ℕ be two arbitrary 

infinite sequences such that 𝑙𝑖𝑚𝑛→∞𝑢𝑛 = 𝑙1 and 𝑙𝑖𝑚𝑛→∞𝑣𝑛 = 𝑙2. Then: 

 

i. If the limit of a sequence exists, then it is unique (i.e., a sequence can converge to 

only one limit). 

ii. 𝑙𝑖𝑚𝑛→∞(𝑢𝑛 + 𝑣𝑛) = 𝑙𝑖𝑚𝑛→∞𝑢𝑛 + 𝑙𝑖𝑚𝑛→∞𝑣𝑛 = 𝑙1 + 𝑙2. 

iii. 𝑙𝑖𝑚𝑛→∞(𝑢𝑛 − 𝑣𝑛) = 𝑙𝑖𝑚𝑛→∞𝑢𝑛 − 𝑙𝑖𝑚𝑛→∞𝑣𝑛 = 𝑙1 − 𝑙2. 

iv. 𝑙𝑖𝑚𝑛→∞(𝑢𝑛 ∙ 𝑣𝑛) = 𝑙𝑖𝑚𝑛→∞𝑢𝑛 ∙ 𝑙𝑖𝑚𝑛→∞𝑣𝑛 = 𝑙1 ∙ 𝑙2. 

v. 𝑙𝑖𝑚𝑛→∞
𝑢𝑛

𝑣𝑛
=

𝑙𝑖𝑚𝑛→∞𝑢𝑛

𝑙𝑖𝑚𝑛→∞𝑣𝑛
=

𝑙1

𝑙2
, provided that 𝑙𝑖𝑚𝑛→∞𝑣𝑛 = 𝑙2 ≠ 0. If 𝑙2 = 0 and 𝑙1 ≠ 0, 

then 
𝑙𝑖𝑚𝑛→∞𝑢𝑛

𝑙𝑖𝑚𝑛→∞𝑣𝑛
 does not exist, and, if 𝑙2 = 0 = 𝑙1, then 

𝑙𝑖𝑚𝑛→∞𝑢𝑛

𝑙𝑖𝑚𝑛→∞𝑣𝑛
 may or may not exist. 

vi. 𝑙𝑖𝑚𝑛→∞𝑢𝑛
𝑟 = (𝑙𝑖𝑚𝑛→∞𝑢𝑛)

𝑟 = 𝑙1
𝑟, provided that 𝑙1

𝑟 exists, where 𝑟 is a real number. 

vii. Every convergent sequence is bounded.  

viii. The limit of a convergent sequence is an accumulation point of the given sequence.  

 

Proof:  

 

i. First of all, the uniqueness of the limit of a sequence can be proved by thinking 

geometrically as follows: in the neighborhood of the limit of a sequence, there are 

infinitely many terms of the given sequence, whereas, in any other area, there only a 

few or no terms of the given sequence. Moreover, this theorem can be proved by 

reductio ad absurdum as follows: For the sake of contradiction, suppose that the limit 

of a convergent sequence (𝑢𝑛)𝑛∈ℕ is not unique, so that 𝑙𝑖𝑚𝑛→∞𝑢𝑛 = 𝛼 and 

𝑙𝑖𝑚𝑛→∞𝑢𝑛 = 𝛽. Then, by the definition of a limit,  

∀𝜀 > 0, ∃𝑚||𝑢𝑛 − 𝛼| <
𝜀

2
&|𝑢𝑛 − 𝛽| <

𝜀

2
 ∀𝑛 ≥ 𝑚. Hence,  

|𝛼 − 𝛽| = |𝛼 − 𝑢𝑛 + 𝑢𝑛 − 𝛽| ≤ |𝑎 − 𝑢𝑛| + |𝑢𝑛 − 𝛽| 

<
𝜀

2
+
𝜀

2
= 𝜀 ⇒ 𝛼 = 𝛽. 

ii. By hypothesis,  

∀𝜀 > 0, ∃𝑚1, 𝑚2||𝑢𝑛 − 𝑙1| <
𝜀

2
&|𝑣𝑛 − 𝑙2| <

𝜀

2
 ∀𝑛 ≥ 𝑚1& ∀𝑛 ≥ 𝑚2.  

Then |𝑢𝑛 + 𝑣𝑛 − (𝑙1 + 𝑙2)| ≤ |𝑢𝑛 − 𝑙1| + |𝑣𝑛 − 𝑙2| 

<
𝜀

2
+
𝜀

2
= 𝜀 ∀𝑛 ≥ 𝑚 = 𝑚𝑎𝑥{𝑚1, 𝑚2}. Therefore, 

𝑙𝑖𝑚𝑛→∞(𝑢𝑛 + 𝑣𝑛) = 𝑙𝑖𝑚𝑛→∞𝑢𝑛 + 𝑙𝑖𝑚𝑛→∞𝑣𝑛 = 𝑙1 + 𝑙2. 

iii. The proof is similar to that of (ii).  

iv. The proof is similar to that of (ii). 

v. The proof is similar to that of (iv). 

vi. The proof is similar to that of (iv). 

vii. Assume that the sequence (𝑢𝑛)𝑛∈ℕ is convergent, and 𝑙𝑖𝑚𝑛→∞𝑢𝑛 = 𝑙1. Then, ∀𝜀 >

0, ∃𝑚||𝑢𝑛 − 𝑙1| < 𝜀 ∀𝑛 ≥ 𝑚. If 𝜀 = 1, then 

|𝑢𝑛 − 𝑙1| < 1 ⇔ 𝑙1 − 1 < 𝑢𝑛 < 𝑙1 + 1 ∀𝑛 ≥ 𝑚. Let 

𝑎 = 𝑚𝑖𝑛{𝑙1 − 1, 𝑢1, 𝑢2, … , 𝑢𝑚−1} and 

𝑏 = 𝑚𝑎𝑥{𝑙1 + 1, 𝑢1, 𝑢2, … , 𝑢𝑚−1}, so that 

 
390 Ibid. 
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𝑎 ≤ 𝑢𝑛 ≤ 𝑏 for every 𝑛 ∈ ℕ, meaning that (𝑢𝑛)𝑛∈ℕ is bounded. However, notice that 

a bounded sequence may not converge. For instance, the sequence (𝑢𝑛)𝑛∈ℕ =
(−1,1,−1,1,… ) is bounded, but it is not convergent. 

viii. Assume that the sequence (𝑢𝑛)𝑛∈ℕ is convergent, and 𝑙𝑖𝑚𝑛→∞𝑢𝑛 = 𝑙1. Then, ∀𝜀 >

0, ∃𝑚||𝑢𝑛 − 𝑙1| < 𝜀 ∀𝑛 ≥ 𝑚, so that, ∀𝑛 ≥ 𝑚, 

𝑙1 − 𝜀 < 𝑢𝑛 < 𝑙1 + 𝜀 ⇔ 𝑢𝑛 ∈ (𝑙1 − 𝜀, 𝑙1 + 𝜀) for infinitely many 𝑛, and, therefore, 

𝑙1 is an accumulation point of (𝑢𝑛)𝑛∈ℕ. However, notice that, if 𝑙1 is an accumulation 

point of a sequence (𝑢𝑛)𝑛∈ℕ, then this sequence need not be convergent. For 

instance, the sequence (𝑢𝑛)𝑛∈ℕ = (1,2,1,4,1,6,… ) has an accumulation point equal 

to 1, but it is not convergent.■ 

 

Remark: A sequence can have several accumulation points, but it can have at most one 

limit. For instance, the sequence ((−1)𝑛+1)𝑛∈ℕ does not converge, but it has two 

accumulation points, namely, −1 and +1. Notice that the limit of a sequence is formally 

defined by the aforementioned 𝜀-𝑚 definition, according to which the fact that a sequence 

(𝑢𝑛)𝑛∈ℕ converges to a number 𝑙 means that, as long as the subscript 𝑛 of (𝑢𝑛)𝑛∈ℕ is large 

enough, all terms 𝑢𝑛 of this sequence fall within a small neighborhood of the number 𝑙, 

whereas an accumulation point has lots of but not all the terms of a sequence near it (the limit 

of a sequence is an accumulation point of the given sequence).  

 

The Squeeze Theorem for Convergent Sequences391: Given the convergent sequences 

(𝑢𝑛)𝑛∈ℕ, (𝑣𝑛)𝑛∈ℕ, and (𝑤𝑛)𝑛∈ℕ with 𝑢𝑛 ≤ 𝑣𝑛 ≤ 𝑤𝑛 after some 𝑛th term, it holds that, if 

𝑙𝑖𝑚𝑛→∞𝑢𝑛 = 𝑙𝑖𝑚𝑛→∞𝑤𝑛 = 𝑙, then 𝑙𝑖𝑚𝑛→∞𝑣𝑛 = 𝑙. 

 

Proof: First of all, this theorem can be proved by thinking geometrically as follows: 𝑣𝑛 

lies between 𝑢𝑛 and 𝑤𝑛, whose distances from 𝑙 can become as small as we want, and, 

therefore, the distance of 𝑣𝑛 from 𝑙 can also become as small as we want. Moreover, this 

theorem can be proved in a more rigorous way as follows: Let 𝑢𝑛 ≤ 𝑣𝑛 ≤ 𝑤𝑛 after the Mth 

term. Then we have to show that 

 

∀𝜀 > 0, ∃𝑚 ∈ ℕ||𝑣𝑛 − 𝑙| < 𝜀 ∀𝑛 ≥ 𝑚. 

 

Notice that 𝑙𝑖𝑚𝑛→∞𝑢𝑛 = 𝑙 ⇔ ∀𝜀 > 0, ∃𝑚1 ∈ ℕ||𝑢𝑛 − 𝑙| < 𝜀 ∀𝑛 ≥ 𝑚1, and 

 

𝑙𝑖𝑚𝑛→∞𝑤𝑛 = 𝑙 ⇔ ∀𝜀 > 0, ∃𝑚2 ∈ ℕ||𝑤𝑛 − 𝑙| < 𝜀 ∀𝑛 ≥ 𝑚2. 

 

Letting 𝑀 = 𝑚𝑎𝑥{𝑚,𝑚1,𝑚2}, we ensure that −𝜀 < 𝑢𝑛 − 𝑙 < 𝜀, −𝜀 < 𝑤𝑛 − 𝑙 < 𝜀, and 

𝑢𝑛 ≤ 𝑣𝑛 ≤ 𝑤𝑛. Subtracting 𝑙 from all parts of this inequality, we obtain 𝑢𝑛 − 𝑙 ≤ 𝑣𝑛 − 𝑙 ≤

𝑤𝑛 − 𝑙, so that −𝜀 < 𝑣𝑛 − 𝑙 < 𝜀 ⇔ |𝑣𝑛 − 𝑙| < 𝜀, and, therefore, 𝑙𝑖𝑚𝑛→∞𝑣𝑛 = 𝑙.■ 

 

Cauchy Sequences and the Completeness of the Real Field392 

A sequence (𝑢𝑛)𝑛∈ℕ is said to be a “Cauchy sequence” if, 

 

 
391 Ibid. 
392 Ibid. 
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∀𝜀 > 0, ∃𝑚 ∈ ℕ||𝑢𝑛+𝑘 − 𝑢𝑛| < 𝜀 ∀𝑛 ≥ 𝑚 & 𝑘 ∈ ℕ.  

 

Notice that the difference between the definition of a “Cauchy sequence” and the 

definition of a “convergent sequence” is that the terms of a Cauchy sequence get close to each 

other, whereas the terms of a convergent sequence get close only to some fixed element in the 

ordered field. A convergent sequence is always a Cauchy sequence, but, in some ordered 

fields, a Cauchy sequence may not converge. For instance, consider the sequence of rational 

numbers 

 

1, 1.4, 1.41, 1.414, 1.4142,… 

 

obtained by computing the square root of 2. Then this is a Cauchy sequence, but it is not 

convergent in the rational field.  

 

Theorem393: A convergent sequence in an arbitrary ordered field 𝐹 is a Cauchy sequence 

in 𝐹.  

 

Proof: Let (𝑢𝑛)𝑛∈ℕ be a sequence of elements of 𝐹 such that lim
𝑛→∞

𝑢𝑛 = 𝑢. Then  

 

∀𝜀 > 0 𝑖𝑛 𝐹, ∃𝑛0 > 0 𝑖𝑛 ℕ||𝑢𝑛 − 𝑢| <
𝜀

2
 ∀𝑛 ≥ 𝑛0. Hence, 

|𝑢𝑛 − 𝑢𝑚| ≤ |𝑢𝑛 − 𝑢| + |𝑢 − 𝑢𝑚| < 𝜀 ∀𝑚, 𝑛 ≥ 𝑛0.■  

 

An ordered field 𝐹 is “complete” if and only if every Cauchy sequence of elements of 𝐹 

converges to an element in 𝐹 (the concept of completeness was studied in section 2.2.4).  

 

Remark: The rational field is not complete; for instance, as I have already mentioned, the 

Cauchy sequence of rational numbers  

 

1, 1.4, 1.41, 1.414, 1.4142,…,  

 

obtained by computing the √2, is not convergent in the rational field. However, the 

construction of the real field, which was explained in section 2.2.4, and the concept of a 

neighborhood, which was studied in sections 2.2.6 and 2.3.1, imply that the real field is 

complete, and, in fact, the extension of the rational field to the real field is the extension of an 

incomplete ordered field to a complete ordered field.  

 

Baire’s Category Theorem394: Let (𝐴𝑛)𝑛∈ℕ be a sequence of closed subsets of ℝ such 

that ∪𝑛=1
∞ 𝐴𝑛 contains an interval. Then at least one of the sets 𝐴𝑛 contains an interval. 

 

Proof: Assume that 𝐼0 is a closed and bounded interval in ∪𝑛=1
∞ 𝐴𝑛. For the sake of 

contradiction, we shall assume that the theorem is not true, and we shall try to inductively 

construct a decreasing sequence of closed intervals 𝐼0, 𝐼1, 𝐼2, … such that, ∀𝑛 > 1, 𝐼𝑛 ∩ 𝐴𝑛 =

 
393 Ibid.  
394 Ibid.  
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∅. Since 𝐼0 is not contained in 𝐴1, there is a point 𝑥1 ∈ 𝐼0 − 𝐴1. Since 𝐴1 is closed, there is an 

interval about 𝑥1 that does not meet 𝐴1, and, in this interval, we can choose a closed interval 

𝐼1 ⊆ 𝐼0. Repeating the same process, inductively, if we have chosen 𝐼𝑛−1, then there is a point 

𝑥𝑛 ∈ 𝐼𝑛−1 − 𝐴𝑛, and we can find a closed interval 𝐼𝑛 ⊆ 𝐼𝑛−1 such that 𝐼𝑛 ∩ 𝐴𝑛 = ∅. The 

intersection of a nested sequence of closed and bounded intervals cannot be the empty set, 

and, therefore, there exists a point 𝑥 such that 𝑥 ∈∩𝑛=0
∞ 𝐼𝑛. Hence, 𝑥 ∈ 𝐼0, but 𝑥 ∉∪𝑛=1

∞ 𝐴𝑛, 

which contradicts the fact that ∪𝑛=1
∞ 𝐴𝑛 ⊇ 𝐼0. This contradiction implies that the theorem is 

true.■ 

 

Remark: This theorem was proved by the French mathematician René-Louis Baire in his 

1899 doctoral thesis, and it is usually stated in the more general context of complete metric 

spaces as follows: Let 𝑋 be a complete metric space (that is, one in which every Cauchy 

sequence converges). Then (i) the countable intersection of open, dense sets is dense, and (ii) 

𝑋 is not a countable union of nowhere dense sets. Hence, the Baire Category Theorem 

provides important information about the size of certain topological spaces. 

 

Subsequences395 

Consider a sequence (𝑢𝑛)𝑛∈ℕ and a set of positive integers 𝑛1, 𝑛2, … , 𝑛𝑘 , … with 𝑛𝑘+1 >

𝑛𝑘, where 𝑘 = 1,2,3,… Then (𝑢𝑛𝑘)𝑘∈ℕ
 is called a “subsequence” of (𝑢𝑛)𝑛∈ℕ. For instance, 

(𝑢2𝑛)𝑛∈ℕ, (𝑢𝑛
2)𝑛∈ℕ, and (𝑢3𝑛−2)𝑛∈ℕ are subsequences of (𝑢𝑛)𝑛∈ℕ. In other words, (𝑢𝑛𝑘)𝑘∈ℕ

 

is a subsequence of (𝑢𝑛)𝑛∈ℕ if (𝑢𝑛𝑘) ⊆ (𝑢𝑛) and 𝑛𝑘 is a strictly increasing sequence of 

natural numbers, where 𝑘 ∈ ℕ. A subsequence is an infinite subset that preserves the order of 

the original sequence. If 𝑙𝑖𝑚𝑘→∞𝑢𝑛𝑘 = 𝑙
′, then 𝑙′ is called a “subsequential limit” of (𝑢𝑛)𝑛∈ℕ.  

 

Theorem396: Every accumulation point of a subsequence of a sequence of real numbers is 

also an accumulation point of the given sequence. The converse is not necessarily true.  

 

Proof: Let (𝑢𝑛𝑘)𝑘∈ℕ
 be a subsequence of the sequence (𝑢𝑛)𝑛∈ℕ, and 𝑝 be an 

accumulation point of (𝑢𝑛𝑘)𝑘∈ℕ
. Hence, by definition, for every 𝜀 > 0, 𝑢𝑛𝑘 ∈ (𝑝 − 𝜀, 𝑝 +

𝜀) ⇒ 𝑢𝑛 ∈ (𝑝 − 𝜀, 𝑝 + 𝜀), meaning that 𝑝 is also an accumulation point of (𝑢𝑛)𝑛∈ℕ.  

However, the converse is not necessarily true. For instance, consider the infinite sequence 

(𝑢𝑛)𝑛∈ℕ = (1,1,2,1,2, 3,1,2,3,4,1,2,3,4,5,… ), which is built as follows: at first the number 1 

is written out, then the numbers from 1 to 2 are written out, then the numbers from 1 to 3, 

then the numbers from 1 to 4, etc. This sequence has infinitely many accumulation points, 

namely, 1,2,3,… (even though it is not convergent). On the other hand, the subsequence 

(𝑢𝑛𝑘)𝑘∈ℕ
= (1,2,3,… ) of the given sequence has no accumulation point.■ 

 

Theorem397: Any bounded sequence contains a convergent subsequence, that is, it has at 

least one accumulation point (in essence, this theorem is a reformulation of the Bolzano–

Weierstrass Theorem, proven in section 2.3.4, in terms of sequences). 

 
395 Ibid.  
396 Ibid. 
397 Ibid. 
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Proof: Let (𝑢𝑛)𝑛∈ℕ be a bounded sequence. Then there exists an interval [𝑎1, 𝑏1] such 

that 𝑎1 ≤ 𝑢𝑛 ≤ 𝑏1. Either [𝑎1,
𝑎1+𝑏1

2
] or [

𝑎1+𝑏1

2
, 𝑏1] contains infinitely many terms of 

(𝑢𝑛)𝑛∈ℕ, meaning that there exist infinitely many 𝑛 such that 𝑢𝑛 is in [𝑎1,
𝑎1+𝑏1

2
], or there 

exist infinitely many 𝑛 such that 𝑢𝑛 is in [
𝑎1+𝑏1

2
, 𝑏1]. If [𝑎1,

𝑎1+𝑏1

2
] contains infinitely many 

terms of (𝑢𝑛)𝑛∈ℕ, then let [𝑎2, 𝑏2] = [𝑎1,
𝑎1+𝑏1

2
]; otherwise, let [𝑎2, 𝑏2] = [

𝑎1+𝑏1

2
, 𝑏1].  

Moreover, either [𝑎2,
𝑎2+𝑏2

2
] or [

𝑎2+𝑏2

2
, 𝑏2] contains infinitely many terms of (𝑢𝑛)𝑛∈ℕ. If 

[𝑎2,
𝑎2+𝑏2

2
] contains infinitely many terms of (𝑢𝑛)𝑛∈ℕ, then let [𝑎3, 𝑏3] = [𝑎2,

𝑎2+𝑏2

2
]; 

otherwise, let [𝑎3, 𝑏3] = [
𝑎2+𝑏2

2
, 𝑏2]. By mathematical induction, we can repeat this process 

and, thus, construct a sequence of intervals ([𝑎𝑛, 𝑏𝑛])𝑛∈ℕ such that, ∀𝑛 ∈ ℕ, [𝑎𝑛, 𝑏𝑛] contains 

infinitely many terms of (𝑢𝑛)𝑛∈ℕ, [𝑎𝑛+1, 𝑏𝑛+1] ⊆ [𝑎𝑛, 𝑏𝑛], and 𝑏𝑛+1 − 𝑎𝑛+1 =
1

2
(𝑏𝑛 − 𝑎𝑛), 

that is, 𝑏𝑛 − 𝑎𝑛 =
𝑏1−𝑎1

2𝑛−1
.  

Cantor’s Intersection Theorem (proven in section 2.3.3) implies that the intersection of all 

the intervals [𝑎𝑛, 𝑏𝑛] is a single point 𝑢. Now, we have to show that 𝑢 is an accumulation 

point of (𝑢𝑛)𝑛∈ℕ. Hence, we shall construct a subsequence of (𝑢𝑛)𝑛∈ℕ that converges to 𝑢.  

Given that each of the intervals [𝑎𝑛, 𝑏𝑛] contains infinitely many terms of (𝑢𝑛)𝑛∈ℕ, we 

choose one term 𝑥𝑛1 from [𝑎1, 𝑏1], then we choose one term 𝑥𝑛2 from [𝑎2, 𝑏2], then we 

choose one term 𝑥𝑛3 from [𝑎3, 𝑏3], etc. Then (𝑢𝑛𝑘)𝑘∈ℕ
 is a subsequence of (𝑢𝑛)𝑛∈ℕ, and 

𝑎𝑛 ≤ 𝑢𝑛𝑘 ≤ 𝑏𝑛 for every 𝑘 ∈ ℕ. Because 𝑙𝑖𝑚𝑛→∞𝑎𝑛 = 𝑙𝑖𝑚𝑛→∞𝑏𝑛 = 𝑢, the Squeeze 

Theorem for Convergent Sequences implies that 𝑢𝑛𝑘 → 𝑢.■ 

 

Theorem398: If a Cauchy sequence (𝑢𝑛)𝑛∈ℕ of elements in an ordered field 𝐹 has a 

subsequence (𝑢𝑛𝑘)𝑘∈ℕ
 that converges to 𝑢, then (𝑢𝑛)𝑛∈ℕ converges to 𝑢.  

 

Proof: Let 𝜀 > 0 in 𝐹. Then there exists a positive integer 𝑛0 such that |𝑢𝑛 − 𝑢𝑚| <
𝜀

2
 ∀𝑚, 𝑛 ≥ 𝑛0. Moreover, there exists a positive integer 𝑘0 such that |𝑢𝑛𝑘 − 𝑢| <

𝜀

2
 ∀𝑘 ≥ 𝑘0. 

If 𝑘 ≥ 𝑘0 such that 𝑛𝑘 ≥ 𝑛0, then |𝑢𝑛 − 𝑢| ≤ |𝑢𝑛 − 𝑢𝑛𝑘| + |𝑢𝑛𝑘 − 𝑢| < 𝜀 whenever 𝑛 ≥

𝑛0.■ 

 

Let 𝒮 be the set of all Cauchy sequences of rational numbers with the binary operations 

 

(𝑢𝑛) + (𝑣𝑛) = (𝑢𝑛 + 𝑣𝑛) and (𝑢𝑛)(𝑣𝑛) = (𝑢𝑛𝑣𝑛). 

 

Moreover, let 𝒩 be the subset of 𝒮 that consists of the “null sequences,” namely, of those 

sequences which converge to 0. Then we define a relation 𝑅 in 𝒮 as follows: 

 

(𝑢𝑛)𝑅(𝑣𝑛) if (𝑢𝑛) − (𝑣𝑛) = (𝑢𝑛 − 𝑣𝑛) ∈ 𝒩.  

 

 
398 Ibid. 



Dr. Nicolas Laos, The Dialectic of Rational Dynamicity 239 

It can be easily verified that this relation is an equivalence relation, and it determines a 

partition of 𝒮 into equivalence classes which can be denoted by (𝑢𝑛)̅̅ ̅̅ ̅̅ . Given the 

aforementioned notation and definitions, the real number system ℝ is the quotient set𝒮 𝑅⁄  

with the operations of addition and multiplication defined as follows: 

 

(𝑢𝑛)̅̅ ̅̅ ̅̅ + (𝑣𝑛)̅̅ ̅̅ ̅̅ = (𝑢𝑛) + (𝑣𝑛)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ and (𝑢𝑛)̅̅ ̅̅ ̅̅ ∙ (𝑣𝑛)̅̅ ̅̅ ̅̅ = (𝑢𝑛) ∙ (𝑣𝑛)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ . 

 

Monotonic Sequences399 

A sequence (𝑢𝑛)𝑛∈ℕ is said to be “increasing” if 𝑢𝑛+1 ≥ 𝑢𝑛 ∀𝑛 ∈ ℕ, and it is said to be 

“strictly increasing” if 𝑢𝑛+1 > 𝑢𝑛 ∀𝑛 ∈ ℕ. For instance, the sequence 𝑢𝑛 = 𝑛, including the 

terms 1,2,3,4,5,…, is strictly increasing, and the sequence  

 

𝑣𝑛 = {

𝑛+1

2
 𝑖𝑓 𝑛 𝑖𝑠 𝑜𝑑𝑑

𝑛

2
 𝑖𝑓 𝑛 𝑖𝑠 𝑒𝑣𝑒𝑛

 , 

 

including the terms 1,1,2,2,3,3,4,4,…, is increasing but not strictly increasing. 

A sequence (𝑢𝑛)𝑛∈ℕ is said to be “decreasing” if 𝑢𝑛+1 ≤ 𝑢𝑛 ∀𝑛 ∈ ℕ, and it is said to be 

“strictly decreasing” if 𝑢𝑛+1 < 𝑢𝑛 ∀𝑛 ∈ ℕ. For instance, the sequence 𝑢𝑛 =
1

𝑛
 is strictly 

decreasing.  

A sequence (𝑢𝑛)𝑛∈ℕ is said to be “monotonic” if it is either increasing or decreasing. A 

sequence (𝑢𝑛)𝑛∈ℕ is said to be “non-monotonic” if it is neither increasing nor decreasing. For 

instance, the sequence 𝑢𝑛 = (−1)
𝑛 is non-monotonic. 

 

Theorem400: (i) Let (𝑢𝑛)𝑛∈ℕ be an increasing real sequence. Then it is convergent if and 

only if it is bounded from above. (ii) Let (𝑢𝑛)𝑛∈ℕ be a decreasing real sequence. Then it is 

convergent if and only if it is bounded from below. (iii) Given (i) and (ii), a monotonic 

sequence is convergent if and only if it is bounded. 

 

Proof: (i) Let (𝑢𝑛)𝑛∈ℕ be an increasing sequence, and 𝑙𝑖𝑚𝑛→∞𝑢𝑛 = 𝑢, so that,  

 

∀𝜀 > 0, ∃𝑚 ∈ ℕ||𝑢𝑛 − 𝑢| < 𝜀 ∀𝑛 ≥ 𝑚. 

 

Let 𝜀 = 1, so that, whenever 𝑛 ≥ 𝑘 for some 𝑘 ∈ ℕ, 

 

|𝑢𝑛 − 𝑢| < 1 ⇒ 𝑢 − 1 < 𝑢𝑛 < 𝑢 + 1, ∀𝑛 ≥ 𝑘, 

 

which implies that 𝑢𝑛 ≤ 𝑛0 for 𝑛0 = 𝑚𝑎𝑥{𝑢 + 1, 𝑢1, 𝑢2, … , 𝑢𝑘−1}, and, therefore, (𝑢𝑛)𝑛∈ℕ is 

bounded from above. 

Now, assuming that (𝑢𝑛)𝑛∈ℕ is bounded from above and increasing, we shall prove that 

it converges to a real number 𝑝. Let sup (𝑢𝑛) = 𝑝, where 𝑝 ∈ ℝ. We shall prove 

𝑙𝑖𝑚𝑛→∞𝑢𝑛 = 𝑝. Let 𝜀 > 0 be such that 𝑝 − 𝜀 is not an upper bound of (𝑢𝑛)𝑛∈ℕ, so that 

 
399 Ibid. 
400 Ibid. 
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𝑝 − 𝜀 < 𝑢𝑚 for some 𝑚 ∈ ℕ. (∗) 

 

Because (𝑢𝑛)𝑛∈ℕ is increasing, 𝑢𝑚 ≤ 𝑢𝑛 ∀𝑛 ≥ 𝑚. (∗∗)  

 

Because of (∗) and (∗∗),∀𝑛 ≥ 𝑚, 

 

𝑝 − 𝜀 < 𝑢𝑚 ≤ 𝑢𝑛 ⇒ 𝑝 − 𝜀 < 𝑢𝑛. (∗∗∗) 

 

Moreover, 𝑢𝑛 < 𝑝 + 𝜀, given thatsup (𝑢𝑛) = 𝑝. (∗∗∗∗) 

 

Because of (∗∗∗) and (∗∗∗∗),  

 

∀𝜀 > 0, ∃𝑚 ∈ ℕ|𝑝 − 𝜀 < 𝑢𝑛 < 𝑝 + 𝜀 ⇒ |𝑢𝑛 − 𝑝| < 𝜀 ∀𝑛 ≥ 𝑚. 

 

Therefore, 𝑙𝑖𝑚𝑛→∞𝑢𝑛 = 𝑝.  

(ii) The proof is similar to that of (i), and the point of convergence is the infimum. (iii) It 

is a straightforward combination of (i) and (ii).■ 

 

Hilbert Space 

The set 𝐻 = {𝑢 = (𝑢1, 𝑢2, … )|𝑢𝑖 ∈ ℝ &∑ 𝑢𝑖
2 < ∞∞

𝑖=1 } is called a “Hilbert space, and it is 

often denoted by ℝ∞. The pair (𝐻, 𝑑), where 𝑑(𝑢, 𝑣) = [∑ (𝑢𝑖 − 𝑣𝑖)
2∞

𝑖=1 ]
1

2 with 𝑢, 𝑣 ∈ 𝐻 is a 

metric space (it can be easily verified that it satisfies the requirements of the definition of a 

metric space). A Hilbert space precludes the possibility of containing a sequence that may 

converge to something not in the space, and, therefore, it is complete. It is named after the 

great German mathematician David Hilbert (1862–1943), who has made foundational 

contributions to functional analysis and geometry, and he was one of Albert Einstein’s 

mathematical mentors. The set 𝐼∞ = {𝑢 = (𝑢1, 𝑢2, … )||𝑢𝑛| ≤
1

𝑛
, 𝑛 ∈ ℕ} is called the “Hilbert 

cube.” 

 

Alphabets and Languages401 

If 𝑓 is a sequence whose domain 𝑋 is finite and consists of 𝑛 consecutive natural 

numbers, and if 𝑌 is the codomain of 𝑓, then 𝑓 defines a “string of length 𝑛 in Y,” or a “word 

of length 𝑛 in Y.” Obviously, any such sequence is an 𝑛-tuple. For instance, if 𝑋 =
{1,2,3,4,5}, 𝑌 = {𝐴, 𝐵, 𝐶, 𝐷}, and the sequence 𝑓: 𝑋 → 𝑌 is defined by 𝑓(1) = 𝐴, 𝑓(2) =

𝐵, 𝑓(3) = 𝐷, 𝑓(4) = 𝐴, 𝑎𝑛𝑑 𝑓(5) = 𝐷, then the sequence is the string 𝐴𝐵𝐷𝐴𝐷 of length 5 in 

𝑌 (that is, the 5-tuple 𝐴𝐵𝐷𝐴𝐷). In other words, if 𝐴 is an “alphabet,” namely, a set whose 

elements are called “letters,” then a “word,” or “string,” from 𝐴 (or over 𝐴, or on 𝐴) is a finite 

sequence of letters. 

If 𝑆 is any non-empty set, then we denote by 𝑆𝑛the set of all strings of length 𝑛 in 𝑆, and 

by 𝑆∗ the set of all strings, including the null string with no elements. Any subset of 𝑆∗ is 

called a “language over the alphabet 𝑆.” The union and the intersection of two languages over 

an alphabet are also languages over the same alphabet. If 𝑢 = (𝑢1𝑢2𝑢3…𝑢𝑚) and 𝑣 =

 
401 See: Balakrishnan, Introductory Discrete Mathematics, pp. 207–18; Yablonsky, Introduction to Discrete 

Mathematics, parts I and IV. 
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(𝑣1𝑣2𝑣3…𝑣𝑛) are two strings of lengths 𝑚 and 𝑛, respectively, in 𝑆∗, then the 

“concatenation” of 𝑢 and 𝑣 is the string 𝑢𝑣 in 𝑆∗ of length 𝑚+ 𝑛 defined as 𝑢𝑣 =

(𝑢1𝑢2𝑢3…𝑢𝑚𝑣1𝑣2…𝑣𝑛). In other words, concatenation means appending one string to the 

end of another string. 

Any function from 𝐴 × 𝐴 into 𝐴 is called a “binary operator” on 𝐴. The function 𝑐: 𝑆∗ ×

𝑆∗ → 𝑆∗ defined by 𝑐(𝑢, 𝑣) = 𝑢𝑣, where 𝑢𝑣 is the concatenation of the strings 𝑢 and 𝑣, is a 

binary operator on 𝑆∗.  

Let 𝐾 and 𝐿 be languages over an alphabet 𝐴. Then the language 𝐾𝐿 over 𝐴 can be 

defined as follows: 𝐾𝐿 consists of all words over 𝐴 formed by concatenating words in 𝐾 with 

words in 𝐿. Therefore,  

 

𝐾𝐿 = {𝑤|𝑤 = 𝑢𝑣,𝑤ℎ𝑒𝑟𝑒 𝑢 ∈ 𝐾 𝑎𝑛𝑑 𝑣 ∈ 𝐿}. 

 

String distance functions (known also as string metrics) are used in several areas, such as 

DNA analysis, RNA analysis, ontology merging (i.e., the act of bringing together two 

conceptually divergent formal systems or the instance data associated with two formal 

systems), image analysis, fraud detection, fingerprint analysis, evidence-based machine 

learning, data mining, incremental search, data integration, and semantic knowledge 

integration.402 In bioinformatics, in particular, a sequence alignment is a way of arranging the 

sequences of DNA and RNA, or protein in order to identify regions of similarity that may 

derive from functional, evolutionary, or structural relationships between sequences.403 

 

 

2.5. INFINITE SERIES AND INFINITE PRODUCTS 
 

As I have already mentioned, by a (real) sequence, we mean a function 𝑓:ℕ → ℝ whose 

images are 𝑎1, 𝑎2, 𝑎3, … , 𝑎𝑛, … By adding 𝑎1 + 𝑎2 + 𝑎3 +⋯+ 𝑎𝑛 +⋯, we obtain an “infinite 

summation.” Such an infinite sum is called an “infinite series.”404 If, however, we add finitely 

many terms, then we get a sum that is a number, namely, every finite summation converges. 

The founders of the modern theory of infinite series are Isaac Newton and James Gregory in 

the seventeenth century, and the Bernoulli family mathematicians (Jacob, John, Nicolaus, and 

Daniel), Leonhard Euler, and Joseph Lagrange in the eighteenth century. In fact, the 

eighteenth-century mathematicians were thinking of infinite series as infinite polynomials 

(mathematical expressions consisting of variables, coefficients, and the operations of 

addition, subtraction, multiplication, and non-negative integral exponents), and they tried to 

develop an arithmetic system of infinite polynomials (see section 2.6).  

The basic idea in the study of infinite series is that an infinite summation of numbers can 

have a finite sum. Some of the early work on series was motivated by paradoxes related to the 

concept of infinity, with which many ancient Greek mathematicians were preoccupied. In the 

fifth century B.C., the Greek mathematician and philosopher Zeno posed the following 

paradox: Consider a race between the legendary Greek hero Achilles and a tortoise over 100 

 
402 See: Navarro, “A Guided Tour to Approximate String Matching.” 
403 See: Mount, Bioinformatics. 
404 See: Fraleigh, Calculus with Analytic Geometry; Hyslop, Infinite Series; Knopp, Theory and Application of 

Infinite Series.  
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meters. Suppose that the tortoise starts 80 meters ahead, and Achilles can run 10 times as fast 

as the tortoise. Then, after 10 sec., when Achilles will have run 80 meters, reaching the point 

where the tortoise started, the tortoise will have run only 8 meters farther. Then it will take 

Achilles 1 sec. more to cover that distance, but, during the same time, the tortoise will have 

run 0.8 meters farther. Then it will take Achilles 0.1 sec. to reach this third point, while the 

tortoise moves ahead by 0.08 meters, etc. Thus, whenever Achilles reaches somewhere the 

tortoise has been, the tortoise is still ahead, and it seems that the tortoise will stay ahead. In 

fact, Zeno’s paradox can be resolved as follows: the total time that it would take Achilles to 

catch up, in seconds, is 10 + 1 + 0.1 + 0.01 + 0.001 +⋯, which is an infinite series. But 

this infinite series is equal to 11.111…, which is a finite number. In particular, let 𝑥 = 0.1 +

0.01 + 0.001 +⋯. In fact, 0.1 +
𝑥

10
= 0.1 + 0.01 + 0.001 +⋯, and, therefore, 𝑥 = 0.1 +

𝑥

10
⇒ 10𝑥 = 1 + 𝑥 ⇒ 9𝑥 = 1𝑥 ⇒ 𝑥 =

1

9
. Hence, the time for Achilles to catch up is 11

1

9
 sec.  

The infinite series 

 

1 +
1

2
+
1

22
+
1

23
+⋯+

1

2𝑛
+⋯ 

 

is an infinite decreasing geometric progression, namely, a particular case of  

 

𝑎 + 𝑎𝑟 + 𝑎𝑟2 + 𝑎𝑟3 +⋯+ 𝑎𝑟𝑛 +⋯, 

 

which is decreasing if |𝑟| < 1. We form the sequences 

 

𝑠1 = 𝑎1 

𝑠2 = 𝑎1 + 𝑎2 

𝑠3 = 𝑎1 + 𝑎2 + 𝑎3 

⋮  

𝑠𝑛 = 𝑎1 + 𝑎2 + 𝑎3 +⋯+ 𝑎𝑛 = ∑ 𝑎𝑘
𝑛
𝑘=1 , 

 

in order to compute ∑ 𝑎𝑛
∞
𝑛=1 , because, if the limit lim

𝑛→∞
∑ 𝑎𝑘
𝑛
𝑘=1  exists, then its value is equal 

to ∑ 𝑎𝑛
∞
𝑛=1 . Therefore, we can compute 𝑎 + 𝑎𝑟 + 𝑎𝑟2 + 𝑎𝑟3 +⋯+ 𝑎𝑟𝑛 +⋯ by computing 

the limit of the summation 𝑎 + 𝑎𝑟 + 𝑎𝑟2 + 𝑎𝑟3 +⋯+ 𝑎𝑟𝑛 as 𝑛 → ∞. Set 𝑆𝑛 = 𝑎 + 𝑎𝑟 +

𝑎𝑟2 + 𝑎𝑟3 +⋯+ 𝑎𝑟𝑛. Then  

 

𝑟𝑆𝑛 = 𝑎𝑟 + 𝑎𝑟
2 + 𝑎𝑟3 + 𝑎𝑟3 +⋯+ 𝑎𝑟𝑛 + 𝑎𝑟𝑛+1, and 

𝑆𝑛 − 𝑟𝑆𝑛 = 𝑎 − 𝑎𝑟
𝑛+1 ⇒ 𝑆𝑛 =

𝑎−𝑎𝑟𝑛+1

1−𝑟
. 

 

Hence, 𝑆𝑛 =
𝑎

1−𝑟
−
𝑎𝑟𝑛+1

1−𝑟
⇒ lim

𝑛→∞
𝑆𝑛 =

𝑎

1−𝑟
−

𝑎

1−𝑟
( lim
𝑛→∞

𝑟𝑛+1). Because |𝑟| < 1, it follows 

that lim
𝑛→∞

𝑟𝑛+1 = 0, so that the limit of 𝑆𝑛 as 𝑛 → ∞ is equal to 
𝑎

1−𝑟
, that is, 𝑎 + 𝑎𝑟 + 𝑎𝑟2 +

𝑎𝑟3 +⋯+ 𝑎𝑟𝑛 +⋯ =
𝑎

1−𝑟
 if |𝑟| < 1. Going back to the initial series of our example, it 
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follows that 1 +
1

2
+

1

22
+

1

23
+⋯+

1

2𝑛
+⋯ =

1

1−
1

2

= 2 if we apply the formula lim
𝑛→∞

𝑆𝑛 =
𝑎

1−𝑟
 

for 𝑎 = 1 and 𝑟 =
1

2
.  

Now, let us study the behavior of the series 1 + 2 + 3 + 4 +⋯, which is an increasing 

arithmetic progression. It is obvious that the given series tends to infinity. Let 𝑆𝑛 = 𝑎1 +
(𝑎1 + 𝑑) + (𝑎1 + 2𝑑) +⋯+ (𝑎𝑛 − 2𝑑) + (𝑎𝑛 − 𝑑) + 𝑎𝑛 be the sum of the first 𝑛 terms of 

an arithmetic series. Moreover, we can write 𝑆𝑛 = 𝑎𝑛 + (𝑎𝑛 − 𝑑) + (𝑎𝑛 − 2𝑑) +

⋯(𝑎1 + 2𝑑) + (𝑎1 + 𝑑) + 𝑎1. If we add these equivalent expressions of 𝑆𝑛 term by term, 

then we obtain 2𝑆𝑛 = 𝑛(𝑎1 + 𝑎𝑛) ⇒ 𝑆𝑛 =
𝑛

2
(𝑎1 + 𝑎𝑛) =

𝑛

2
{𝑎1 + [𝑎1 + (𝑛 − 1)𝑑]} =

𝑛

2
[2𝑎1 + (𝑛 − 1)𝑑].  

Notice that the series ∑
1

𝑛
∞
𝑛=1  is called harmonic, because it satisfies the property 

 
2

𝑎𝑛
=

1

𝑎𝑛−1
+

1

𝑎𝑛+1
 ∀𝑛 ≥ 2.  

 

In general, we say that a series ∑ 𝑎𝑛
∞
𝑛=1  converges to a real number 𝐿, and we write 

∑ 𝑎𝑛
∞
𝑛=1 = 𝐿 if and only if lim

𝑛→∞
𝑆𝑛 = 𝐿 (𝑆𝑛 stands for the 𝑛th partial sum, namely, the general 

form of the summation of 𝑛 terms of an infinite series). A series ∑ 𝑎𝑛
∞
𝑛=1  tends to +∞ or −∞ 

if and only if lim
𝑛→∞

𝑆𝑛 = +∞ 𝑜𝑟 −∞, respectively. If the limit of 𝑆𝑛 as 𝑛 → ∞ does not exist, 

then we say that the series∑ 𝑎𝑛
∞
𝑛=1  diverges.  

 

Remarks: (i) If ∑ 𝑎𝑛
∞
𝑛=1 = 𝐿1 and ∑ 𝑏𝑛 = 𝐿2

∞
𝑛=1 , then ∑ (𝑚𝑎𝑛

∞
𝑛=1 + 𝑛𝑏𝑛) = 𝑚𝐿1 + 𝑛𝐿2, 

where 𝐿1, 𝐿2 ∈ ℝ. (ii) If infinitely many terms are added to or subtracted from a converging 

series (resp. a diverging one), then the new series will still converge (resp. diverge). (iii) If 

∑ 𝑎𝑛
∞
𝑛=1  converges, then 𝑙𝑖𝑚𝑛→∞𝑎𝑛 = 0, since, if 𝑆𝑛 is the 𝑛th partial sum of the given 

series, converging to some 𝐿, then 𝑎𝑛 = 𝑆𝑛+1 − 𝑆𝑛 ⇒ 𝑙𝑖𝑚𝑛→∞𝑎𝑛 = 𝑙𝑖𝑚𝑛→∞(𝑆𝑛+1 − 𝑆𝑛) =

𝐿 − 𝐿 = 0. 

 

Comparison Test405: If ∑ 𝑎𝑛
∞
𝑛=1  and ∑ 𝑏𝑛

∞
𝑛=1  are two series such that 0 ≤ 𝑎𝑛 ≤

𝑐𝑏𝑛 ∀𝑛 ≥ 𝑛0, then ∑ 𝑏𝑛
∞
𝑛=1 < ∞ ⇒ ∑ 𝑎𝑛

∞
𝑛=1 < ∞, and ∑ 𝑎𝑛

∞
𝑛=1 = ∞ ⇒ ∑ 𝑏𝑛 = ∞

∞
𝑛=1 . 

Notice that the same comparison test applies if lim
𝑛→∞

𝑎𝑛

𝑏𝑛
= 𝐿, where 0 < 𝐿 < ∞. 

 

Proof: It logically derives from the following facts: if the larger series converges, then 

the smaller series must also converge; and, if the smaller series is unbounded, then the larger 

series must also be unbounded.■  

 

Special Ratio Test406: If ∑ 𝑎𝑛
∞
𝑛=1  and ∑ 𝑏𝑛

∞
𝑛=1  are two series with positive terms and there 

exists an 𝑛0 ∈ ℕ such that 
𝑎𝑛+1

𝑎𝑛
≤

𝑏𝑛+1

𝑏𝑛
 ∀𝑛 ≥ 𝑛0, then ∑ 𝑏𝑛

∞
𝑛=1 < ∞ ⇒ ∑ 𝑎𝑛

∞
𝑛=1 < ∞, and 

∑ 𝑎𝑛
∞
𝑛=1 = ∞ ⇒ ∑ 𝑏𝑛

∞
𝑛=1 . 

 

 
405 Ibid. 
406 Ibid. 
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Proof: It follows the logic of the aforementioned Comparison Test.■ 

 

D’Alembert’s Ratio Test407: Let ∑ 𝑎𝑛
∞
𝑛=1  be a series with 𝑎𝑛 ≥ 0 ∀𝑛 ∈ ℕ. This series 

converges if there exists an 𝑛0 ∈ ℕ such that 
𝑎𝑛+1

𝑎𝑛
≤ 𝑐 < 1 ∀𝑛 ≥ 𝑛0, and it tends to +∞ if 

𝑎𝑛+1

𝑎𝑛
≥ 𝑐 > 1 ∀𝑛 ≥ 𝑛0. 

 

Proof:
𝑎𝑛+1

𝑎𝑛
≤ 𝑐 < 1 ∀𝑛 ≥ 𝑛0 ⇒ {

𝑎𝑛0+1 ≤ 𝑐𝑎𝑛0
⋮

𝑎𝑛0+𝑘 ≤ 𝑐𝑎𝑛0+𝑘−1

. 

 

If we multiply the aforementioned inequalities by parts, then 𝑎𝑛0+𝑘 ≤ 𝑐
𝑘𝑎𝑛0. Hence, 

 

∑ 𝑎𝑛
∞
𝑛=1 = ∑ 𝑎𝑛 + ∑ 𝑎𝑛 =

∞
𝑛=𝑛0

𝑛0−1
𝑛=1 ∑ 𝑎𝑛 + ∑ 𝑎𝑛0+𝑘 ≤

∞
𝑘=0

𝑛0−1
𝑛=1 ∑ 𝑎𝑛 +

𝑛0−1
𝑛=1

𝑎𝑛0 ∑ 𝑐𝑘 < +∞∞
𝑘=0 , since ∑ 𝑎𝑛

𝑛0−1
𝑛=1  is a fixed number, and ∑ 𝑐𝑘∞

𝑘=0  is a geometric series with 

common ratio 𝑐 < 1 that converges. If 𝑐 > 1, then 𝑎𝑛+1 ≥ 𝑐𝑎𝑛 > 𝑎𝑛 ∀𝑛 ≥ 𝑛0, that is, 

(𝑎𝑛)𝑛∈ℕ is an increasing sequence, so that lim
𝑛→∞

𝑎𝑛 ≠ 0. Therefore, the series ∑ 𝑎𝑛
∞
𝑛=1  is not 

convergent, and, because it is a series of positive terms, it tends to +∞.■ 

 

Corollary408: If the terms of a series ∑ 𝑎𝑛
∞
𝑛=1  with 𝑎𝑛 > 0 ∀𝑛 ∈ ℕ satisfy the condition 

𝑙𝑖𝑚𝑛→∞
𝑎𝑛+1

𝑎𝑛
= 𝐿 ∈ ℝ, then we distinguish the following cases:  

 

i. if 0 ≤ 𝐿 < 1, then this series converges;  

ii. if 𝐿 > 1, then this series tends to +∞; and  

iii. if 𝐿 = 1, then the criterion does not apply. 

 

Cauchy’s 𝑛th Root Test409: Let ∑ 𝑎𝑛
∞
𝑛=1  be a series with 𝑎𝑛 ≥ 0 ∀𝑛 ∈ ℕ. This series 

converges if there exists an 𝑛0 ∈ ℕ such that √𝑎𝑛
𝑛 ≤ 𝑐 < 1 ∀𝑛 ≥ 𝑛0, and it tends to +∞ if 

√𝑎𝑛
𝑛 ≥ 𝑐 > 1 ∀𝑛 ≥ 𝑛0. 

 

Proof: Notice that 

√𝑎𝑛
𝑛 ≤ 𝑐 < 1 ∀𝑛 ≥ 𝑛0 ⇒ {

𝑎𝑛0 ≤ 𝑐
𝑛0

⋮
𝑎𝑛0+𝑘 ≤ 𝑐

𝑛0+𝑘
. Hence, 

 

∑ 𝑎𝑛
∞
𝑛=1 = ∑ 𝑎𝑛 + ∑ 𝑎𝑛 =

∞
𝑛=𝑛0

𝑛0−1
𝑛=1 ∑ 𝑎𝑛 + ∑ 𝑎𝑛0+𝑘 ≤ ∑ 𝑎𝑛 +

𝑛0−1
𝑛=1

∞
𝑘=0

𝑛0−1
𝑛=1

𝑐𝑛0 ∑ 𝑐𝑘 < +∞∞
𝑘=0 . If √𝑎𝑛

𝑛 ≥ 𝑐 > 1, then 𝑎𝑛 > 1 ∀𝑛 ≥ 𝑛0, and, therefore, lim
𝑛→∞

𝑎𝑛 ≠ 0, 

which implies that, in this case, the series is not convergent, and, because it is a series of 

positive terms, it tends to +∞.■ 

 
407 Ibid.  
408 Ibid. 
409 Ibid. 



Dr. Nicolas Laos, The Dialectic of Rational Dynamicity 245 

 

Corollary410: If a series ∑ 𝑎𝑛
∞
𝑛=1  with 𝑎𝑛 ≥ 0 ∀𝑛 ∈ ℕ satisfies the condition that 

𝑙𝑖𝑚𝑛→∞√𝑎𝑛
𝑛 = 𝐿 ∈ ℝ, then we distinguish the following cases: 

 

i. if 0 ≤ 𝐿 < 1, then this series converges; 

ii. if 𝐿 > 1, then this series tends to +∞; 

iii. if 𝐿 = 1, then the criterion does not apply. 

 

Remark:∑ 𝑎𝑛
∞
𝑛=1 < ∞⇔ ∀𝜀 > 0, ∃𝑛0 ∈ ℕ|∀𝑚, 𝑛 ∈ ℕ 𝑤𝑖𝑡ℎ 𝑚, 𝑛 > 𝑛0, |𝑆𝑚 − 𝑆𝑛| < 𝜀, 

that is, an infinite series is convergent if and only if the sequence of its partial sums is a 

Cauchy sequence.  

 

Leibniz’s Alternating Series Test411: A series in which successive terms have opposite 

signs is called “alternating series.” If ∑ 𝑎𝑛
∞
𝑛=1  is an alternating series such that |𝑎𝑛+1| ≤ |𝑎𝑛| 

for all 𝑛 and lim
𝑛→∞

𝑎𝑛 = 0, then the series converges.  

 

Proof: Given that ∑ 𝑎𝑛
∞
𝑛=1  is an alternating series, 𝑎𝑛 has either the sign (−1)𝑛 ∀𝑛 ∈ ℕ, 

or the sign (−1)𝑛+1 ∀𝑛 ∈ ℕ. Let us consider the odd-numbered partial sums of the given 

series. We realize that  

 

𝑆2𝑛+1 = (𝑎1 − 𝑎2) + (𝑎3 − 𝑎4) + (𝑎5 − 𝑎6) + ⋯+ (𝑎2𝑛−1 − 𝑎2𝑛) + 𝑎2𝑛+1. 

 

Because |𝑎𝑛+1| ≤ |𝑎𝑛|, all the terms in the parentheses are non-negative, and, therefore, 

𝑆2𝑛+1 ≥ 0 ∀𝑛 ∈ ℕ. Moreover, 

 

𝑆2𝑛+3 = 𝑆2𝑛+1 − 𝑎2𝑛+2 + 𝑎2𝑛+3 = 𝑆2𝑛+1 − (𝑎2𝑛+2 − 𝑎2𝑛+3), 

 

and, because 𝑎2𝑛+2 − 𝑎2𝑛+3 ≥ 0, we obtain 

 

𝑆2𝑛+3 ≤ 𝑆2𝑛+1. 

 

Consequently, the sequence of odd-numbered partial sums is bounded from below by 0, 

and it is decreasing, meaning that it is convergent. For this reason, 𝑆2𝑛+1 converges to some 

limit 𝐿. Now, let us consider the even-numbered partial sums of the given series. We find that 

𝑆2𝑛+2 = 𝑆2𝑛+1 − 𝑎2𝑛+2, and, because 𝑎2𝑛+2 → 0,  

 

𝑙𝑖𝑚𝑛→∞𝑆2𝑛+2 = 𝑙𝑖𝑚𝑛→∞𝑆2𝑛+1 − 𝑙𝑖𝑚𝑛→∞𝑎2𝑛+2 = 𝐿 − 0 = 𝐿, 

 

meaning that the even partial sums also converge to 𝐿. Because both the odd and the even 

sums converge to 𝐿, we realize that the partial sums converge to 𝐿, which proves the 

theorem.■  

 
410 Ibid. 
411 Ibid.  
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A series ∑ 𝑎𝑛
∞
𝑛=1  is “absolutely convergent” if and only if ∑ |𝑎𝑛|

∞
𝑛=1  is convergent. If, 

however, ∑ 𝑎𝑛
∞
𝑛=1  converges but ∑ |𝑎𝑛|

∞
𝑛=1  does not converge, then ∑ 𝑎𝑛

∞
𝑛=1  is said to be a 

“conditionally convergent” series. 

 

Remarks:∑ |𝑎𝑛|
∞
𝑛=1 < ∞ ⇒ ∑ 𝑎𝑛

∞
𝑛=1 < ∞. This can be proved as follows: If we assume 

that the series ∑ |𝑎𝑛|
∞
𝑛=1  is convergent and 𝑏𝑛 = |𝑎𝑛| − 𝑎𝑛, then 𝑎𝑛 ≤ |𝑎𝑛| ∀𝑛 ∈ ℕ ⇒ 0 ≤

𝑏𝑛 = |𝑎𝑛| − 𝑎𝑛 ≤ |𝑎𝑛| + |𝑎𝑛| = 2|𝑎𝑛|, and, therefore, applying the Comparison Test, the 

series ∑ 𝑏𝑛
∞
𝑛=1  converges. Then ∑ 𝑎𝑛

∞
𝑛=1  converges, too, since 𝑎𝑛 = |𝑎𝑛| − 𝑏𝑛 ∀𝑛 ∈ ℕ, and 

the series ∑ |𝑎𝑛|
∞
𝑛=1  and ∑ 𝑏𝑛

∞
𝑛=1  converge.  

 

Kummer’s Test (the Prussian mathematician Eduard Kummer stated and proved this test 

in 1835)412: (i) A series ∑ 𝑎𝑛
∞
𝑛=1 , where 𝑎𝑛 ≠ 0 ∀𝑛 ∈ ℕ, converges absolutely if there exist a 

sequence (𝑏𝑛)𝑛∈ℕ with positive terms and a constant 𝑘 > 0 such that 0 < 𝑘 ≤ 𝑏𝑛 −

𝑏𝑛+1 |
𝑎𝑛+1

𝑎𝑛
| ∀𝑛 ∈ ℕ. (ii) A series ∑ 𝑎𝑛

∞
𝑛=1 , where 𝑎𝑛 > 0 ∀𝑛 ∈ ℕ, tends to +∞ if there is a 

sequence (𝑏𝑛)𝑛∈ℕ such that the series ∑
1

𝑏𝑛
∞
𝑛=1  tends to +∞ and 𝑏𝑛 − 𝑏𝑛+1 (

𝑎𝑛+1

𝑎𝑛
) ≤ 0 ∀𝑛 ∈

ℕ. 

 

Proof: 

(i) Consider the following inequalities: 

 

𝑘|𝑎1| ≤ 𝑏1|𝑎1| − 𝑏2|𝑎2| 

𝑘|𝑎2| ≤ 𝑏2|𝑎2| − 𝑏3|𝑎3| 

⋮ 

𝑘|𝑎𝑛| ≤ 𝑏𝑛|𝑎𝑛| − 𝑏𝑛+1|𝑎𝑛+1|. 

 

Adding these inequalities by parts, we obtain 

 

𝑘∑ |𝑎𝑖| ≤
𝑛
𝑖=1 𝑏1|𝑎1| − 𝑏𝑛+1|𝑎𝑛+1| ≤ 𝑏1|𝑎1|. Hence, ∑ |𝑎𝑖| ≤

𝑛
𝑖=1

𝑏1|𝑎1|

𝑘
, which implies that 

the partial sums converge; {𝑆𝑛}𝑛∈ℕ is an increasing and bounded sequence, namely, 

convergent. Therefore, the series ∑ |𝑎𝑛|
∞
𝑛=1  converges.  

(ii) We form the following inequalities: 

 

𝑏1𝑎1 ≤ 𝑏2𝑎2 

𝑏2𝑎2 ≤ 𝑏3𝑎3 

⋮ 

𝑏𝑛−1𝑎𝑛−1 ≤ 𝑏𝑛𝑎𝑛.  

 

Multiplying these inequalities by parts, we obtain 
𝑏1𝑎1

𝑏𝑛
≤ 𝑎𝑛 ∀𝑛 ∈ ℕ. Because ∑

1

𝑏𝑛

∞
𝑛=1 =

+∞, the Comparison Test implies that ∑ 𝑎𝑛
∞
𝑛=1 = +∞.■ 

 

 
412 Ibid. 
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The Cauchy Product of Two Series of Real Numbers: The (Cauchy) product of two series 

∑ 𝑎𝑛
∞
𝑛=1  and ∑ 𝑏𝑛

∞
𝑛=1  is a series ∑ 𝑐𝑛

∞
𝑛=1  such that 

 

𝑐𝑛 = 𝑎1𝑏𝑛 + 𝑎2𝑏𝑛−1 +⋯+ 𝑎𝑛𝑏1 = ∑ 𝑎𝑘+1
∞
𝑘=0 𝑏𝑛−𝑘. 

 

A “power series in 𝑥”is a series of the form  

 

∑ 𝑎𝑘
∞
𝑘=0 𝑥𝑘 = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥

2 +⋯+ 𝑎𝑘𝑥
𝑘 +⋯, 

and a “power series in (𝑥 − 𝑥0)” is a series of the form 

 

∑ 𝑎𝑘
∞
𝑘=0 (𝑥 − 𝑥0)

𝑘 = 𝑎0 + 𝑎1(𝑥 − 𝑥0) + 𝑎2(𝑥 − 𝑥0)
2 +⋯+ 𝑎𝑘(𝑥 − 𝑥0)

𝑘 +⋯, 

 

where 𝑥0 is a real number.  

By the term “radius of convergence” of the power series ∑ 𝑎𝑘
∞
𝑘=0 𝑥𝑘, we mean a real 

number 𝑟 such that ∑ 𝑎𝑘
∞
𝑘=0 𝑥𝑘 converges if |𝑥| < 𝑟 and does not converge if |𝑥| > 𝑟. In 

other words, 𝑟 is the radius of the largest disk (open 2-dimensional ball) in which the power 

series converges. At 𝑥 = 𝑟 and at 𝑥 = −𝑟, we cannot decide if the series converges or 

diverges. If ∑ 𝑎𝑘
∞
𝑘=0 𝑥𝑘 converges only at 0, then we say that its radius of convergence is 0. If 

∑ 𝑎𝑘
∞
𝑘=0 𝑥𝑘 converges for all real numbers, then we say that its radius of convergence is ∞.  

 

Power Series Test413: In case of a power series ∑ 𝑎𝑛
∞
𝑛=0 𝑥𝑛, lim

𝑛→∞
|
𝑎𝑛+1

𝑎𝑛
| =

𝑙 ⇒ lim
𝑛→∞

|
𝑎𝑛+1

𝑎𝑛
| |𝑥| = 𝑙|𝑥|.  

 

Proof: If 𝑙|𝑥| < 1 ⇔ |𝑥| <
1

𝑙
, which implies that the series converges in the open interval 

(−
1

𝑙
,
1

𝑙
), and 

1

𝑙
 is the radius of convergence. If 𝑙|𝑥| = 0 ⇔ 𝑙|𝑥| < 1 ∀𝑥 ∈ ℝ, and, therefore, 

the series converges ∀𝑥 ∈ ℝ. If 𝑙|𝑥| = 1 ⇔ |𝑥| =
1

𝑙
, and we cannot reach any conclusion. If 

𝑙 = ∞, then the series tends to infinity ∀𝑥 ∈ ℝ − {0}, but it converges at 𝑥 = 0.■ 

 

Remark: When a power series is convergent in (– 𝑎, 𝑎), then it is also convergent in every 

closed interval [– 𝑘, 𝑘] ⊂ (– 𝑎, 𝑎). At the endpoints of the open interval (– 𝑎, 𝑎), we must test 

the series for convergence or divergence separately.  

 

Binomial Series414: The binomial coefficient is defined by 

 

(𝑛
𝑘
) =

𝑛!

𝑘!(𝑛−𝑘)!
, 

 

where 𝑛! = 1 ∙ 2 ∙ 3 ∙ 4 ∙ … ∙ 𝑛, and 𝑛 ∈ ℕ. Notice that the binomial coefficient gives the 

number of combinations of 𝑛 elements taken 𝑘 at the time (for this reason, 𝑛 = 0 ⇒ 0! = 1). 

Thus, the binomial coefficient is the answer to the following question that was posed by the 

 
413 Ibid. 
414 Ibid. 
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French-Jewish philosopher and mathematician Levi ben Gershon (known also by his 

Graecized name as Gersonides): how many are the ways in which one can choose 𝑘 objects 

from 𝑛 objects? 

 

Remarks: (i) (𝑛
𝑘
) = ( 𝑛

𝑛−𝑘
) for 0 ≤ 𝑘 ≤ 𝑛. (ii) Pascal’s Identity: for any positive integers 

𝑘 and 𝑛, (𝑛
𝑘
) = (𝑛−1

𝑘−1
) + (𝑛−1

𝑘
), meaning that the number of ways of choosing 𝑘 things from 𝑛 

things is equal to the number of ways of choosing 𝑘 − 1 things from 𝑛 − 1 things added to 

the number of ways of choosing 𝑘 things from 𝑛 − 1 things. (iii) (𝑛+1
𝑘
) = ( 𝑛

𝑘−1
) + (𝑛

𝑘
).  

 

Binomial Theorem (it was originally stated by Isaac Newton in 1676, and it was 

originally proved by John Colson in 1736)415:(𝑎 + 𝑏)𝑛 = (𝑛
0
)𝑎𝑛 + (𝑛

1
)𝑎𝑛−1𝑏 + (𝑛

2
)𝑎𝑛−2𝑏2 +

⋯+ (𝑛
𝑘
)𝑎𝑛−𝑘𝑏𝑘 +⋯+ ( 𝑛

𝑛−1
)𝑎𝑏𝑛−1 + (𝑛

𝑛
)𝑏𝑛 = ∑ (𝑛

𝑘
)𝑛

𝑘=0 𝑎𝑛−𝑘𝑏𝑘. 

 

Proof: The binomial theorem can be proved by mathematical induction as follows: 

 

For 𝑛 = 1, (𝑎 + 𝑏)1 = 𝑎 + 𝑏 = (1
0
)𝑎1 + (1

1
)𝑎0𝑏1. 

 

Let the binomial theorem be true for 𝑛, namely: 

 

(𝑎 + 𝑏)𝑛 = (𝑛
0
)𝑎𝑛 + (𝑛

1
)𝑎𝑛−1𝑏 + (𝑛

2
)𝑎𝑛−2𝑏2 +⋯+ ( 𝑛

𝑛−1
)𝑎𝑏𝑛−1 + (𝑛

𝑛
)𝑏𝑛. 

 

Claim that (𝑎 + 𝑏)𝑛+1 = (𝑎 + 𝑏)(𝑎 + 𝑏)𝑛 

 

= (𝑎 + 𝑏)[(𝑛
0
)𝑎𝑛 + (𝑛

1
)𝑎𝑛−1𝑏 + (𝑛

2
)𝑎𝑛−2𝑏2 +⋯+ ( 𝑛

𝑛−1
)𝑎𝑏𝑛−1 + (𝑛

𝑛
)𝑏𝑛] = 𝑎𝑛+1 +

[(𝑛
0
) + (𝑛

1
)]𝑎𝑛𝑏 + [(𝑛

1
) + (𝑛

2
)]𝑎𝑛−1𝑏2 +⋯[( 𝑛

𝑘−1
) + (𝑛

𝑘
)]𝑎𝑛−𝑘+1𝑏𝑘 +⋯+ [( 𝑛

𝑛−1
) +

(𝑛
𝑛
)]𝑎𝑏𝑛 + 𝑏𝑛+1. From Pascal’s Identity, it follows that 

 

(𝑎 + 𝑏)𝑛+1 = 𝑎𝑛+1 + (𝑛+1
1
)𝑎𝑛𝑏 +⋯+ (𝑛+1

𝑘
)𝑎𝑛−𝑘+1𝑏𝑘 +⋯+ (𝑛+1

𝑛
)𝑎𝑏𝑛 + 𝑏𝑛+1. 

Moreover, as I have already mentioned, (𝑛+1
𝑘
) = ( 𝑛

𝑘−1
) + (𝑛

𝑘
). 

 

Thus, the binomial theorem is true for 𝑛 + 1.■ 

Notice that, for any real number 𝑚, and for |𝑥| < 1, the binomial series for (1 + 𝑥)𝑚 is  

 

∑ (𝑚
𝑘
)𝑥𝑘∞

𝑘=0 = 1 +𝑚𝑥 +
𝑚(𝑚−1)

2!
𝑥2 +⋯+

𝑚(𝑚−1)…(𝑚−𝑘+1)

𝑘!
𝑥𝑘 +⋯. 

 

By the Ratio Test, the radius of convergence of ∑ (𝑚
𝑘
)𝑥𝑘∞

𝑘=0  is 𝑟 = 1, so that the given 

series converges if −1 < 𝑥 < 1, for which reason we have assumed that |𝑥| < 1. 

 

Infinite Products416: Notice that ∏ 𝑎𝑘
𝑛
𝑘=1 = 𝑎1 ∙ 𝑎2 ∙ … ∙ 𝑎𝑛. An infinite product ∏ 𝑎𝑘

∞
𝑘=1  

is said to “converge” if 𝑎𝑘 ≠ 0 ∀𝑘 ∈ ℕ, and, for 𝑃𝑛 denoting the 𝑛th partial product, it holds 

 
415 Ibid.  
416 Ibid. 
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that 𝑙𝑖𝑚𝑛→∞𝑃𝑛 = 𝑙𝑖𝑚𝑛→∞∏ 𝑎𝑘
𝑛
𝑘=1 = 𝑝 with𝑝 ≠ 0. If 𝑙𝑖𝑚𝑛→∞𝑃𝑛 does not exist or is equal to 

0, then we say that the corresponding infinite product “diverges.” 

 

Cauchy’s Criterion of Convergence for Infinite Products417: An infinite product ∏ 𝑎𝑛
∞
𝑛=1  

converges if and only if: 

 

∀𝜀 > 0, ∃𝑛0 ∈ ℕ|∀𝑛 ∈ ℕ 𝑤𝑖𝑡ℎ 𝑛 > 𝑛0& ∀𝑘 ∈ ℕ, it holds that 

 

|𝑎𝑛+1 ∙ 𝑎𝑛+2 ∙ … ∙ 𝑎𝑛+𝑘 − 1| < 𝜀. (∗) 

 

Proof: Suppose that the infinite product ∏ 𝑎𝑛
∞
𝑛=1  converges, so that 𝑎𝑛 ≠ 0 ∀𝑛 ∈ ℕ and 

𝑙𝑖𝑚𝑛→∞𝑃𝑛 = 𝑝, where 𝑃𝑛 = 𝑎1 ∙ 𝑎2 ∙ … ∙ 𝑎𝑛. Since 𝑝 ≠ 0, ∃𝑀 > 0||𝑃𝑛| > 𝑀. Because 

(𝑃𝑛)𝑛∈ℕ converges, it is a Cauchy sequence, and, therefore, 

 

∀𝜀 > 0, ∃𝑛0 ∈ ℕ|∀𝑛 ∈ ℕ 𝑤𝑖𝑡ℎ 𝑛 > 𝑛0& ∀𝑘 ∈ ℕ, |𝑃𝑛+𝑘−𝑃𝑛| < 𝜀𝑀. 

 

Dividing by |𝑃𝑛|, we obtain (∗). 

Conversely, suppose that (∗) holds. If 𝜀 =
1

2
, then there exists an 𝑛1 ∈ ℕ such that 

 
1

2
< |𝑄𝑛| <

3

2
, (∗∗) 

 

where 𝑄𝑛 = 𝑎𝑛+1 ∙ 𝑎𝑛+2 ∙ … ∙ 𝑎𝑛+𝑘. Hence, if (𝑄𝑛)𝑛∈ℕ is convergent, then it converges to a 

non-zero number. We can prove that (𝑄𝑛)𝑛∈ℕ is convergent as follows: Because of (∗), there 

exists an 𝑛0 ∈ ℕ such that  

 

|
𝑄𝑛+𝑘

𝑄𝑛
− 1| <

𝜀

3
, 

 

and, therefore, by (∗∗), we realize that, if 𝑚 = 𝑚𝑎𝑥{𝑛0, 𝑛1}, then 

 

|𝑄𝑛+𝑘 − 𝑄𝑛| <
𝜀

3
|𝑄𝑛| <

3

2
∙
𝜀

3
< 𝜀 ∀𝑛 > 𝑚, 

 

meaning that (𝑄𝑛)𝑛∈ℕ is a Cauchy sequence, and, hence, it converges. Consequently, the 

given infinite product converges.■ 

 

Remark: If, in (∗), we set 𝑘 = 1, we realize that, if ∏ 𝑎𝑛
∞
𝑛=1  converges, then 𝑙𝑖𝑚𝑛→∞𝑃𝑛 =

1. For this reason, we often write 𝑎𝑛 = 1 + 𝑢𝑛, 𝑛 ∈ ℕ. Then ∏ 𝑎𝑛
∞
𝑛=1 = ∏ (1 + 𝑢𝑛)

∞
𝑛=1 , and, 

if ∏ (1 + 𝑢𝑛)
∞
𝑛=1  converges, then 𝑙𝑖𝑚𝑛→∞𝑢𝑛 = 0. This is a necessary condition for the 

infinite product ∏ (1 + 𝑢𝑛)
∞
𝑛=1  to be convergent, but it is not a sufficient condition, since, for 

instance, the infinite product ∏ (1 +
1

𝑛
)∞

𝑛=1  diverges, whereas 𝑙𝑖𝑚𝑛→∞
1

𝑛
= 0.  

 

 
417 Ibid. 
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Theorem418: Let 𝑢𝑛 > 0 ∀ 𝑛 ∈ ℕ. Then the infinite product ∏ (1 + 𝑢𝑛)
∞
𝑛=1  converges if 

and only if the infinite series ∑ 𝑢𝑛
∞
𝑛=1  converges. 

 

Proof: Suppose that ∑ 𝑢𝑛
∞
𝑛=1  converges. Let 𝑆𝑛 = 𝑢1 + 𝑢2 +⋯+ 𝑢𝑛 and 𝑃𝑛 =

(1 + 𝑢1)(1 + 𝑢2)… (1 + 𝑢𝑛) the sequences of the 𝑛th partial sums and the partial products, 

respectively. Notice that 𝑒𝑥 ≥ 1 + 𝑥 ∀𝑥 > 0, because 𝑒𝑥 = 𝑙𝑖𝑚𝑛→∞ (1 +
𝑥

𝑛
)
𝑛
≥

𝑙𝑖𝑚𝑛→∞ (1 + 𝑛
𝑥

𝑛
)
𝑛
= 1 + 𝑥. Hence, it holds that 

 

𝑃𝑛 = (1 + 𝑢1)(1 + 𝑢2)… (1 + 𝑢𝑛) ≤ 𝑒
𝑢1𝑒𝑢2 …𝑒𝑢𝑛 = 𝑒𝑆𝑛  ∀ 𝑛 ∈ ℕ, 

 

and, therefore, (𝑃𝑛)𝑛∈ℕ is bounded. Because (𝑃𝑛)𝑛∈ℕ is also increasing, that is, 
𝑃𝑛+1

𝑃𝑛
> 1, it 

converges to some number 𝑝, where 𝑝 ≥ 1. Consequently, the infinite product ∏ (1 + 𝑢𝑛)
∞
𝑛=1  

converges. 

Conversely, suppose that ∏ (1 + 𝑢𝑛)
∞
𝑛=1  converges. Then 𝑙𝑖𝑚𝑛→∞𝑃𝑛 = 𝑝, and 𝑃𝑛 ≤

𝑝 ∀ 𝑛 ∈ ℕ. Since 

 

(1 + 𝑢1)(1 + 𝑢2)… (1 + 𝑢𝑛) ≥ 1 + 𝑢1 + 𝑢2 +⋯+ 𝑢𝑛, 

 

it holds that 1 + 𝑆𝑛 ≤ 𝑃𝑛 ≤ 𝑝 ∀ 𝑛 ∈ ℕ. Consequently, (𝑆𝑛)𝑛∈ℕ is bounded, and, because 

𝑢𝑛 > 0 ∀ 𝑛 ∈ ℕ, the infinite series ∑ 𝑢𝑛
∞
𝑛=1  converges.■ 

 

 

2.6. THE LIMIT OF A FUNCTION 
 

Preliminary Concepts419 

Let 𝑓 be a single-valued function defined on a subset 𝑆 of ℝ. Then 𝑓 is said to be 

“bounded” if its range 𝑅𝑓 = 𝑓(𝑆) = {𝑓(𝑥)|𝑥 ∈ 𝑆} is bounded. In other words, a function 𝑓 

with domain 𝐷𝑓 is said to be “bounded” on 𝐴 ⊆ 𝐷𝑓 if there exists a number 𝑀 such that 

|𝑓(𝑥)| ≤ 𝑀 ∀𝑥 ∈ 𝐴 (in particular, it said to be “bounded from above” if 𝑓(𝑥) ≤ 𝑀, and 

“bounded from below” if 𝑀 ≤ 𝑓(𝑥)).  

The supremum (least upper bound) of the range of a bounded function is called the 

“supremum of the function,” and the infimum (greatest lower bound) of the range of a 

bounded function is called the “infimum of the function.” Hence, 𝑀 = sup (𝑓) on 𝑆 if 

𝑓(𝑥) ≤ 𝑀 ∀𝑥 ∈ 𝑆 and, for any 𝛿 > 0, 𝑓(𝑥) > 𝑀 − 𝛿 for some 𝑥 ∈ 𝑆; 𝑚 = inf (𝑓) on 𝑆 if 

𝑓(𝑥) ≥ 𝑚 ∀𝑥 ∈ 𝑆 and, for any 𝛿 > 0, 𝑓(𝑥) < 𝑚 + 𝛿 for some 𝑥 ∈ 𝑆. The supremum (resp. 

the infimum) of 𝑓 may or may not belong to its range 𝑅𝑓: if sup (𝑓) ∈ 𝑅𝑓 (resp. inf (𝑓) ∈

𝑅𝑓), then ∃𝑥 ∈ 𝑆|𝑓(𝑥) = 𝑀 (resp. 𝑓(𝑥) = 𝑚), and then we say that 𝑓 “attains” its supremum 

(resp. infimum). If 𝑓(𝑥) is not bounded from above, then sup (𝑓) = +∞, and, if 𝑓(𝑥) is not 

bounded from below, then inf (𝑓) = −∞. 

 
418 Ibid. 
419 See: Barbeau, Polynomials; Kramer, The Nature and Growth of Modern Mathematics; Waerden, Algebra. 
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It can be easily proved from the definitions of the supremum and infimum that, given two 

functions 𝑓, 𝑔:𝑈 → ℝ that are bounded on their common domain 𝑈, the following 

propositions hold420: 

i. 𝑠𝑢𝑝(𝑘𝑓(𝑥)) = {
𝑘𝑠𝑢𝑝(𝑓(𝑥)), 𝑘 > 0 

𝑘𝑖𝑛𝑓(𝑓(𝑥)), 𝑘 < 0
; 

ii. 𝑖𝑛𝑓(𝑘𝑓(𝑥)) = {
𝑘𝑖𝑛𝑓(𝑓(𝑥)), 𝑘 > 0

𝑘𝑠𝑢𝑝(𝑓(𝑥)), 𝑘 < 0
;  

iii. 𝑠𝑢𝑝[𝑓(𝑥) + 𝑔(𝑥)] ≤ 𝑠𝑢𝑝(𝑓(𝑥)) + 𝑠𝑢𝑝(𝑔(𝑥)); 

iv. 𝑖𝑛𝑓[𝑓(𝑥) + 𝑔(𝑥)] ≥ 𝑖𝑛𝑓(𝑓(𝑥)) + 𝑖𝑛𝑓(𝑔(𝑥)). 

 

For instance, the function 𝑓(𝑥) = 𝑥 over [0,∞) is not bounded from above; 𝑓(𝑥) = 𝑥 

over [0,1) is bounded, but it does not attain its supremum of 1; 𝑓(𝑥) = 𝑥 + 5 over [−2,2] is 

bounded, and it attains both its supremum of 7 and its infimum of 3; if 𝑓(𝑥) = {
1 𝑖𝑓 𝑥 ∈ ℚ
0 𝑖𝑓 𝑥 ∈ ℚ~

 

over (−∞,+∞), then the range of 𝑓 is 𝑅𝑓 = {0,1}, which is bounded, sup (𝑓) = 1, and 

inf (𝑓) = 0.  

A function 𝑓 is said to be “increasing” in an interval if, for 𝑥1, 𝑥2 in the interval, 𝑥1 <

𝑥2 ⇒ 𝑓(𝑥1) ≤ 𝑓(𝑥2), and it is said to be “strictly increasing” if 𝑥1 < 𝑥2 ⇒ 𝑓(𝑥1) < 𝑓(𝑥2). A 

function 𝑓 is said to be “decreasing” in an interval if, for 𝑥1, 𝑥2 in the interval, 𝑥1 < 𝑥2 ⇒

𝑓(𝑥1) ≥ 𝑓(𝑥2), and it is said to be “strictly increasing” if 𝑥1 < 𝑥2 ⇒ 𝑓(𝑥1) > 𝑓(𝑥2).  

A function 𝑦 = 𝑓(𝑥) is said to be “single-valued” if, for each 𝑥-value, there is only one 

𝑦-value. On the other hand, a “multivalued” function is similar to a function, but it may 

associate several values with each point. For instance, inverse trigonometric functions are 

multivalued, because trigonometric functions are periodic. Given a function 𝑦 of 𝑥, namely, 

𝑦 = 𝑓(𝑥), the inverse function is denoted by 𝑓−1(𝑦) = 𝑥. Notice that, if 𝑦 = 𝑓(𝑥) is single-

valued, 𝑓−1(𝑦) may be multivalued. For instance, 𝑓(𝑥) = 𝑡𝑎𝑛𝑥 is single-valued, but 

𝑎𝑟𝑐𝑡𝑎𝑛𝑥 is multivalued: because 𝑡𝑎𝑛𝑥 is periodic, 

 

𝑡𝑎𝑛 (
𝜋

4
) = 𝑡𝑎𝑛 (

5𝜋

4
) = 𝑡𝑎𝑛 (

−3𝜋

4
) = 𝑡𝑎𝑛 (

(2𝑛+1)𝜋

4
) = ⋯ = 1,  

 

and, therefore, 𝑎𝑟𝑐𝑡𝑎𝑛(1) is associated with several values, such as 
𝜋

4
,
5𝜋

4
,
−3𝜋

4
, … 

A function of a single variable 𝑥 is said to be a “polynomial” on its domain if it can be 

put in the following form: 

 

𝑎𝑛𝑥
𝑛 + 𝑎𝑛−1𝑥

𝑛−1 +⋯+ 𝑎1𝑥 + 𝑎0, (P) 

 

where 𝑎𝑛, 𝑎𝑛−1, … , 𝑎1, 𝑎0 are constants. Hence, every polynomial can be expressed as a finite 

sum of monomial terms of the form 𝑎𝑘𝑥
𝑘, in which the variable is raised to a non-negative 

integral power. Notice that 𝑥0 = 1, and, therefore, 𝑎0𝑥
0 = 𝑎0. For the polynomial (P) with 

𝑎𝑛 ≠ 0:  

 

the numbers 𝑎𝑖 (where 0 ≤ 𝑖 ≤ 𝑛) are called “coefficients”;  

 
420 Ibid. 
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𝑎𝑛 is the “leading coefficient”; 

𝑎𝑛𝑥
𝑛 is the “leading term”; 

𝑎0 is the “constant term” or the “constant coefficient”; 

𝑎1 is the “linear coefficient”; 

𝑎1𝑥 is the “linear term”;  

 

when the leading coefficient, 𝑎𝑛, is equal to 1, the polynomial is said to be “monic”; the non-

negative integer 𝑛 is the “degree” of the polynomial, and we write deg (𝑝) = 𝑛. A “constant 

polynomial” has only one term, specifically, 𝑎0. A non-zero constant polynomial has degree 

0, and, by convention, the “zero polynomial” (with all coefficients vanishing) has degree −∞.  

A “zero” of a polynomial 𝑝(𝑥) is any number 𝑟 for which 𝑝(𝑟) takes the value 0. Hence, 

when 𝑝(𝑟) = 0, we say that 𝑟 is a “root,” or a “solution” of the equation 𝑝(𝑥) = 0. 

Let  

 

𝑝(𝑥) = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥
2 +⋯+ 𝑎𝑛𝑥

𝑛 and  

𝑞(𝑥) = 𝑏0 + 𝑏1𝑥 + 𝑏2𝑥
2 +⋯+ 𝑏𝑚𝑥

𝑚 

 

be two arbitrary polynomials. Then we can operate with them as follows: 

 

Sum:(𝑝 + 𝑞)(𝑥) = (𝑎0 + 𝑏0) + (𝑎1 + 𝑏1)𝑥 + (𝑎2 + 𝑏2)𝑥
2 +⋯ 

Difference:(𝑝 − 𝑞)(𝑥) = (𝑎0 − 𝑏0) + (𝑎1 − 𝑏1)𝑥 + (𝑎2 − 𝑏2)𝑥
2 +⋯ 

Product of a constant and a polynomial:(𝑐𝑝)(𝑥) = 𝑐𝑎0 + 𝑐𝑎1𝑥 + 𝑐𝑎2𝑥
2 +⋯ 

Product of two polynomials:(𝑝 ∙ 𝑞)(𝑥) = 𝑎0𝑏0 + (𝑎0𝑏1 + 𝑎1𝑏0)𝑥 + (𝑎0𝑏2 + 𝑎1𝑏1 +

𝑎2𝑏0)𝑥
2 +⋯+ (𝑎0𝑏𝑘 + 𝑎1𝑏𝑘−1 +⋯+ 𝑎𝑖𝑏𝑘−𝑖 +⋯+ 𝑎𝑘𝑏0)𝑥

𝑘 +⋯+
(𝑎𝑛𝑏𝑚)𝑥

𝑚+𝑛. 

 

Composition of two polynomials:(𝑝  ⃘𝑞)(𝑥) = 𝑝(𝑞(𝑥)), so that we replace each 

occurrence of 𝑥 in the expression for 𝑝(𝑥) with 𝑞(𝑥).  

Notice that we divide one polynomial by another in a manner similar to the division of 

two integers. First, we arrange the terms of the dividend and the divisor in descending powers 

of 𝑥. If a term is missing, then we write 0 as its coefficient. Then we divide the first term of 

the dividend by the first term of the divisor to obtain the first term of the quotient. Next, we 

multiply the entire divisor by the first term of the quotient, and we subtract this product from 

the dividend. We use the remainder as the new dividend, and we repeat the same process until 

the remainder is of lower degree than the divisor. As with the division of numbers, the 

dividend is equal to the product of the divisor and the quotient plus the remainder.  

 

Remainder Theorem421: If a polynomial 𝑝(𝑥) is divided by 𝑥 − 𝑏, then the remainder is 

𝑝(𝑏). 

 

Proof: Let 𝑞(𝑥) and 𝑟 be, respectively, the quotient and the remainder when 𝑝(𝑥) is 

divided by 𝑥 − 𝑏. Then, given that 

 
421 Ibid. 
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𝐷𝑖𝑣𝑖𝑑𝑒𝑛𝑑 = 𝑄𝑢𝑜𝑡𝑖𝑒𝑛𝑡 × 𝐷𝑖𝑣𝑖𝑠𝑜𝑟 + 𝑅𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟,  

 

it holds that, for any 𝑥, 

𝑝(𝑥) = (𝑥 − 𝑏)𝑞(𝑥) + 𝑟. 

If 𝑥 = 𝑏, then 𝑝(𝑏) = 𝑟.■ 

 

Factor Theorem422: Given an arbitrary polynomial 𝑦 = 𝑝(𝑥), 𝑏 is a zero of 𝑦 = 𝑝(𝑥) if 

and only of 𝑏 is a factor of 𝑝(𝑥).  

 

Proof: It can be easily verified using the Remainder Theorem.■ 

 

Remark: The real number zeros of 𝑦 = 𝑝(𝑥) are also the 𝑥-intercepts in the graph of 𝑦 =

𝑝(𝑥). If 𝑏 is a real number zero with multiplicity 𝑛 of 𝑦 = 𝑝(𝑥), then the graph of 𝑦 = 𝑝(𝑥) 

crosses the 𝑥-axis at 𝑥 = 𝑏 if 𝑛 is odd, whereas the graph turns around and stays on the same 

side of the 𝑥-axis at 𝑥 = 𝑏 if 𝑛 is even. Hence, the 𝑥-intercepts can be obtained from the 

Factor Theorem, and the behavior of the graph at an 𝑥-intercept, say (𝑏, 0), can be determined 

from the multiplicity of 𝑏, or, equivalently, by the highest power of (𝑥 − 𝑏) that is a factor of 

𝑝(𝑥). For instance, if 𝑝(𝑥) = (𝑥 + 1)(𝑥 − 2)2, then: by setting 𝑥 = 0, we realize that the 𝑦-

intercept is (0,4); because (𝑥 + 1) is a factor with an odd exponent, (−1,0) is an 𝑥-intercept 

at which the graph crosses the 𝑥-axis; because (𝑥 − 2)2 is a factor with an even exponent, 

(2,0) is an 𝑥-intercept at which the graph touches the 𝑥-axis and then turns around. 

In fact, the fundamental problem in algebra consists in finding ways of solving 

polynomial equations, and, specifically, we seek formulas for zeros/roots in terms of the 

coefficients of the corresponding polynomial. A well-known example is the “quadratic 

formula”: If we have the quadratic equation 𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0, where 𝑎 ≠ 0, then we have 

the formula 

 

𝑥 =
−𝑏±√𝑏2−4𝑎𝑐

2𝑎
, 

 

where the expression 𝑏2 − 4𝑎𝑐 is known as the “discriminant,” meaning that, if we have a 

number 𝑟 such that 𝑟2 = 𝑏2 − 4𝑎𝑐, then 

 

𝑥1 =
−𝑏+𝑟

2𝑎
 and 𝑥2 =

−𝑏−𝑟

2𝑎
 

 

are the solutions of 𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0. 

If a function 𝑦 = 𝑓(𝑥) satisfies an equation of the form  

 

𝑝0(𝑥)𝑦
𝑛 + 𝑝1(𝑥)𝑦

𝑛−1 +⋯+ 𝑝𝑛−1(𝑥)𝑦 + 𝑝𝑛(𝑥) = 0, 

 

 
422 Ibid. 



Dr. Nicolas Laos, The Dialectic of Rational Dynamicity 254 

where 𝑝0(𝑥),… , 𝑝𝑛(𝑥) are polynomials in 𝑥, then it is said to be an “algebraic function.” In 

other words, an algebraic function is a function that can be defined as the root of a polynomial 

equation. If a function can be expressed as the quotient of two polynomials, namely, 

 

𝑓(𝑥) =
𝑝(𝑥)

𝑞(𝑥)
, 

 

then it is called a “rational algebraic function.” Thus, an “algebraic curve” (such as the lines 

and the conic sections studied in section 2.2.6) is defined as a curve with an equation of the 

form 𝑝(𝑥, 𝑦) = 0 where 𝑝 is a polynomial in 𝑥 and 𝑦 (and, usually, we take rational 

coefficients). Notice that any rational function 𝑦 =
𝑝(𝑥)

𝑞(𝑥)
 is the solution to 𝑞(𝑥)𝑦 − 𝑝(𝑥) = 0.  

If a function cannot be expressed as the quotient of two polynomials, then it is called an 

“irrational algebraic function.” Thus, an algebraic function involving one or more radicals of 

polynomials is called an irrational function. 

If a function is not algebraic, then it is called a “transcendental function.” For instance, 

exponential functions, logarithmic functions, trigonometric functions, and inverse 

trigonometric functions are transcendental functions (however, a composition of 

transcendental functions can give an algebraic function, such as 𝑓(𝑥) = 𝑐𝑜𝑠(𝑎𝑟𝑐𝑠𝑖𝑛(𝑥)) =

√1 − 𝑥2, and 𝑔(𝑥) = 𝑠𝑖𝑛(𝑎𝑟𝑐𝑠𝑖𝑛(𝑥)) = 𝑥). 

 

 

The Limit of a Function 

The concept of a limit, or a limiting process, is central to all mathematical analysis.423 In 

fact, one can argue that, from the perspective of mathematical analysis, “analysis” means 

taking limits. Consider an arbitrary function 𝑓(𝑥) defined at all values in an open interval of 

the number line ℝ containing a point 𝑥0, with the possible exception of 𝑥0 itself, and let 𝐿 be 

a real number. The “limit of a function” 𝑓(𝑥) at a point 𝑥0 is 𝐿 if and only if the values of 𝑥 

(where 𝑥 ≠ 𝑥0) approach the number 𝑥0 (notice that 𝑓(𝑥0) may not be defined, since, 

according to the definition of a limit, 𝑥 tends to 𝑥0, but 𝑥 never becomes equal to 𝑥0). In other 

words as 𝑥 gets closer to 𝑥0, 𝑓(𝑥) gets closer and stays close to 𝐿; symbolically: 

 

𝑙𝑖𝑚𝑥→𝑥0𝑓(𝑥) = 𝐿. 

 

Remark: Let 𝑎 be a real number and 𝑐 a constant. Then 

 

𝑙𝑖𝑚𝑥→𝑎𝑥 = 𝑎, and 

𝑙𝑖𝑚𝑥→𝑎𝑐 = 𝑐. 

 

Equivalently, we can define the limit of a function as follows: If 𝑥0 is an accumulation 

point of the domain 𝐷𝑓 of a function 𝑓, then we say that the limit of 𝑓 is 𝐿 ∈ ℝ ∪ {−∞,+∞} 

as 𝑥 tends to 𝑥0 ∈ ℝ ∪ {−∞,+∞}, and we write 𝑙𝑖𝑚𝑥→𝑥0𝑓(𝑥) = 𝐿 , if and only if, for all the 

 
423 See: Apostol, Mathematical Analysis; Fraleigh, Calculus with Analytic Geometry; Hardy, A Course of Pure 

Mathematics; Landau, Foundations of Analysis; Nikolski, A Course of Mathematical Analysis; Spivak, Calculus; 

in conjunction with Cauchy, Cours d’Analyse.  
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sequences (𝑥𝑛)𝑛∈ℕ of numbers in 𝐷𝑓 − {𝑥0} that converge to 𝑥0, the corresponding sequence 

of the values of the function 𝑓(𝑥𝑛), where 𝑛 ∈ ℕ, converges to 𝐿. When, in the 

aforementioned definition, we say that “𝑥 tends to 𝑥0,” we mean that the distance |𝑥 − 𝑥0| 

becomes infinitely close to zero, without ever becoming equal to zero. 

 

One-sided limits: Assume that a function 𝑓(𝑥) is defined at all values in an open interval 

of the real line, and that 𝐿 is a real number. If the values of 𝑓(𝑥) approach 𝐿 as the values of 𝑥 

approach the number 𝑎 and 𝑥 < 𝑎, then we say that 𝐿 is the limit of 𝑓(𝑥) as 𝑥 approaches 𝑎 

from the left, and we write 

 

𝑙𝑖𝑚𝑥→𝑎−𝑓(𝑥) = 𝐿. 

 

By analogy, if the values of 𝑓(𝑥) approach 𝐿 as the values of 𝑥 approach the number 𝑎 

and 𝑥 > 𝑎, then we say that 𝐿 is the limit of 𝑓(𝑥) as 𝑥 approaches 𝑎 from the right, and we 

write 

 

𝑙𝑖𝑚𝑥→𝑎+𝑓(𝑥) = 𝐿. 

 

If 𝑓(𝑥) is a function defined at all values in an open interval of the real line containing 𝑎, 

with the possible exception of 𝑎, and if 𝐿 is a real number, then  

 

𝑙𝑖𝑚𝑥→𝑎𝑓(𝑥) = 𝐿 ⇔ 𝑙𝑖𝑚𝑥→𝑎−𝑓(𝑥) = 𝐿 = 𝑙𝑖𝑚𝑥→𝑎+𝑓(𝑥). 

 

Moreover, notice that, if 𝑙𝑖𝑚𝑥→𝑎𝑓(𝑥) = 𝐿 ∈ ℝ, then 𝑓(𝑥) is bounded on a region 

(specifically, on a deleted neighborhood) of 𝑎.  

 

The Cauchy epsilon-delta definition of a limit424: First of all, recall that, as I explained in 

section 2.2.6, the distance between any two points 𝑎 and 𝑏 on the number line ℝ is |𝑎 − 𝑏|. 

Therefore, the statement 

 

|𝑓(𝑥) − 𝐿| < 𝜀 

 

means that the distance between 𝑓(𝑥) and 𝐿 is less than 𝜀, and, by the definition of an 

absolute value, the statement 

 

0 < |𝑥 − 𝑎| < 𝛿 

 

is equivalent to the statement  

 

𝑎 − 𝛿 < 𝑥 < 𝑎 + 𝛿, so that 𝑥 ≠ 𝑎.  

 

Thus, the Cauchy epsilon-delta definition of a limit is the following: Assume that, for all 

𝑥 ≠ 𝑎, an arbitrary function 𝑓(𝑥) is defined over an open interval containing 𝑎. Then  

 
424 Ibid.  
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𝑙𝑖𝑚𝑥→𝑎𝑓(𝑥) = 𝐿 

 

if and only if, for every 𝜀 > 0, there exists a 𝛿 > 0 such that, if 0 < |𝑥 − 𝑎| < 𝛿, then 

|𝑓(𝑥) − 𝐿| < 𝜀. 

The statement (with universal quantifier) “for every 𝜀 > 0” means “for every positive 

distance 𝜀 from 𝐿”; the statement (with the existential quantifier) “there exists a 𝛿 > 0” 

means that there is a positive distance 𝛿 from 𝑎; and the conditional statement “if 0 <
|𝑥 − 𝑎| < 𝛿, then |𝑓(𝑥) − 𝐿| < 𝜀” means that, if 𝑥 is closer than 𝛿 to 𝑎, and 𝑥 ≠ 𝑎, then the 

value of 𝑓(𝑥) is closer than 𝜀 to 𝐿. Therefore, the definition of a limit is based on the 

definition of a deleted neighborhood (studied in section 2.3.1), since a deleted neighborhood 

can be defined as a set that includes every point for which 

 

0 < |𝑥 − 𝑎| < 𝛿. 

 

Remark: The name of the aforementioned definition of a limit was given in honor of the 

French mathematician Augustin-Louis Cauchy (1789–1857), who studied this concept in a 

systematic way, and he was one of the greatest pioneers of mathematical analysis. 

 

Examples: 

 

(i) The limit of 𝑓: [−1,0) ∪ (0,1] with 𝑓(𝑥) = {
𝑥2 + 1, 𝑥 < 0
1 − 𝑥, 𝑥 > 0

, as 𝑥 → 0 is 1. We can 

prove this result as follows: We want an 𝜀 such that 0 < 𝜀 < 1. Then we must prove 

that ∃𝛿 > 0||(𝑥2 + 1) − 1| < 𝜀 or 𝑥2 < 𝜀 ∀𝑥 with −𝛿 < 𝑥 < 0, and |(1 − 𝑥) −

1| < 𝜀 or 𝑥 < 𝜀 ∀𝑥 with 0 < 𝑥 < 𝛿. Setting 𝛿 = 𝜀, the previous inequalities hold, so 

that 𝑙𝑖𝑚𝑥→0−𝑓(𝑥) = 𝑙𝑖𝑚𝑥→0+𝑓(𝑥). Therefore, 𝑙𝑖𝑚𝑥→0𝑓(𝑥) = 1.  

(ii) Given that 𝑓(𝑥) =
10𝑥−10

4𝑥2+2𝑥+1
 is defined ∀𝑥 ∈ ℝ, we can compute its limit as 𝑥 → 1 by 

direct substitution, namely: 𝑙𝑖𝑚𝑥→1
10𝑥−10

4𝑥2+2𝑥+1
=

10−10

4+2+1
= 0.  

(iii) Given 𝑙𝑖𝑚𝑥→2
5

(𝑥−2)2020
, we observe that, as 𝑥 → 2, the denominator tends to 0, and 

the given fraction tends to infinity. Therefore, this limit does not exist.  

(iv) If we are asked to compute 𝑙𝑖𝑚𝑥→1𝑓(𝑥) when 𝑓(𝑥) = {
10−𝑥

2
, 𝑥 ≥ 1

2 + 𝑥, 𝑥 < 1
, then we 

observe the following: if 𝑥 is slightly larger than 1, then 𝑓(𝑥) approaches 
9

2
, and, if 𝑥 

is slightly smaller than 1, then 𝑓(𝑥) approaches 3. Therefore, the required limit does 

not exist.  

 

The concept of the limit of a function and the concept of boundedness are related to each 

other through the following theorem.  

 

Theorem425: Consider a real function 𝑓 with domain 𝐷𝑓 such that 𝑙𝑖𝑚𝑥→𝑎𝑓(𝑥) = 𝐿. Then  

 
425 Ibid. 
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i. 𝑓 is bounded on some region (deleted neighborhood) of 𝑎; 

ii. if 𝐿 ≠ 0, then there exists a region (deleted neighborhood) of 𝑎 where 𝑓(𝑥) ≠ 0. 

 

Proof:  

 

(i)  Given that 𝑙𝑖𝑚𝑥→𝑎𝑓(𝑥) = 𝐿,  

(∀𝜀 > 0)(∃𝛿 > 0)(∀𝑥 ∈ 𝐷𝑓)[0 < |𝑥 − 𝑎| < 𝛿 ⇒ |𝑓(𝑥) − 𝐿| < 𝜀]. 

If 𝜀 = 1, then |𝑓(𝑥)| ≤ 𝐿 + 1.  

If 𝑎 ∉ 𝐷𝑓, then we set 𝑀 = |𝐿| + 1. If 𝑎 ∈ 𝐷𝑓, then we set 𝑀 =

𝑠𝑢𝑝{|𝑓(𝑎)|, |𝐿| + 1}. Hence, if 𝑥 ∈ 𝑁𝛿
′(𝑎) ∩ 𝐷𝑓, then |𝑓(𝑥)| ≤ 𝑀, meaning that 𝑓 is 

bounded on a region (deleted neighborhood) of 𝑎.  

(ii)  Given that 𝐿 ≠ 0, if we set 𝜀 =
1

2
|𝐿|, then we obtain 

−
|𝐿|

2
+ 𝐿 < 𝑓(𝑥) < 𝐿 +

|𝐿|

2
. (∗) 

 

If 𝐿 > 0, then (∗) implies that 
𝐿

2
< 𝑓(𝑥) <

3𝐿

2
, so that 

|𝐿|

2
< |𝑓(𝑥)| <

3|𝐿|

2
. If 𝐿 < 0, then 

(∗) implies that 
3𝐿

2
< 𝑓(𝑥) <

𝐿

2
⇔ −

3𝐿

2
> −𝑓(𝑥) > −

𝐿 

2
⇔

|𝐿|

2
< |𝑓(𝑥)| <

3|𝐿|

2
. Therefore, for 

𝐿 ≠ 0, there exists a region (deleted neighborhood) of 𝑎, denoted by 𝑁𝛿
′(𝑎), where 𝑓(𝑥) ≠

0.■ 

 

Remark: The aforementioned theorem can be equivalently reformulated as follows: if 𝑓 

has a non-zero limit at 𝑎, then there exists a region (deleted neighborhood) of 𝑎, denoted by 

𝑁𝛿
′(𝑎), where 𝑓 is bounded away from zero. This implies that the fraction 

1

𝑓
 exists and is 

meaningful ∀𝑥 ∈ 𝑁𝛿
′(𝑎) ∩ 𝐷𝑓. 

 

Theorem426: The limit of a function near a point is unique. In other words, if lim
𝑥→𝑎

𝑓(𝑥) =

𝑙 and lim
𝑥→𝑎

𝑓(𝑥) = 𝑘, then 𝑙 = 𝑘.  

 

Proof: This theorem can be proved by reductio ad absurdum as follows: If 𝑓 converges 

to 𝑙 near 𝑎, then 

 

∀𝜀 > 0, ∃𝛿1 > 0|∀𝑥, 0 < |𝑥 − 𝑎| < 𝛿1 ⇒ |𝑓(𝑥) − 𝑙| <
𝜀

2
. 

 

Choosing 𝛿 = 𝑚𝑖𝑛{𝛿1, 𝛿2}, 

 

0 < |𝑥 − 𝑎| < 𝛿 ⇒ |𝑓(𝑥) − 𝑙| <
𝜀

2
&|𝑓(𝑥) − 𝑘| <

𝜀

2
. 

 

Notice that |𝑙 − 𝑘| = |𝑓(𝑥) − 𝑘 − 𝑓(𝑥) + 𝑙| ≤ |𝑓(𝑥) − 𝑘| + |𝑓(𝑥) − 𝑙| <
𝜀

2
+
𝜀

2
= 𝜀 for 

0 < |𝑥 − 𝑎| < 𝛿. Therefore, the fact that |𝑙 − 𝑘| < 𝜀 for every 𝜀 implies that 𝑙 = 𝑘.■ 

 
426 Ibid. 
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Theorem427: If lim
𝑥→𝑎

𝑔(𝑥) = 𝑙 and lim
𝑥→𝑎

ℎ(𝑥) = 𝑚, where 𝑙 ∈ ℝ, 𝑚 ∈ ℝ, and 𝑎 is the 

accumulation point of the common domain 𝐷 of the functions 𝑔 and ℎ, then the following 

properties hold: 

 

i. lim
𝑥→𝑎

[𝑔(𝑥) + ℎ(𝑥)] = 𝑙 +𝑚. 

ii. lim
𝑥→𝑎

𝑔(𝑥) ∙ ℎ(𝑥) = 𝑙 ∙ 𝑚. 

iii. 𝑙𝑖𝑚𝑥→𝑎|𝑔(𝑥)| = |𝑙|. 

iv. lim
𝑥→𝑎

1

𝑔(𝑥)
=

1

𝑙
 if 𝑙 ≠ 0. 

v. lim
𝑥→𝑎

𝑔(𝑥)

ℎ(𝑥)
=

𝑙

𝑚
 if 𝑚 ≠ 0. 

 

Proof: Let 𝜀 > 0. Without loss of generality, we assume that 𝜀 < 1. Then, by hypothesis, 

there exists a 𝛿 > 0 such that, for every 𝑥 that belongs to the common domain 𝐷 of the 

functions 𝑔 and ℎ, and for 0 < |𝑥 − 𝑎| < 𝛿, the following inequalities hold: |𝑔(𝑥) − 𝑙| < 𝜀 

and |ℎ(𝑥) − 𝑚| < 𝜀. For such 𝑥, we have the following: 

 

|[𝑔(𝑥) + ℎ(𝑥)] − (𝑙 + 𝑚)| ≤ |𝑔(𝑥) − 𝑙| + |ℎ(𝑥) − 𝑚| < 2𝜀, 

 

which proves (i); 

 

|𝑔(𝑥) ∙ ℎ(𝑥) − 𝑙 ∙ 𝑚| ≤ |𝑔(𝑥)||ℎ(𝑥) − 𝑚| + |𝑚||𝑔(𝑥) − 𝑙| 

≤ (|𝑙| + 𝜀)𝜀 + |𝑚|𝜀 < (|𝑙| + 1 + |𝑚|)𝜀, 

 

which proves (ii); and 

 

||𝑔(𝑥)| − |𝑙|| ≤ |𝑔(𝑥) − 𝑙| < 𝜀, 

 

which proves (iii). 

We can prove (iv) as follows: since 𝑙 ≠ 0, then (given that, if 𝑔 has a non-zero limit at 𝑎, 

there exists a region (deleted neighborhood) of 𝑎, denoted by 𝑁𝛿
′(𝑎), where 𝑔 is bounded 

away from zero), there exist positive numbers 𝑘 and 𝛿1 such that |𝑔(𝑥)| > 𝑘, where 𝑘 =
|𝑙|

2
, 

∀𝑥 ∈ 𝐷 ∩ 𝑁𝛿1
′ (𝑎). Let 𝛿∗ = 𝑚𝑖𝑛{𝛿, 𝛿1}, so that, ∀𝑥 ∈ 𝐷 ∩ 𝑁𝛿∗

′ (𝑎), we have |
1

𝑔(𝑥)
−
1

𝑙
| =

|
𝑙−𝑔(𝑥)

𝑔(𝑥)𝑙
| <

𝜀

𝑘|𝑙|
, which implies that lim

𝑥→𝑎

1

𝑔(𝑥)
=

1

𝑙
.  

Given (iv), (v) follows from (ii), because the limit of 𝑔 ∙
1

ℎ
 as 𝑥 → 𝑎 is 𝑙 ∙

1

𝑚
=

𝑙

𝑚
.■ 

 

Corollary: If lim
𝑥→𝑎

𝑔(𝑥) exists, and if 𝑛 is a positive integer, then there exists lim
𝑥→𝑎

[𝑔(𝑥)]𝑛, 

and lim
𝑥→𝑎

[𝑔(𝑥)]𝑛 = [lim
𝑥→𝑎

𝑔(𝑥)]
𝑛
. Similarly, 𝑙𝑖𝑚𝑥→𝑎√𝑔(𝑥)

𝑛 = √𝑙𝑖𝑚𝑥→𝑎𝑔(𝑥)
𝑛

.  

 

 
427 Ibid. 
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Theorem428: If 𝑝(𝑥) = 𝑐𝑛𝑥
𝑛 + 𝑐𝑛−1𝑥

𝑛−1 +⋯+ 𝑐1𝑥 + 𝑐0 is a polynomial function with 

𝑐0, 𝑐1, 𝑐2, … , 𝑐𝑛 being real numbers and 𝑛 being a fixed positive integer, then, ∀𝑎 ∈ ℝ, 

𝑙𝑖𝑚𝑥→𝑎𝑝(𝑥) = 𝑝(𝑎). 

 

Proof: Due to the previous theorem (specifically, by applying the sum, constant multiple, 

and power properties), we have: 

 

𝑙𝑖𝑚𝑥→𝑎𝑝(𝑥) = 𝑙𝑖𝑚𝑥→𝑎(𝑐𝑛𝑥
𝑛 + 𝑐𝑛−1𝑥

𝑛−1 +⋯+ 𝑐1𝑥 + 𝑐0) 

= 𝑐𝑛(𝑙𝑖𝑚𝑥→𝑎𝑥)
𝑛 + 𝑐𝑛−1(𝑙𝑖𝑚𝑥→𝑎𝑥)

𝑛−1 +⋯+ 𝑐1(𝑙𝑖𝑚𝑥→𝑎𝑥) + 𝑙𝑖𝑚𝑥→𝑎𝑐0 

= 𝑐𝑛𝑎
𝑛 + 𝑐𝑛−1𝑎

𝑛−1 +⋯+ 𝑐1𝑎 + 𝑐0 = 𝑝(𝑎).■ 

 

Corollary: Let 𝑝(𝑥) and 𝑞(𝑥) be two polynomial functions, 𝑎 ∈ ℝ, and 𝑞(𝑎) ≠ 0. Then 

𝑙𝑖𝑚𝑥→𝑎
𝑝(𝑥)

𝑞(𝑥)
=

𝑝(𝑎)

𝑞(𝑎)
.  

 

Limits at infinity: A function 𝑓(𝑥) is said to have a “limit at infinity” if there exists a real 

number 𝐿 such that, ∀𝜀 > 0, ∃𝑀 > 0||𝑓(𝑥) − 𝐿| < 𝜀 ∀𝑥 > 𝑀, and, in this case, we write 

𝑙𝑖𝑚𝑥→∞𝑓(𝑥) = 𝐿. Moreover, we can write 𝑙𝑖𝑚𝑥→−∞𝑓(𝑥) and 𝑙𝑖𝑚𝑥→+∞𝑓(𝑥) if 𝑥 increases 

without bound on the negative or on the positive direction, respectively.  

 

The Squeeze Theorem for Functions429: Assume that the functions 𝑓, 𝑔, and ℎ are defined 

on a set 𝑈 ⊆ 𝐷, where 𝐷 is the common domain of these three functions, and that 𝑎 is an 

accumulation point of 𝑈. If 

 

𝑓(𝑥) ≤ 𝑔(𝑥) ≤ ℎ(𝑥) ∀𝑥 ∈ 𝑈 and 

𝑙𝑖𝑚𝑥→𝑎𝑓(𝑥) = 𝑙𝑖𝑚𝑥→𝑎ℎ(𝑥) = 𝐿, where 𝑎 ∈ ℝ, and it may be +∞ or −∞, 

 

then 𝑙𝑖𝑚𝑥→𝑎𝑔(𝑥) = 𝐿. 

 

Proof: It is a straightforward generalization of the Squeeze Theorem for Convergent 

Sequences, which was proved in section 2.4.■ 

 

Example: Applying the Squeeze Theorem, we can compute 𝑙𝑖𝑚𝑥→0𝑥𝑐𝑜𝑠𝑥 as follows: 

Because, for all 𝑥, −1 ≤ 𝑐𝑜𝑠𝑥 ≤ 1, we have −𝑥 ≤ 𝑥𝑐𝑜𝑠𝑥 ≤ 𝑥 for 𝑥 ≥ 0, and −𝑥 ≥ 𝑥𝑐𝑜𝑠𝑥 ≥

𝑥 for 𝑥 ≤ 0. Moreover, 𝑙𝑖𝑚𝑥→0(−𝑥) = 0 = 𝑙𝑖𝑚𝑥→0𝑥. Therefore, 𝑙𝑖𝑚𝑥→0𝑥𝑐𝑜𝑠𝑥 = 0. 

 

 

2.7. CONTINUOUS FUNCTIONS 
 

The concept of the continuity of a function is very important not only because it 

underpins the study of real functions in the context of pure mathematics but also because it 

plays a preeminent role in the construction of scientific models for the study of cosmology, 

mechanics, biology, economics, social dynamics, and other scientific fields. Intuitively, the 

 
428 Ibid.  
429 Ibid.  
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concept of continuity is connected with the geometric concept of an uninterruptedly extended 

line.  

Consider a function 𝑓 whose domain is 𝐷𝑓. Let 𝑎 be an interior point of 𝐷𝑓. Then 𝑓 is 

said to be “continuous at the point” 𝑎 if 

 

𝑙𝑖𝑚𝑥→𝑎𝑓(𝑥) exists finitely and 

𝑙𝑖𝑚𝑥→𝑎𝑓(𝑥) = 𝑓(𝑎), 

 

namely, if the limit of 𝑓(𝑥) as 𝑥 tends to 𝑎 is equal to the value of 𝑓(𝑥) at 𝑎.430 If 𝑎 is a 

boundary point of 𝐷𝑓 (i.e., in this case, an endpoint of a closed interval), then we distinguish 

the following two cases:  

 

i. if 𝐷𝑓 = (𝑥1, 𝑎], then 𝑓(𝑥) is said to be “continuous from the left” at 𝑎 if 

𝑙𝑖𝑚𝑥→𝑎−𝑓(𝑥) = 𝑓(𝑎); 

ii. if 𝐷𝑓 = [𝑎, 𝑥2), then 𝑓(𝑥) is said to be “continuous from the right” at 𝑎 if 

𝑙𝑖𝑚𝑥→𝑎+𝑓(𝑥) = 𝑓(𝑎). 

 

The aforementioned definition of continuity can also be given in the following equivalent 

forms431: 

 

(i) A function 𝑓 is continuous at 𝑎 ∈ 𝐷𝑓 if and only if, for every sequence (𝑥𝑛) with 

𝑙𝑖𝑚𝑛→∞𝑥𝑛 = 𝑎, where 𝑥𝑛 ∈ 𝐷𝑓, it holds that 𝑙𝑖𝑚𝑛→∞𝑓(𝑥𝑛) = 𝑓(𝑎). The sequential 

definition of continuity was originally developed by the German mathematician 

Heinrich Eduard Heine (1821–81).  

(ii) A function 𝑓 is continuous at 𝑥 = 𝑎 ∈ 𝐷𝑓 if and only if, ∀𝜀 > 0, ∃𝛿 > 0||𝑥 − 𝑎| <

𝛿 ⇒ |𝑓(𝑥) − 𝑓(𝑎)| < 𝜀.  

(iii) In section 2.2.6, I defined the continuity of a mapping between metric spaces, and, in 

section 2.3, I defined the continuity of a mapping between topological spaces. 

Moreover, in view of 2.2.4, if we use the concept of continuity for a line, then 

continuity relates the set of all the points of the given line to the set ℝ of all real 

numbers. 

 

A function 𝑓 is said to be “continuous over (or on, or in) an open interval” (𝑥1, 𝑥2) if 𝑓 is 

continuous at every point in that interval (𝑥1 may be −∞, and/or 𝑥2 may be +∞). A function 

𝑓 is said to “continuous over (or on, or in) the closed interval” [𝑥1, 𝑥2] if the following 

conditions hold: (i) 𝑓 is continuous at every 𝑥 in the open interval (𝑥1, 𝑥2); (ii) 𝑓(𝑥1) and 

𝑓(𝑥2) both exist; and (iii) 𝑙𝑖𝑚𝑥→𝑥1
+𝑓(𝑥) = 𝑓(𝑥1), and 𝑙𝑖𝑚𝑥→𝑥2

−𝑓(𝑥) = 𝑓(𝑥2).  

 

Remarks: If we compare the definition of the limit of a function (studied in section 2.6) 

with the definition of the continuity of a function, we realize that they have the same 

structure, but they also have the following differences:  

 

 
430 Ibid.  
431 Ibid. 
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i. In the case of the limit of a function (Cauchy epsilon-delta definition), we have 0 <
|𝑥 − 𝑎| < 𝛿, namely, 𝑥 ≠ 𝑎, whereas, in the case of continuity, we have only 

|𝑥 − 𝑎| < 𝛿, meaning that the definition of continuity holds also when 𝑥 = 𝑎.  

ii. Instead of the value 𝐿 that is used in the definition of the limit of a function, the 

definition of the continuity of a function uses the value 𝑓(𝑎), meaning that, in the 

case of the continuity of a function, the function must be defined at the point 𝑎. 

Indeed, it is meaningless to talk about the continuity (or the discontinuity) of a 

function at a point that does not belong to its domain of definition.  

iii. In the definition of the limit of a function (Cauchy epsilon-delta definition), the point 

𝑎 must be an accumulation point of the domain of definition 𝐷𝑓 of the corresponding 

function, and, therefore, it may not belong to 𝐷𝑓, whereas, in the definition of the 

continuity of a function, the point 𝑎 must belong to the domain of definition 𝐷𝑓 of the 

corresponding function (the definition of an accumulation point was stated in section 

2.3.4).  

 

Theorem432: The constant function 𝑓(𝑥) = 𝑐 and the identity function 𝑓(𝑥) = 𝑥 are 

continuous ∀𝑥 ∈ ℝ. 

 

Proof: We shall prove that 𝑓(𝑥) is continuous at an arbitrary point 𝑥0. If 𝑓(𝑥) = 𝑐, then 

𝑓(𝑥0) = 𝑐, and then, ∀𝜀 > 0, |𝑓(𝑥) − 𝑓(𝑥0)| = 0 < 𝜀 ∀𝑥, 𝑥0 ∈ ℝ. If 𝛿 is an arbitrary positive 

real number, then, ∀𝑥 ∈ ℝ with |𝑥 − 𝑥0| < 𝛿, it holds that |𝑓(𝑥) − 𝑓(𝑥0)| = 0 < 𝜀, meaning 

that 𝑓(𝑥) = 𝑐 is continuous. 

If 𝑓(𝑥) = 𝑥, then it suffices to show that, ∀𝜀 > 0, ∃𝛿 > 0||𝑥 − 𝑥0| < 𝛿 ⇒ |𝑓(𝑥) −

𝑓(𝑥0)| < 𝜀 ∀𝑥 ∈ ℝ. But, since |𝑓(𝑥) − 𝑓(𝑥0)| = |𝑥 − 𝑥0|, we must merely set 𝛿 = 𝜀 to 

prove the continuity of 𝑓(𝑥) = 𝑥.■ 

 

The concept of a continuous function underpins the concept of a “curve” in ℝ𝑛, since a 

curve 𝐶 ⊂ ℝ𝑛 is defined by a set 

 

{𝑥 = (𝑥1, … , 𝑥𝑛) ∈ ℝ
𝑛|𝑓𝑖(𝑥) = 𝑐𝑖 , 𝑓𝑜𝑟 1 ≤ 𝑖 ≤ 𝑛 − 1}, 

 

where each 𝑓𝑖: ℝ
𝑛 → ℝ is a continuous function, and 𝑐𝑖 ∈ ℝ. For instance, in ℝ2, consider the 

circle 𝐶1 = {(𝑥, 𝑦) ∈ ℝ
3|𝑥2 + 𝑦2 = 1} and the parabola 𝐶2 = {(𝑥, 𝑦) ∈ ℝ

3|𝑥2 − 𝑦 = 0}. A 

“parametrized curve” in ℝ𝑛 is a continuous function  

 

𝛾: (𝛼, 𝛽) → ℝ𝑛|𝑡
𝛾
→ (𝛾1(𝑡),… , 𝛾𝑛(𝑡)), 

 

where −∞ ≤ 𝛼 < 𝛽 ≤ ∞, and the 𝛾𝑖: ℝ → ℝ are continuous functions. For instance, a 

parametrization for the aforementioned circle 𝐶1 is 𝛾1: (−∞,∞) → ℝ2| 𝑡
𝛾1
→ (cos(𝑡) , 𝑠𝑖𝑛(𝑡)), 

and a parametrization for the aforementioned parabola 𝐶2 is 𝛾2: (−∞,∞) → ℝ2| 𝑡
𝛾2
→ (𝑡, 𝑡2).  

In general, the concept of continuity underpins the concept of a manifold, which is an 

abstraction of the notion of a curved surface. A mapping 𝑓: 𝑋 → 𝑌 of metric spaces is said to 

 
432 Ibid. 



Dr. Nicolas Laos, The Dialectic of Rational Dynamicity 262 

be a “homeomorphism” (in which case 𝑋 and 𝑌 are said to be homeomorphic) if the 

following three conditions are satisfied: 𝑓 is continuous, 𝑓 is bijective, and the inverse 

mapping 𝑓−1 is continuous. A metric space 𝑀 is said to be an “𝑛-dimensional manifold” (or 

simply “manifold”) if any point 𝑥 of 𝑀 is contained in a neighborhood 𝑈 ⊂ 𝑀 homeomorphic 

to a domain 𝑉 of a Euclidean space ℝ𝑛. Thus, an 𝑛-dimensional manifold 𝑀 is locally 

homeomorphic to a domain 𝑉 of a Euclidean space ℝ𝑛, and then the dimension of 𝑀 is equal 

to 𝑛. The concept of a manifold indicates that topology, the most abstract study of the 

structure of space, precedes geometry, and that, since a manifold is locally Euclidean while its 

global structure may be non-Euclidean, different geometries can be simultaneously valid.  

Furthermore, by the definition of the continuity of a function and by the definition of an 

isolated point (stated in section 2.3.1), we realize that, given a function 𝑓: 𝐷𝑓 → ℝ, where 

𝐷𝑓 ⊆ ℝ, and a point 𝑎 ∈ 𝐷𝑓 such that 𝑎 is an isolated point of 𝐷𝑓, it holds that 𝑓 is continuous 

at 𝑎. For instance, 𝑓:ℕ∗ → ℝ with 𝑓(𝑥) =
1

𝑥
 is continuous, since every point of ℕ is an 

isolated point. In general, notice that any point 𝑥0 ∈ 𝐷𝑓 will be either an isolated point or a 

point of accumulation of 𝐷𝑓.  

The points at which a function 𝑓 is not continuous are called “points of discontinuity,” 

and 𝑓 is called “discontinuous” at these points. 

 

 

Types of Discontinuity 

i. If both 𝑙𝑖𝑚𝑥→𝑥0
+𝑓(𝑥) and 𝑙𝑖𝑚𝑥→𝑥0

−𝑓(𝑥) exist but 𝑙𝑖𝑚𝑥→𝑥0
+𝑓(𝑥) ≠ 𝑙𝑖𝑚𝑥→𝑥0

−𝑓(𝑥), then 

𝑓 is said to have a “jump discontinuity” at 𝑥 = 𝑥0, as shown in Figure 2.13. If 

𝑙𝑖𝑚𝑥→𝑥0
+𝑓(𝑥) ≠ 𝑓(𝑥0) and 𝑙𝑖𝑚𝑥→𝑥0

−𝑓(𝑥) = 𝑓(𝑥0), then 𝑓 has a “jump discontinuity 

from the right.” If 𝑙𝑖𝑚𝑥→𝑥0
−𝑓(𝑥) ≠ 𝑓(𝑥0) and 𝑙𝑖𝑚𝑥→𝑥0

+𝑓(𝑥) = 𝑓(𝑥0), then 𝑓 has a 

“jump discontinuity from the left.” 

 

 

Figure 2.13. Jump Discontinuity. 

ii. If 𝑙𝑖𝑚𝑥→𝑥0𝑓(𝑥) and 𝑓(𝑥0) exist but 𝑙𝑖𝑚𝑥→𝑥0𝑓(𝑥) ≠ 𝑓(𝑥0), then 𝑓 is said to have a 

“removable discontinuity” at 𝑥 = 𝑥0, as shown in Figure 2.14 (i.e., 𝑥0 is a hole, a 

point on the graph of 𝑓 at which 𝑓 is undefined). We say that a discontinuity is 

“removable” because we can redefine the value of the function at a point of 

discontinuity in such a way that the new function is continuous at that point (i.e., a 

removable discontinuity can be “filled in” if we make the function a piecewise 

function and define a part of the function at the point where the hole is).  
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Figure 2.14. Removable Discontinuity. 

iii. If 𝑙𝑖𝑚𝑥→𝑥0
+𝑓(𝑥) = +∞ or 𝑙𝑖𝑚𝑥→𝑥0

−𝑓(𝑥) = −∞, namely, if at least one of the one-

sided limits of the function tends to infinity, then 𝑓 is said to have an “infinite 

discontinuity” at 𝑥 = 𝑥0, as shown in Figure 2.15. 

 

 

Figure 2.15. Infinite Discontinuity. 

iv. If neither 𝑙𝑖𝑚𝑥→𝑥0
+𝑓(𝑥) nor 𝑙𝑖𝑚𝑥→𝑥0

−𝑓(𝑥) exists, then 𝑓 is said to “discontinuous” at 

𝑥 = 𝑥0. 

v. If only one of the limits 𝑙𝑖𝑚𝑥→𝑥0
+𝑓(𝑥) and 𝑙𝑖𝑚𝑥→𝑥0

−𝑓(𝑥) exists, then 𝑓 is said to have 

a “mixed discontinuity” at 𝑥 = 𝑥0. 

 

Examples: (i) The function 𝑓(𝑥) = [𝑥], where [𝑥] denotes the greatest integer ≤ 𝑥, is 

continuous at every non-integral value of 𝑥, and it is discontinuous at every integral value of 

𝑥. Proof: Let 𝑥0 = 𝑎 + 𝑏 be a non-integral value of 𝑥 with 𝑎 ∈ ℤ and 𝑏 ∈ (0,1). Then 

𝑓(𝑥0) = [𝑎 + 𝑏] = 𝑎. Notice that 𝑙𝑖𝑚𝑥→𝑥0
+𝑓(𝑥) = 𝑙𝑖𝑚ℎ→0𝑓(𝑥0 + ℎ) = 𝑙𝑖𝑚ℎ→0[𝑎 + 𝑏 +

ℎ] = 𝑎, and 𝑙𝑖𝑚𝑥→𝑥0
−𝑓(𝑥) = 𝑙𝑖𝑚ℎ→0𝑓(𝑥0 − ℎ) = 𝑙𝑖𝑚ℎ→0[𝑎 + 𝑏 − ℎ] = 𝑎. Therefore, 

𝑙𝑖𝑚𝑥→𝑥0𝑓(𝑥) = 𝑓(𝑥0) for every non-integral value of 𝑥. Now, assume that 𝑥0 = 𝑎, where 

𝑎 ∈ ℤ, is an integral value of 𝑥. Then 𝑓(𝑥0) = [𝑥0] = [𝑎] = 𝑎. Notice that 𝑙𝑖𝑚𝑥→𝑥0
+𝑓(𝑥) =

𝑙𝑖𝑚ℎ→0[𝑥0 + ℎ] = 𝑙𝑖𝑚ℎ→0[𝑎 + ℎ] = 𝑎, and 𝑙𝑖𝑚𝑥→𝑥0
−𝑓(𝑥) = 𝑙𝑖𝑚ℎ→0[𝑥0 − ℎ] = 𝑙𝑖𝑚ℎ→0[𝑎 −

ℎ] = 𝑎 − 1. Hence, in this case, 𝑙𝑖𝑚𝑥→𝑥0
−𝑓(𝑥) = 𝑎 − 1 ≠ 𝑓(𝑥0) = 𝑙𝑖𝑚𝑥→𝑥0

+𝑓(𝑥).■ (ii) 

Dirichlet’s function, named after the German mathematician Johann Peter Gustav Lejeune 

Dirichlet (1805–59), who formulated it, is defined as follows: 
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𝑓(𝑥) = {
1 𝑖𝑓𝑥 ∈ ℚ

−1 𝑖𝑓 𝑥 ∈ ℚ∼
.  

 

This function is everywhere discontinuous over the reals. Proof: Since both rational 

numbers (where 𝑓 = 1) and irrational numbers (where 𝑓 = −1) are dense in ℝ, every open 

interval, however small, contains both rational and irrational numbers. Therefore, it is 

impossible to draw the function properly, because we should draw two horizontal lines (for 

𝑓 = 1 and 𝑓 = −1) such that they will have holes everywhere, that is, there will be no piece 

of uninterrupted line (given that there are rational and irrational points everywhere): as 

regards the line corresponding to 𝑓 = 1, whenever we take two rational numbers, there will 

always be some irrational number between them making a hole in this line; and, similarly, as 

regards the line corresponding to 𝑓 = −1, whenever we take two irrational numbers, there 

will always be some rational number between them making a hole in this line. Consequently, 

𝑓(𝑥) has no accumulation point anywhere in its domain, meaning that 𝑓(𝑥) is everywhere 

discontinuous over the reals. However, notice that, if we take the absolute value |𝑓(𝑥)|, then 

|𝑓(𝑥)| = 1 ∀𝑥 ∈ ℝ, which is everywhere continuous over ℝ.■  

 

Theorem433: Let 𝑓(𝑥) and 𝑔(𝑥) be two functions continuous at 𝑥 = 𝑥0. Then: 

 

(i) 𝑓(𝑥) + 𝑔(𝑥), 

(ii) 𝑓(𝑥) − 𝑔(𝑥), 

(iii) 𝑓(𝑥) ∙ 𝑔(𝑥), and 

(iv) 
𝑓(𝑥)

𝑔(𝑥)
, 𝑔(𝑥0) ≠ 0, 

 

are continuous at 𝑥 = 𝑥0. 

 

Proof: The proof is a direct application of the definition of continuity.■ 

 

Remark: The converse may not be true. For instance, if 

 

𝑓(𝑥) = {
−𝑥 𝑖𝑓 𝑥 < 0
1 𝑖𝑓 𝑥 ≥ 0

 and 𝑔(𝑥) = {
1 𝑖𝑓 𝑥 < 0
𝑥 𝑖𝑓 𝑥 ≥ 0

, 

 

then 𝑓(𝑥) + 𝑔(𝑥) and 𝑓(𝑥) ∙ 𝑔(𝑥) are continuous at 0 even though neither 𝑓(𝑥) nor 𝑔(𝑥) is 

continuous at 0.  

 

Theorem434: If 𝑓(𝑥) is continuous at 𝑥 = 𝑥0, then |𝑓(𝑥)| is also continuous at 𝑥 = 𝑥0, but 

the converse may not be true. 

 

Proof: If 𝑓(𝑥) is continuous at 𝑥 = 𝑥0, then, by definition, 

 

∀𝜀 > 0, ∃𝛿 > 0||𝑥 − 𝑥0| < 𝛿 ⇒ |𝑓(𝑥) − 𝑓(𝑥0)| < 𝜀.  (∗) 

 
433 Ibid. 
434 Ibid. 
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Moreover, ||𝑓(𝑥)| − |𝑓(𝑥0)|| ≤ |𝑓(𝑥) − 𝑓(𝑥0)|. (∗∗) 

 

(∗) and (∗∗) imply that  

 

|𝑥 − 𝑥0| < 𝛿 ⇒ ||𝑓(𝑥)| − |𝑓(𝑥0)|| < 𝜀, 

 

and, therefore, |𝑓(𝑥)| is continuous at 𝑥 = 𝑥0.  

In order to show that the converse is not always true, it is enough to give an example. Indeed, 

let 

 

𝑓(𝑥) = {
1 𝑖𝑓 𝑥 ∈ ℚ
−1 𝑖𝑓 𝑥 ∈ ℚ∼

. 

 

Then |𝑓(𝑥)| = 1 ∀𝑥 ∈ ℝ, and, hence, it is continuous ∀𝑥 ∈ ℝ, whereas 𝑓(𝑥) is not 

continuous ∀𝑥 ∈ ℝ.■  

 

Theorem435: The composition of continuous functions is a continuous function. 

 

Proof: Consider a function 𝑓 continuous at 𝑥0 ∈ 𝐷𝑓 and a function 𝑔 defined on the range 

𝑅𝑓 of 𝑓 and continuous at 𝑓(𝑥0) ∈ 𝑅𝑓. Then we shall prove that the function ℎ = 𝑔 ∘ 𝑓 is 

continuous at 𝑥0. Because 𝑓 is continuous at 𝑥0, we have: 

 

∀𝜀∗ > 0, ∃𝛿 > 0||𝑥 − 𝑥0| < 𝛿 ⇒ |𝑓(𝑥) − 𝑓(𝑥0)| < 𝜀
∗ ∀𝑥 ∈ 𝐷𝑓. 

 

Because 𝑔 is continuous at 𝑓(𝑥0) ∈ 𝑅𝑓, we have: 

 

∀𝜀 > 0, ∃𝛿1 > 0||𝑓(𝑥) − 𝑓(𝑥0)| < 𝛿1 ⇒ |ℎ(𝑥) − ℎ(𝑥0)| = |𝑔(𝑓(𝑥)) − 𝑔(𝑓(𝑥0))| <

𝜀 ∀𝑓(𝑥) ∈ 𝑅𝑓. 

 

Therefore, we must merely set 𝜀∗ = 𝛿1 to prove the continuity of 𝑔 ∘ 𝑓.■ 

 

Theorem436: If a function 𝑓 is continuous on a compact set 𝑆, then the image 𝑓(𝑆) of 𝑆 

under 𝑓 is also compact, namely, the continuous image of a compact set is compact. 

 

Proof: Let 𝑓: 𝑆 → ℝ be a continuous function on the compact set 𝑆. Then 

 

𝑓(𝑆) = {𝑓(𝑥)|𝑥 ∈ 𝑆} 

 

is the image set, or range, of 𝑓. By the definition of continuity on a set, for every 

neighborhood 𝑁(𝑓(𝑥)) of 𝑓(𝑥), there exists a neighborhood 𝑁(𝑥) of 𝑥 ∈ 𝑆 such that 

 

 
435 Ibid. 
436 Ibid.  
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𝑓(𝑁(𝑥) ∩ 𝑆) ⊂ 𝑁(𝑓(𝑥)). 

 

In order to prove that 𝑓(𝑆) is compact, we must prove that every open cover of 𝑓(𝑆) 

provides a finite subcover. Let 𝒞 = {𝑈𝛼|𝛼 ∈ 𝒜} be an open cover of 𝑓(𝑆), symbolically: 

 

𝑓(𝑆) ⊂∪𝛼∈𝒜 𝑈𝛼, 

 

where each 𝑈𝛼 ∈ 𝒞 is an open set (see section 2.3.6). Hence, for any 𝑥 ∈ 𝑆, 𝑓(𝑥) belongs to 

some open set 𝑈𝑥 ∈ 𝒞, so that 𝑓(𝑥) is an interior point of 𝑈𝑥, and, therefore, there exists some 

neighborhood 𝑁(𝑓(𝑥)) of 𝑓(𝑥) such that 𝑁(𝑓(𝑥)) ⊂ 𝑈𝑥. Thus, we have: 𝑓(𝑁(𝑥) ∩ 𝑆) ⊂

𝑁(𝑓(𝑥)) ⊂ 𝑈𝑥. Moreover, by hypothesis, 𝑆 is compact, meaning that every open cover ℬ =
{𝑁(𝑥)|𝑥 ∈ 𝑆} of 𝑆 will have a finite subcover, say ℬ1 = {𝑁(𝑥𝛼)|𝑎 = 1,2,… ,𝑚}, so that 

 

𝑆 ⊂∪𝛼=1
𝑚 𝑁(𝑥𝛼) ⇒ 𝑆 =∪𝛼=1

𝑚 𝑁(𝑥𝛼) ∩ 𝑆 

= (𝑁(𝑥1) ∩ 𝑆) ∪ (𝑁(𝑥2) ∩ 𝑆) ∪ …∪ (𝑁(𝑥𝑚) ∩ 𝑆). 

 

Hence, 𝑆 =∪𝛼=1
𝑚 𝑁(𝑥𝛼) ∩ 𝑆 ⇒ 𝑓(𝑆) =∪ 𝑓(𝑁(𝑥𝛼) ∩ 𝑆) 

⇒ 𝑓(𝑆) ⊂∪𝑁(𝑓(𝑥𝛼)) ⊂∪ 𝑈𝑥𝛼 ⇒ 𝑓(𝑆) ⊂∪ 𝑈𝑥𝛼, where 𝑎 = 1,2,… ,𝑚. Therefore,  

 

{𝑈𝑥1 , 𝑈𝑥2 , … , 𝑈𝑥𝑚} is an open cover of the set 𝑓(𝑆).  

Consequently, the cover 𝒞 of 𝑓(𝑆) has a finite subcover, namely, {𝑈𝑥𝛼|𝑎 = 1,2,… ,𝑚}, 

and, therefore, 𝑓(𝑆) is compact.■ 

 

Corollary437: If a function 𝑓 is continuous on a closed interval, then it is bounded on that 

interval. 

 

Proof: Let 𝑓 be continuous on [𝑎, 𝑏]. Because [𝑎, 𝑏] is compact, the aforementioned 

theorem implies that 𝑓([𝑎, 𝑏]) is also compact, and, therefore, 𝑓([𝑎, 𝑏]) is closed and 

bounded.  

However, the converse may not be true: for instance, if 𝑓(𝑥) = [𝑥] ∀𝑥 ∈ [−1,1], where 

[𝑥] denotes the greatest integer not greater than 𝑥, then 𝑓(𝑥) is a bounded function, but it is 

discontinuous at 𝑥 = 0. 

Moreover, notice that a function that is continuous on an open interval may not be 

bounded on that interval: for instance, the function  

 

𝑓(𝑥) = {

1

𝑥
 𝑖𝑓 𝑥 ≠ 0

0 𝑖𝑓 𝑥 = 0
 

 

is continuous on the open interval (0,1), but it is not bounded on this interval.■ 

Theorem438: If 𝑓 is a continuous function on [𝑎, 𝑏], then 𝑓 attains its supremum (least 

upper bound) and its infimum (greatest lower bound) in [𝑎, 𝑏]. In other words, if 𝑓: [𝑎, 𝑏] →

 
437 Ibid. 
438 Ibid. 
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ℝ is continuous over [𝑎, 𝑏], then there exist 𝑝, 𝑞 ∈ [𝑎, 𝑏] such that 𝑞 is a maximum for 𝑓, and 

𝑝 is a minimum for 𝑓.  

 

Proof: The fact that 𝑓 is continuous on [𝑎, 𝑏] implies that 𝑓 is bounded on [𝑎, 𝑏]. Let 

sup (𝑓) = 𝑀 and inf (𝑓) = 𝑚. We must prove that there exist 𝑝 and 𝑞 in [𝑎, 𝑏] such that 

𝑓(𝑝) = 𝑚 and 𝑓(𝑞) = 𝑀.  

First, we shall prove that 𝑓 attains its supremum in [𝑎, 𝑏]. For the sake of contradiction, 

assume that sup (𝑓) is not attained in [𝑎, 𝑏], namely, that ∄𝑞 ∈ [𝑎, 𝑏]|𝑓(𝑞) = 𝑀. Then, ∀𝑥 ∈
[𝑎, 𝑏], 

 

𝑓(𝑥) ≠ 𝑀 ⇒ 𝑀 − 𝑓(𝑥) > 0, given that sup (𝑓) = 𝑀.  

 

Because 𝑀 can be considered to be a constant function, and because, by hypothesis, 𝑓(𝑥) 

is continuous on [𝑎, 𝑏], it holds that 𝑀 − 𝑓(𝑥) is continuous on [𝑎, 𝑏], and 
1

𝑀−𝑓(𝑥)
 is also 

continuous on [𝑎, 𝑏]. Consequently, 
1

𝑀−𝑓(𝑥)
 is bounded on [𝑎, 𝑏]. Let 𝑢 be an upper bound of 

1

𝑀−𝑓(𝑥)
, so that, ∀𝑥 ∈ [𝑎, 𝑏], 

 
1

𝑀−𝑓(𝑥)
≤ 𝑢 ⇒ 𝑀 − 𝑓(𝑥) ≥

1

𝑢
⇒ 𝑓(𝑥) ≤ 𝑀 −

1

𝑢
, 

 

and, therefore, 𝑀 −
1

𝑢
 is also an upper bound of 𝑓(𝑥), which contradicts the assumption that 

sup (𝑓) = 𝑀. This contradiction implies that 𝑓 attains its supremum in [𝑎, 𝑏], namely, that 

∃𝑞 ∈ [𝑎, 𝑏]|𝑓(𝑞) = 𝑀. 

Similarly, we can prove that 𝑓 attains its infimum in [𝑎, 𝑏].■ 

 

Remark: As I have already explained, in set theory, the “maximum” is the largest element 

of a set, while the “supremum” is the least upper bound of a set. However, if the maximum 

exists, then there is no difference between the maximum and the supremum. For instance, 

given the set 𝐴 = {1,2,3,4} in the reals, the maximum is 4, and the supremum is 4 as well. 

But, given the set 𝐵 = {𝑥|𝑥 < 2}, the maximum of 𝐵 is not 2, because 2 does not belong to 

𝐵, and, in fact, in this case, the maximum is not well defined, whereas the supremum is 

clearly 2. For this reason, in real analysis, it is often more convenient and more useful to 

consider the supremum of a given set rather than the maximum. By analogy, we can think 

about the minimum and the infimum (greatest lower bound). 

 

Theorem439: Assume that a function 𝑓(𝑥) is continuous at a point 𝑥 = 𝑐, and that 𝑓(𝑐) ≠

0. Then there exists a neighborhood of 𝑐, say (𝑐 − 𝛿, 𝑐 + 𝛿), where 𝛿 > 0, such that 𝑓(𝑥) and 

𝑓(𝑐) have the same sign ∀𝑥 ∈ (𝑐 − 𝛿, 𝑐 + 𝛿). 

 

Proof: Because 𝑓 is continuous at 𝑥 = 𝑐, it holds that there exist 𝛿, 𝜀 > 0 for which 

 

|𝑥 − 𝑐| < 𝛿 ⇒ |𝑓(𝑥) − 𝑓(𝑐)| < 𝜀 

 
439 Ibid. 
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⇔ 𝑓(𝑐) − 𝜀 < 𝑓(𝑥) < 𝑓(𝑐) + 𝜀 ∀𝑥 ∈ (𝑐 − 𝛿, 𝑐 + 𝛿). (∗) 

 

Let 𝜀 > 0 be such that 𝜀 < |𝑓(𝑐)|. (∗∗) 

 

First, suppose that 𝑓(𝑐) > 0. Then (∗) and (∗∗) imply that 𝑓(𝑐) − 𝜀 and 𝑓(𝑐) + 𝜀 are 

positive, and that 𝑓(𝑥) lies between them ∀𝑥 ∈ (𝑐 − 𝛿, 𝑐 + 𝛿), so that 𝑓(𝑥) > 0 ∀𝑥 ∈
(𝑐 − 𝛿, 𝑐 + 𝛿). Hence, 𝑓(𝑐) > 0 ⇒ 𝑓(𝑥) > 0 ∀𝑥 ∈ (𝑐 − 𝛿, 𝑐 + 𝛿).  

Second, suppose that 𝑓(𝑐) < 0. Then (∗) and (∗∗) imply that 𝑓(𝑐) − 𝜀 and 𝑓(𝑐) + 𝜀 are 

negative, and that 𝑓(𝑥) lies between them ∀𝑥 ∈ (𝑐 − 𝛿, 𝑐 + 𝛿), so that 𝑓(𝑥) < 0 ∀𝑥 ∈
(𝑐 − 𝛿, 𝑐 + 𝛿). Hence, 𝑓(𝑐) < 0 ⇒ 𝑓(𝑥) < 0 ∀𝑥 ∈ (𝑐 − 𝛿, 𝑐 + 𝛿). 

As a conclusion, 𝑓(𝑥) and 𝑓(𝑐) have the same sign ∀𝑥 ∈ (𝑐 − 𝛿, 𝑐 + 𝛿).■ 

 

Bolzano’s Theorem440: Assume that a function 𝑓(𝑥) is continuous on [𝑎, 𝑏], and that 

𝑓(𝑎) and 𝑓(𝑏) are of opposite signs, that is, 𝑓(𝑎) ∙ 𝑓(𝑏) < 0. Then there exists a point 𝑐 ∈
(𝑎, 𝑏) such that 𝑓(𝑐) = 0. 

 

Proof: (i) We can prove this theorem using geometry as follows: Every continuous line of 

simple curvature (i.e., one that does not cross itself) of which the ordinates are first negative 

and then positive (or conversely) must necessarily intersect the 𝑥-axis. (ii) We can prove this 

theorem using pure mathematical analysis as follows: Given that 𝑓(𝑎) and 𝑓(𝑏) are of 

opposite signs, suppose that 𝑓(𝑎) < 0 and 𝑓(𝑏) > 0. Let us bisect the interval [𝑎, 𝑏] at the 

point 𝑐, so that [𝑎, 𝑏] has two subintervals [𝑎, 𝑐] and [𝑐, 𝑏]. Then there are three possibilities: 

𝑓(𝑐) = 0, or 𝑓(𝑐) < 0, or 𝑓(𝑐) > 0.  

If 𝑓(𝑐) = 0, then the theorem is obviously verified.  

If 𝑓(𝑐) > 0, then let us rename the first subinterval [𝑎, 𝑐] of [𝑎, 𝑏] as the interval [𝑎1, 𝑏1], 

so that 𝑓(𝑎1) < 0 and 𝑓(𝑏1) > 0.  

If 𝑓(𝑐) < 0, then let us rename the second subinterval [𝑐, 𝑏] of [𝑎, 𝑏] as the interval 

[𝑎1, 𝑏1], so that 𝑓(𝑎1) < 0 and 𝑓(𝑏1) > 0. 

The length of [𝑎1, 𝑏1] is equal to 
𝑏−𝑎

2
. 

Repeating this process of bisection and selection, we obtain the nested closed intervals 

[𝑎1, 𝑏1], [𝑎2, 𝑏2], … , [𝑎𝑛, 𝑏𝑛], … such that: 

 

in each [𝑎𝑛, 𝑏𝑛], 𝑓(𝑎𝑛) < 0 and 𝑓(𝑏𝑛) > 0; 

 

the length of [𝑎𝑛, 𝑏𝑛] is equal to 
𝑏−𝑎

2𝑛
, and it tends to 0 as 𝑛 → ∞, that is,  

 

𝑙𝑖𝑚𝑛→∞(𝑏𝑛 − 𝑎𝑛) = 0; and, by Cantor’s Intersection Theorem, 

∩𝑛∈ℕ [𝑎𝑛, 𝑏𝑛] = {𝑘} (see section 2.3.3). 

 

Given that 𝑓 is continuous on [𝑎, 𝑏], 𝑓 is continuous at 𝑘, so that 

 

𝑙𝑖𝑚𝑛→∞𝑓(𝑎𝑛) = 𝑓(𝑘)&𝑙𝑖𝑚𝑛→∞𝑓(𝑏𝑛) = 𝑓(𝑘). (∗)  

 
440 Ibid. This theorem was proved by Bernard Bolzano in 1817, and Augustin-Louis Cauchy published another 

proof in 1821.  
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Moreover, 

 

𝑓(𝑎𝑛) < 0 ⇒ 𝑙𝑖𝑚𝑛→∞𝑓(𝑎𝑛) ≤ 0 & 𝑓(𝑏𝑛) > 0 ⇒ 𝑙𝑖𝑚𝑛→∞𝑓(𝑏𝑛) ≥ 0.  (∗∗)  

 

Because of (∗) and (∗∗),  

 

𝑙𝑖𝑚𝑛→∞𝑓(𝑎𝑛) = 𝑙𝑖𝑚𝑛→∞𝑓(𝑏𝑛) = 0, 

 

and, therefore, 𝑓(𝑘) = 0; 𝑘 ≠ 𝑎 since 𝑓(𝑎) < 0, and 𝑘 ≠ 𝑏 since 𝑓(𝑏) > 0. Hence, 𝑘 ∈
(𝑎, 𝑏).■ 

 

Remark: If 𝑓: [𝑎, 𝑏] → [𝑎, 𝑏] is continuous on [𝑎, 𝑏], then there exists a point 𝑥0 ∈ [𝑎, 𝑏] 

such that 𝑓(𝑥0) = 𝑥0; such a point is said to be a “fixed point” of 𝑓. 

 

Intermediate Value Theorem441: If 𝑓 is continuous on [𝑎, 𝑏], and 𝑓(𝑎) ≠ 𝑓(𝑏), then 𝑓 

assumes every value between 𝑓(𝑎) and 𝑓(𝑏). This Intermediate Value Theorem can be 

geometrically interpreted as follows: if a continuous function 𝑓 assumes the values 𝑓(𝑎) and 

𝑓(𝑏), then it assumes every value in between, so that every horizontal line between 𝑓(𝑎) and 

𝑓(𝑏) intersects the graph of 𝑓 in at least one point. It is a generalization of the aforementioned 

Bolzano’s Theorem.  

 

Proof: Assume that 𝑘 is a number between 𝑓(𝑎) and 𝑓(𝑏). Let us define a function 

 

𝑔(𝑥) = 𝑓(𝑥) − 𝑘 

 

on [𝑎, 𝑏], so that 𝑔(𝑎) = 𝑓(𝑎) − 𝑘 and 𝑔(𝑏) = 𝑓(𝑏) − 𝑘. Because 𝑓(𝑎) ≠ 𝑓(𝑏), it follows 

that 𝑔(𝑎) and 𝑔(𝑏) are of opposite signs. Moreover, 𝑓 is given to be continuous on [𝑎, 𝑏]. 

Therefore, according to the aforementioned Bolzano’s Theorem, there exists a number 𝑐 ∈
(𝑎, 𝑏) such that 𝑔(𝑐) = 0 ⇒ 𝑔(𝑐) = 𝑘. Because 𝑘 is an arbitrary value between 𝑓(𝑎) and 

𝑓(𝑏), it holds that 𝑓 takes every value between 𝑓(𝑎) and 𝑓(𝑏).■ 

 

Corollary: If 𝑓 is continuous on [𝑎, 𝑏], if inf (𝑓) = 𝑚, and if sup (𝑓) = 𝑀, then 𝑓 

assumes every value between 𝑚 and 𝑀. 

 

Theorem442: Assume that a function 𝑓 is continuous on [𝑎, 𝑏]. Then [𝑎, 𝑏] can always be 

divided into a finite number of subintervals such that, ∀𝜀 > 0,  

 

|𝑓(𝑥1) − 𝑓(𝑥2)| < 𝜀, 

 

where 𝑥1 and 𝑥2 belong to the same subinterval. 

 

 
441 Ibid. 
442 Ibid. 
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Proof: For the sake of contradiction, suppose that [𝑎, 𝑏] cannot be divided into a finite 

number of subintervals such that, ∀𝜀 > 0,  

 

|𝑓(𝑥1) − 𝑓(𝑥2)| < 𝜀, 

 

where 𝑥1 and 𝑥2 belong to the same subinterval. 

Let us bisect [𝑎, 𝑏] at point 𝑐, obtaining the subintervals [𝑎, 𝑐] and [𝑐, 𝑏]. We rename that 

part in which the result is false as [𝑎1, 𝑏1]. Then we bisect [𝑎1, 𝑏1], and we rename that part in 

which the result is false as [𝑎2, 𝑏2]. Repeating the same process, we obtain the nested closed 

intervals [𝑎1, 𝑏1], [𝑎2, 𝑏2], … , [𝑎𝑛, 𝑏𝑛], … such that the length of [𝑎𝑛, 𝑏𝑛] is equal to 
𝑏−𝑎

2𝑛
, and it 

tends to 0 as 𝑛 → ∞. Hence, by Cantor’s Intersection Theorem, ∩𝑛∈ℕ [𝑎𝑛, 𝑏𝑛] = {𝑘} (see 

section 2.3.3). 

Given that 𝑓 is continuous on [𝑎, 𝑏], it holds that 𝑓 is continuous at 𝑥 = 𝑘, so that  

 

|𝑥 − 𝑘| < 𝛿 ⇒ |𝑓(𝑥) − 𝑓(𝑘)| <
𝜀

2
. 

 

Let (𝑏𝑛−𝑎𝑛) < 𝛿, so that (𝑘 − 𝛿, 𝑘 + 𝛿) ⊃ [𝑎𝑛, 𝑏𝑛]. If 𝑥1 and 𝑥2 are two arbitrary points 

in [𝑎𝑛, 𝑏𝑛], then  

 

|𝑓(𝑥1) − 𝑓(𝑘)| <
𝜀

2
&|𝑓(𝑥2) − 𝑓(𝑘)| <

𝜀

2
, 

 

so that |𝑓(𝑥1) − 𝑓(𝑥2)| = |𝑓(𝑥1) − 𝑓(𝑘) + 𝑓(𝑘) − 𝑓(𝑥2)| 

≤ |𝑓(𝑥1) − 𝑓(𝑘)| + |𝑓(𝑘) − 𝑓(𝑥2)| <
𝜀

2
+
𝜀

2
= 𝜀. 

 

Therefore, |𝑓(𝑥1) − 𝑓(𝑥2)| < 𝜀, where 𝑥1, 𝑥2 ∈ [𝑎𝑛, 𝑏𝑛], which implies that the theorem 

is true in the subinterval [𝑎𝑛, 𝑏𝑛], thus contradicting our assumption that the theorem is not 

true. This contradiction proves that the theorem is true.■ 

Notice that a function 𝑓: 𝐼 → ℝ, where 𝐼 ⊆ ℝ is an interval, is invertible if and only if it is 

one-to-one, namely, ∀𝑥, 𝑦 ∈ 𝐼, 𝑥 ≠ 𝑦 ⇒ 𝑓(𝑥) ≠ 𝑓(𝑦). Moreover, notice that a strictly 

monotonic function is bijective (i.e., one-to-one and onto) and, therefore, invertible. In the 

following theorem, we shall show that a continuous strictly monotonic function 𝑓: 𝐼 =
[𝑎, 𝑏] → ℝ is invertible, and that 𝑓−1 is continuous and monotonic on 𝑓(𝐼), and, in particular, 

𝑓−1 has the same kind of monotonicity as 𝑓. 

 

Continuous Inverse Function Theorem443: If 𝑓: 𝐼 = [𝑎, 𝑏] → ℝ is a continuous strictly 

monotonic function defined on an interval 𝐼, then its inverse is also continuous and strictly 

monotonic on 𝑓(𝐼); 𝑓−1 has the same kind of monotonicity as 𝑓. 

 

Proof: First, we shall consider the case in which 𝑓 is strictly increasing on 𝐼; we work 

similarly in case 𝑓 is strictly decreasing on 𝐼. Then 𝑓(𝐼) = [𝑓(𝑎), 𝑓(𝑏)], and, since 𝑓 is 

strictly increasing, 𝑓 is bijective and, therefore, invertible. We can show that 𝑓−1 is strictly 

increasing as follows: Let 𝑦1, 𝑦2 ∈ 𝑓(𝐼) with 𝑦1 < 𝑦2. Then, for some 𝑥1, 𝑥2 ∈ 𝐼, 𝑦1 =

 
443 Ibid. 
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𝑓(𝑥1)and 𝑦2 = 𝑓(𝑥2). It must hold that 𝑥1 < 𝑥2, because, otherwise, namely, if 𝑥1 ≥ 𝑥2, it 

would hold that 𝑦1 = 𝑓(𝑥1) ≥ 𝑦2 = 𝑓(𝑥2), contradicting the assumption that 𝑦1 < 𝑦2. 

Therefore, 

 

𝑓−1(𝑦1) = 𝑥1 < 𝑓
−1(𝑦2) = 𝑥2, 

 

and, since 𝑦1 and 𝑦2 are arbitrary elements of 𝑓(𝐼) with 𝑦1 < 𝑦2, it follows that 𝑓−1 is strictly 

increasing on 𝑓(𝐼).  

Now, using the definition of continuity, we shall show that 𝑓−1 is continuous on 𝐽 =

𝑓(𝐼) = [𝑓(𝑎), 𝑓(𝑏)] as follows: If 𝑦0 ∈ [𝑓(𝑎), 𝑓(𝑏)], then there exists a unique 𝑥0 ∈ [𝑎, 𝑏] 

such that 𝑓(𝑥0) = 𝑦0. For 𝜀 > 0 and without loss of generality, let 𝜀 ≤ 𝑚𝑖𝑛{𝑥0 − 𝑎, 𝑏 − 𝑥0}. 

Then the points 𝑥0 − 𝜀 and 𝑥0 + 𝜀 belong to [𝑎, 𝑏], and they are associated with the points 

𝑦0 − 𝛿1 and 𝑦0 + 𝛿2 of [𝑓(𝑎), 𝑓(𝑏)], where 𝛿1 > 0, 𝛿2 > 0, and 𝑓(𝑥0 − 𝜀) = 𝑦0 − 𝛿1, and 

𝑓(𝑥0 + 𝜀) = 𝑦0 + 𝛿2. If 𝛿 = 𝑚𝑖𝑛{𝛿1, 𝛿2} > 0, then, ∀𝑦 ∈ (𝑦0 − 𝛿, 𝑦0 + 𝛿), it holds that 

𝑦0 − 𝛿1 < 𝑦 < 𝑦0 + 𝛿2. In this case, since 𝑓−1 is strictly increasing on 𝑓(𝐼), we have that 

 

𝑥0 − 𝜀 = 𝑓
−1(𝑦0 − 𝛿1) < 𝑓

−1(𝑦) < 𝑓−1(𝑦0 + 𝛿2) = 𝑥0 + 𝜀, 

 

so that 

 

|𝑓−1(𝑦) − 𝑓−1(𝑦0)| = |𝑓
−1(𝑦) − 𝑥0| < 𝜀, 

 

namely, 𝑓−1 is continuous at 𝑦0. 

In order to show that 𝑓−1 is continuous at the endpoint 𝑓(𝑎) of 𝐽, we choose 𝜀 ≤ 𝑏 − 𝑎, 

and we set 𝑓(𝑎) + 𝛿2 = 𝑓(𝑎 + 𝜀). Then, ∀𝑦 ∈ [𝑓(𝑎), 𝑓(𝑎) + 𝛿2), it holds that  

 

𝑓(𝑎) ≤ 𝑦 < 𝑓(𝑎) + 𝛿2 ≤ 𝑓(𝑏). 
 

Hence, 𝑎 = 𝑓−1(𝑓(𝑎)) ≤ 𝑓−1(𝑦) < 𝑎 + 𝜀,  

 

so that |𝑓−1(𝑦) − 𝑓−1(𝑓(𝑎))| < 𝜀, 

 

namely, 𝑓−1 is continuous from the right of 𝑓(𝑎). Similarly, we can show that 𝑓−1 is 

continuous from the left of 𝑓(𝑏).■ 

 

Piecewise Continuity: A function is called “piecewise continuous” (or “sectionally 

continuous”) over [𝑎, 𝑏] if [𝑎, 𝑏] can be subdivided into finitely many intervals over each of 

which the function is continuous and has finite right-hand and left-hand limits. A piecewise 

continuous function has only finitely many points of discontinuity. Thus, a function 

𝑓: [𝑎, 𝑏] → ℝ is called piecewise continuous if there exist 𝑎 = 𝑥0 < 𝑥1 < 𝑥2 < ⋯ < 𝑥𝑛 = 𝑏 

so that 

 

i. 𝑓 is continuous on (𝑥𝑘, 𝑥𝑘+1) for all 𝑘 = 0,1,2,… , 𝑛 − 1, and 

ii. the limits 𝑙𝑖𝑚𝑥→𝑥𝑘+1
− 𝑓(𝑥) and 𝑙𝑖𝑚𝑥→𝑥𝑘

+𝑓(𝑥) exist and are finite for all 𝑘 =

0,1,2,… , 𝑛 − 1. 
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Uniform Continuity: A function 𝑓 is called “uniformly continuous” over (or on) its 

domain 𝐷𝑓 ⊆ ℝ if the following condition is satisfied: 

 

∀𝜀 > 0, ∃𝛿 > 0||𝑥1 − 𝑥2| < 𝛿 ⇒ |𝑓(𝑥1) − 𝑓(𝑥2)| < 𝜀, 𝑓𝑜𝑟 𝑎𝑛𝑦 𝑥1, 𝑥2 ∈ 𝐷𝑓.  

 

Example: For instance, let 𝑓(𝑥) = 𝑥2 ∀𝑥 ∈ [0,1]. Then 𝑓(𝑥) is uniformly continuous 

over [0,1]. In order to prove the uniform continuity of this function, we must prove the 

following: 

 

∀𝜀 > 0, ∃𝛿 > 0|∀𝑥1, 𝑥2 ∈ [0,1], |𝑥1 − 𝑥2| < 𝛿 ⇒ |𝑥1
2 − 𝑥2

2| < 𝜀. 

 

We have: |𝑥1
2 − 𝑥2

2| = |𝑥1 − 𝑥2||𝑥1 + 𝑥2| ≤ 2|𝑥1−𝑥2| < 2𝛿, 

 

which is less than 𝜀 if we choose 𝛿 =
𝜀

2
. 

 

Remark: In case of continuity, 𝛿 depends on both 𝜀 and 𝑥 = 𝑎 (as mentioned earlier, a 

function 𝑓 is continuous at 𝑥 = 𝑎 ∈ 𝐷𝑓 if and only if, ∀𝜀 > 0, ∃𝛿 > 0||𝑥 − 𝑎| < 𝛿 ⇒

|𝑓(𝑥) − 𝑓(𝑎)| < 𝜀), but, in case of uniform continuity, 𝛿 depends only on 𝜀, and it remains 

uniform for every point belonging to 𝐷𝑓. Continuity pertains to the behavior of a function at a 

point, namely, it characterizes the local behavior of a function. On the other hand, uniform 

continuity is established on a set, and, therefore, it is a global property of a function. Hence, 

in order to be more easily and more emphatically distinguished from uniform continuity, 

continuity is often referred to as “pointwise continuity” (and a continuous function is called 

“pointwise continuous” to be more easily and more emphatically distinguished from a 

uniformly continuous function). 

 

Theorem444: If a function 𝑓:𝑋 → ℝ is uniformly continuous on 𝑋, then it is also 

pointwise continuous on 𝑋; but the converse is not necessarily true.  

 

Proof: Let 𝑓: 𝑋 → ℝ be uniformly continuous on 𝑋, so that,  

 

∀𝜀 > 0, ∃𝛿 > 0||𝑓(𝑥1) − 𝑓(𝑥2)| < 𝜀 𝑤ℎ𝑒𝑛𝑒𝑣𝑒𝑟 |𝑥1 − 𝑥2| < 𝛿, ∀𝑥1, 𝑥2 ∈ 𝑋. 

 

Let 𝑥2 = 𝑎, so that 

 

|𝑓(𝑥1) − 𝑓(𝑎)| < 𝜀 𝑤ℎ𝑒𝑛𝑒𝑣𝑒𝑟 |𝑥1 − 𝑎| < 𝛿. 

 

Hence, 𝑓: 𝑋 → ℝ is pointwise continuous at 𝑥 = 𝑎. Because 𝑎 is an arbitrary point, 𝑓 is 

pointwise continuous at every point of 𝑋. 

In order to prove that pointwise continuity does not necessarily imply uniform continuity, 

it suffices to give an example. For instance, if 𝑓: (0,1) → ℝ is defined by 𝑓(𝑥) =
1

𝑥
, then 

 
444 Ibid. 
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𝑓(𝑥)is continuous on (0,1), but is not uniformly continuous on (0,1). In order to show that 

𝑓(𝑥) =
1

𝑥
 is not uniformly continuous on (0,1), we have to show that 

 

∃𝜀 > 0|∀𝛿 > 0, ∃𝑥1, 𝑥2 ∈ (0,1)||𝑥1 − 𝑥2| < 𝛿 ⇒ |𝑓(𝑥1) − 𝑓(𝑥2)| ≥ 𝜀. 

 

For 𝜀 = 1, and, for any 𝛿 ∈ (0,1), if we choose 𝑥1 = 𝛿 and 𝑥2 =
𝛿

2
, we obtain  

 

|𝑥1 − 𝑥2| =
𝛿

2
< 𝛿, |𝑓(𝑥1) − 𝑓(𝑥2)| = |

1

𝑥1
−

1

𝑥2
| =

1

𝛿
> 1. 

 

Hence, 𝑓 is not uniformly continuous.■ 

 

Theorem445: If a function 𝑓: [𝑎, 𝑏] → ℝ is continuous on the closed interval [𝑎, 𝑏], then it 

is uniformly continuous on [𝑎, 𝑏]. 

 

Proof: Because 𝑓 is continuous on [𝑎, 𝑏], then [𝑎, 𝑏] can be divided into finitely many 

subintervals such that 

 

|𝑓(𝑥1) − 𝑓(𝑥2)| <
𝜀

2
, 𝜀 > 0, 

 

where 𝑥1 and 𝑥2 belong to the same subinterval. Let 𝛿1, 𝛿2, … , 𝛿𝑚 be the lengths of the 

subintervals into which [𝑎, 𝑏] has been divided, and let 𝛿 = 𝑚𝑖𝑛{𝛿1, 𝛿2, … , 𝛿𝑚}. Then 𝛿 > 0. 

We choose two elements 𝑥1 and 𝑥2 of [𝑎, 𝑏] such that |𝑥1 − 𝑥2| < 𝛿. Then there are two 

possibilities: either 𝑥1 and 𝑥2 belong to the same interval, or they belong to two consecutive 

subintervals, namely, two subintervals with a common endpoint. If 𝑥1 and 𝑥2 belong to the 

same interval, then  

 

|𝑓(𝑥1) − 𝑓(𝑥2)| <
𝜀

2
< 𝜀, 

 

and, therefore, 𝑓 is uniformly continuous on [𝑎, 𝑏]. If 𝑥1 and 𝑥2 belong to two consecutive 

subintervals, then let the common endpoint of the two subintervals to which 𝑥1 and 𝑥2 belong 

be 𝑘, so that 

 

|𝑓(𝑥1) − 𝑓(𝑘)| <
𝜀

2
&|𝑓(𝑥2) − 𝑓(𝑘)| <

𝜀

2
. 

 

Then |𝑓(𝑥1) − 𝑓(𝑘)| ≤ |𝑓(𝑥1) − 𝑓(𝑘)| + |𝑓(𝑘) − 𝑓(𝑥2)| <
𝜀

2
+
𝜀

2
< 𝜀, 

 

so that 𝑓 is uniformly continuous on [𝑎, 𝑏].■  

 

Theorem446: Let 𝑋 ⊆ ℝ and 𝑓:𝑋 → ℝ. If there is a constant 𝑘 > 0 such that |𝑓(𝑥1) −

𝑓(𝑥2)| ≤ 𝑘|𝑥1 − 𝑥2| ∀𝑥1, 𝑥2 ∈ 𝑋, then we say that 𝑓 satisfies a “Lipschitz condition.” If 

𝑓:𝑋 → ℝ satisfies a Lipschitz condition, then it is uniformly continuous on 𝑋. 

 
445 Ibid. 
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Proof: We must prove that 

 

∀𝜀 > 0, ∃𝛿 > 0|∀𝑥1, 𝑥2 ∈ 𝑋, |𝑥1 − 𝑥2| < 𝛿 ⇒ |𝑓(𝑥1) − 𝑓(𝑥2)| < 𝜀. 

 

Because 𝑓: 𝑋 → ℝ satisfies a Lipschitz condition, if we choose 𝛿 =
𝜀

𝑘
, then, when 

|𝑥1 − 𝑥2| < 𝛿, we obtain |𝑓(𝑥1) − 𝑓(𝑥2)| < 𝑘 ∙
𝜀

𝑘
= 𝜀.■ 

 

Remark: The converse need not hold: For instance, the function 𝑓(𝑥) = √𝑥 with 𝑥 ∈

[0,2] is uniformly continuous (since it is continuous on a closed interval), but it does not 

satisfy a Lipschitz condition, since there exists no 𝑘 > 0 such that |√𝑥| ≤ 𝑘|𝑥| ∀𝑥 ∈ [0,2]. 

 

 

2.8. COMPLEX NUMBERS447 
 

If we adjoin to the real field ℝ a root 𝑖 of the polynomial 𝑥2 + 1 = 0, which is 

irreducible to ℝ, we obtain the “field of complex numbers” ℂ ≡ ℝ(𝑖). In other words, a (2-

dimensional) number of the form 𝑎 + 𝑏𝑖, where 𝑎, 𝑏 ∈ ℝ and 𝑖 = √−1, is called a “complex 

number”; the number 𝑎 is called the “real part” of 𝑎 + 𝑏𝑖, 𝑏 is called the “imaginary part” of 

𝑎 + 𝑏𝑖, and 𝑖 = √−1 is called the “imaginary unit.”  

In his book Algebra, published in 1673, the English mathematician and clergyman John 

Wallis (Savilian Professor of Geometry at Oxford) argued that “imaginary quantities” arise 

from the supposed square root of a negative number. Moreover, because the product of two 

square roots each of which has a negative radicand gives a negative number, Wallis became 

increasingly conscious of the need for a scientific inquiry into the system of the negative 

numbers. In particular, Wallis observed that there is a relation between the negative sign of a 

number and the notion of direction, in the sense of advancing (moving forward) and retreating 

(moving backward). In his Algebra, Wallis mentions that the square root signifies “a Mean 

Proportional between a Positive and a Negative Quantity,” and he exemplifies the algebraic 

significance of “imaginary quantities” as follows: 

 

For like as √𝑏𝑐 signifies a Mean Proportional between +𝑏 and +𝑐; or between – 𝑏 and 

– 𝑐 (either of which, by Multiplication, makes +𝑏𝑐): So doth √−𝑏𝑐 signify a Mean 

Proportional between +𝑏 and – 𝑐, or between – 𝑏 and +𝑐; either of which being Multiplied, 

makes – 𝑏𝑐.448 

 

Furthermore, in his Algebra, Wallis exemplifies the geometric significance of “imaginary 

quantities” as shown in Figure 2.16, arguing as follows: if, for instance, we move forward 

from point 𝐴, then we take 𝐴𝐵 = +𝑏, and forward from thence, 𝐵𝐶 = +𝑐, making 𝐴𝐶 =

+𝐴𝐵 + 𝐵𝐶 = +𝑏 + 𝑐, the diameter of a circle, so that 𝐵𝑃 = √+𝑏𝑐 is “the Sine, or Mean 

Proportional”; whereas, if we move backward from point 𝐴, then we take 𝐴𝐵 = −𝑏, and then 

 
446 Ibid. 
447 See: Andreescu and Andrica, Complex Numbers from A to . . . Z. 
448 Wallis, “On Imaginary Numbers,” p. 48.  
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forward from that 𝐵, 𝐵𝐶 = +𝑐, making 𝐴𝐶 = −𝐴𝐵 + 𝐵𝐶 = −𝑏 + 𝑐, the diameter of a circle, 

so that 𝐵𝑃 = √−𝑏𝑐 is “the Tangent, or Mean Proportional.”449 

 

 

Figure 2.16. The Geometric Significance of Imaginary Numbers. 

In 1833, at the Royal Irish Academy, the Irish mathematician and astronomer Sir William 

Rowan Hamilton450 presented the complex numbers as ordered pairs of real numbers, thus 

denoting a complex number by an ordered pair (𝑎, 𝑏), and denoting the imaginary unit by 𝑖 =

√−1, so that 𝑖2 = (0,1) ∙ (0,1) = (−1,0) = −1. In fact, as Hamilton has originally shown, 

the complex number system ℂ is the set ℝ×ℝ with operations of addition and multiplication 

defined as follows: 

 

i. Addition of complex numbers: (𝑎, 𝑏) + (𝑐, 𝑑) = (𝑎 + 𝑐, 𝑏 + 𝑑), 

ii. Multiplication of complex numbers: (𝑎, 𝑏) · (𝑐, 𝑑) = (𝑎𝑐 − 𝑏𝑑, 𝑎𝑑 + 𝑏𝑐). 

 

Remarks: The zero of ℂ is (0,0), and the unit of ℂ is (1,0). If (𝑎, 𝑏) ∈ ℂ, then, if we set 

𝑖 = (0,1), and if we identify the complex numbers whose second element is zero with the 

corresponding real numbers, then we obtain (𝑎, 𝑏) = (𝑎, 0) + (0, 𝑏) = (𝑎, 0) + (𝑏, 0) ·

(0,1) = 𝑎 + 𝑏𝑖, thus obtaining the familiar notation for complex numbers. The proof of the 

fact that ℂ is a field follows directly from the definition of a field (see section 2.2.4).  

In simpler notation, for any complex numbers: 

 

(𝑎 + 𝑏𝑖) + (𝑐 + 𝑑𝑖) = (𝑎 + 𝑐) + (𝑏 + 𝑑)𝑖, 
(𝑎 + 𝑏𝑖) − (𝑐 + 𝑑𝑖) = (𝑎 − 𝑐) + (𝑏 − 𝑑)𝑖, 
(𝑎 + 𝑏𝑖)(𝑐 + 𝑑𝑖) = (𝑎𝑐 − 𝑏𝑑) + (𝑎𝑑 + 𝑏𝑐)𝑖, and 
(𝑎+𝑏𝑖)

(𝑐+𝑑𝑖)
=

(𝑎𝑐+𝑏𝑑)+(𝑏𝑐−𝑎𝑑)𝑖

𝑐2+𝑑2
. 

 

The (complex) “conjugate” of 𝑎 + 𝑏𝑖 is 𝑎 − 𝑏𝑖, and the conjugate of a complex number 𝑧 

is denoted by 𝑧̅. The conjugate has the following properties451: 

 

i. 𝑧 · 𝑧̅ ∈ ℝ. 

ii. 𝑧 = 𝑧̅ ⇔ z ∈ ℝ. 

iii. 𝑧 + 𝑤̅̅ ̅̅ ̅̅ ̅̅ = 𝑧̅ + 𝑤̅. 

 
449 Ibid, p. 49. 
450 Hamilton, “On Quaternions.”  
451 See: Andreescu and Andrica, Complex Numbers from A to . . . Z. 
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iv. 𝑧 · 𝑤̅̅ ̅̅ ̅̅ = 𝑧̅ · 𝑤̅. 

v. 𝑧𝑛̅̅ ̅ = (𝑧̅)𝑛 ∀𝑛 ∈ ℕ. 

 

Let 𝐴 be the subfield of ℂ that consists of those complex numbers whose second element 

is zero; symbolically 

 

𝐴 = {(𝑥, 0)|𝑥 ∈ ℝ}. 

 

Then the function 𝑓 from ℝ onto 𝐴 defined by 

 

𝑓(𝑥) = (𝑥, 0) 

 

is an isomorphism of ℝ onto 𝐴. Hence, the real field can be considered as a subfield of the 

complex field (see section 2.2.4).  

Given that 𝑖2 = (0,1)2 = (−1,0) = −1, it follows that ℂ cannot be an ordered field, 

because, in an ordered field, the square of any non-zero element is positive. Even though ℂ is 

not an ordered field, we can define an absolute value in the complex field that has the same 

basic properties as the absolute value in the real field. The (complex) “modulus,” that is, the 

“absolute value,” of the complex number 𝑧 = (𝑥, 𝑦) is defined as follows:  

 

|𝑧| = √𝑥2 + 𝑦2. 

 

The absolute value |𝑧| has the following properties452: 

 

i. |𝑧| ≥ 0; |𝑧| = 0 ⇔ 𝑧 = 0. 

ii. |𝑧1𝑧2| = |𝑧1||𝑧2|. 

iii. |𝑧1 + 𝑧2| ≤ |𝑧1| + |𝑧2|. 

 

If we consider the complex numbers 𝑧1 = (𝑥1, 𝑦1) and 𝑧2 = (𝑥2, 𝑦2) to be the points in 

the Euclidean plane whose coordinates are (𝑥1, 𝑦1) and (𝑥2, 𝑦2), respectively, then |𝑧1 − 𝑧2| 

is the distance between the points 𝑧1 and 𝑧2.  

 

The trigonometric form of a complex number453: A complex number 𝑧 = 𝑎 + 𝑏𝑖 is 

represented on the complex plane by a point 𝑀 with coordinates 𝑎 and 𝑏, as shown in Figure 

2.17. The straight line segment 𝑂𝑀, joining the point 𝑀 to the origin 𝑂(0,0), is the “radius 

vector” of the point 𝑀, and its length, namely, the “modulus,” or “absolute value,” of the 

complex number 𝑧 = 𝑎 + 𝑏𝑖 is |𝑧| = √𝑎2 + 𝑏2. The angle 𝜑 that the radius vector of the 

point 𝑀(𝑎, 𝑏) makes with the positive horizontal axis (Figure 2.17) is the “argument,” or 

“amplitude,” of the complex number 𝑧 = 𝑎 + 𝑏𝑖. If 𝜑 is the argument of the complex number 

𝑧 = 𝑎 + 𝑏𝑖, then 𝜑 + 2𝜋𝑘 is also the argument of 𝑧 = 𝑎 + 𝑏𝑖 for any integral value of 𝑘, but, 

in order for the angle 𝜑 to be defined uniquely, we set −𝜋 < 𝜑 ≤ 𝜋. As shown in Figure 

2.17, the radius vector of the point 𝑀(𝑎, 𝑏), which represents a complex number 𝑧 = 𝑎 + 𝑏𝑖, 

 
452 Ibid. 
453 Ibid.  
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intersects the unit circle at the point 𝑃. For instance, if 𝑧 = −5𝑖, then this complex number is 

represented by the point 𝑀(0,−5), as shown in Figure 2.17, and the radius vector of 

𝑀(0,−5) makes an angle −
𝜋

2
 with the positive direction of the 𝑥-axis, which implies that the 

argument of 𝑧 = −5𝑖 is −
𝜋

2
.  

As I explained in section 2.2.6, the point 𝑃 illustrated in Figure 2.17 has coordinates 

𝑐𝑜𝑠𝜑 and 𝑠𝑖𝑛𝜑. Moreover, because 𝑂𝑃 = 1, and 𝑂𝑀 = |𝑧|, the coordinates of 𝑀(𝑎, 𝑏) are 

𝑎 = |𝑧|𝑐𝑜𝑠𝜑 and 𝑏 = |𝑧|𝑠𝑖𝑛𝜑. Therefore, we obtain the trigonometric form of a complex 

number: 

 

𝑧 = 𝑎 + 𝑏𝑖 = |𝑧|𝑐𝑜𝑠𝜑 + |𝑧|𝑠𝑖𝑛𝜑 ∙ 𝑖 = |𝑧|(𝑐𝑜𝑠𝜑 + 𝑖𝑠𝑖𝑛𝜑). 

 

De Moivre’s Formula454: (𝑐𝑜𝑠𝜑 + 𝑖𝑠𝑖𝑛𝜑)𝑛 = 𝑐𝑜𝑠(𝑛𝜑) + 𝑖𝑠𝑖𝑛(𝑛𝜑), 

 

which can be easily proved by mathematical induction. 

 

Corollary: If 𝑧 = |𝑧|(𝑐𝑜𝑠𝜑 + 𝑖𝑠𝑖𝑛𝜑), then 

 

𝑧𝑛 = |𝑧|𝑛(𝑐𝑜𝑠(𝑛𝜑) + 𝑖𝑠𝑖𝑛(𝑛𝜑)). 

 

Euler’s Formula455:𝑒𝑖𝜑 = 𝑐𝑜𝑠𝜑 + 𝑖𝑠𝑖𝑛𝜑, 

 

where 𝑒 is the base of the natural logarithm, 𝑖 = √−1, as shown in Figure 2.17, so that, given 

a real number 𝜑, we can plot the complex number 𝑒𝑖𝜑 on the unit circle, since 𝑒𝑖𝜑 = 𝑐𝑜𝑠𝜑 +

𝑖𝑠𝑖𝑛𝜑. When 𝜑 = 𝜋, then Euler’s formula reduces to 

 

𝑒𝑖𝜋 + 1 = 0, 

 

which is known as Euler’s identity.  

 

 

Figure 2.17. Euler’s Formula. 

Let 𝑓 be an one-to-one mapping of the extended real line into ℝ defined as follows: 

 

𝑓(−∞) = −1, 

 
454 Ibid.  
455 Ibid. 
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𝑓(𝑥) =
𝑥

1+|𝑥|
, 𝑥 ∈ ℝ, 

𝑓(+∞) = 1. 

 

Then the function 

 

𝑑(𝑥, 𝑦) = |𝑓(𝑥) − 𝑓(𝑦)| ∀𝑥, 𝑦 ∈ ℝ ∪ {−∞,+∞} 

 

is a metric on the extended real line, and the metric space of the extended real line is denoted 

by ℝ̅. Notice that ℝ̅ is isometric to the metric space that consists of the closed interval [−1,1] 

with the Euclidean metric 𝑑𝐸 (for the concept of an “isometry,” see section 2.2.6). This metric 

space, which can be simply denoted by [−1,1], is called a subspace of ℝ.  

By analogy, the complex plane ℂ can be extended by adjoining a point called infinity and 

denoted by ∞. Let ℂ̅ ≡ ℂ ∪ {∞}. A familiar model of the ℂ̅ is known as the “Riemann 

sphere,” named after the great nineteenth-century German mathematician Bernhard Riemann. 

Arguably, the 𝑛-dimensional sphere is the simplest non-Euclidean geometry. However, notice 

that Euclidean geometry is a local geometry on the sphere (in regions where the curvature of 

the sphere tends to zero), and the geometry on the sphere (Riemannian geometry) is a 

generalization of Euclidean geometry.  

By the term “stereographic projection,” we mean a mapping from the sphere to the 

plane.456 It is obtained by looking at the north pole of the sphere and drawing straight lines 

from the north pole down to the plane. Each such line hits the sphere once, and it also hits the 

plane once, and, therefore, the mapping from the sphere to the plane maps the point at which 

the line hits the sphere to the point at which the line hits the plane, as shown in Figure 2.18. 

 

 

Figure 2.18. Stereographic Projection. 

Let 𝑆𝑛 denote the unit 𝑛-sphere in the Euclidean space ℝ𝑛+1. A “great circle” of 𝑆𝑛 is the 

shortest distance between two points on the surface 𝑆𝑛. One way to represent 𝑆𝑛 is the 

stereographic projection of 𝑆𝑛 minus the north pole (0,0,… ,0,1) onto ℝ𝑛 ⊂ ℝ𝑛+1. Such a 

projection is bijective and preserves angles. Moreover, we can represent 𝑆𝑛 by 

parametrization.  

The Riemann sphere 𝑆2 can be visualized as the unit 2-sphere defined by 𝑆2 =

{(𝑥1, 𝑥2, 𝑥3)|𝑥1
2 + 𝑥2

2 + 𝑥3
2 = 1} in the 3-dimensional Euclidean space ℝ3. Let us identify the 

 
456 See: Pedoe, Geometry. 
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plane 𝑥3 = 0 with the complex plane ℂ via (𝑥1, 𝑥2, 0) ↔ 𝑥1 + 𝑥2𝑖. Let 𝑁 = (0,0,1) denote 

the north pole of the unit 2-sphere 𝑆2. If 𝑃 is any point belonging to 𝑆2 with 𝑁 ≠ 𝑃, then we 

obtain a complex number 𝜁𝑁(𝑃) by intersecting line 𝑁𝑃 with the complex plane ℂ ⊂ ℝ3. The 

mapping 𝑃 → 𝜁𝑁(𝑃) from the unit 2-sphere 𝑆2 minus the north pole (0,0,1) to the complex 

plane ℂ (corresponding to the plane 𝑥3 = 0) is the “stereographic projection” of the unit 2-

sphere 𝑆2 through the north pole. This mapping is invertible, and its inverse is obtained by 

considering a complex number 𝑧 and the line through 𝑁 and 𝑧, and then taking the 

intersection point of this line with 𝑆2 that is not 𝑁. The inverse mapping is also called 

stereographic projection. Let 𝑃 = (𝑥1, 𝑥2, 𝑥3) ∈ 𝑆
2 with 𝑃 ≠ 𝑁, so that the parametric form 

of the line 𝑁𝑃 is (𝑘𝑥1, 𝑘𝑥2, 𝑘𝑥3 + (1 − 𝑘)), and it intersects ℂ when 𝑘𝑥3 + (1 − 𝑘) = 0, that 

is, when 𝑘 = 1/(1 − 𝑥3), which is defined, because the fact that 𝑃 ≠ 𝑁 implies that 𝑥3 ≠ 1. 

Therefore,  

 

𝜁𝑁(𝑃) =
𝑥1

1−𝑥3
+

𝑥2

1−𝑥3
𝑖. 

 

For the inverse mapping, consider 𝑧 = 𝑥 + 𝑖𝑦 ∈ ℂ. If 𝜁𝑁
−1(𝑧) = (𝑥1, 𝑥2, 𝑥3), then 𝑥1/(1 −

𝑥3) = 𝑥 and 𝑥2/(1 − 𝑥3) = 𝑦, so that 𝑥1 = 𝑥(1 − 𝑥3) and 𝑥2 = 𝑦(1 − 𝑥3). Given that 

𝜁𝑁
−1(𝑧) lies on the unit 2-sphere, it holds that 𝑥1

2 + 𝑥2
2 + 𝑥3

2 = 1, and, therefore, 

 

𝑥2(1 − 𝑥3)
2 + 𝑦2(1 − 𝑥3)

2 + 𝑥3
2 = 1 

⇒ (𝑥2 + 𝑦2 + 1)𝑥3
2 − 2(𝑥2 + 𝑦2)𝑥3 + (𝑥

2 + 𝑦2 − 1) = 0. 

 

One solution is 𝑥3 = 1, and it corresponds to the fact that the line through 𝑁 and 𝑧 

intersects the unit 2-sphere at 𝑁, and, for the other point of intersection, it holds that 

 

𝑥3 =
𝑥2+𝑦2−1

𝑥2+𝑦2+1
=

|𝑧|2−1

|𝑧|2+1
. 

 

Thus, 

 

𝑥1 = 𝑥(1 − 𝑥3) =
2𝑥

|𝑧|2+1
=

𝑧+𝑧̅

|𝑧|2+1
, 

𝑥2 = 𝑦(1 − 𝑥3) =
2𝑦

|𝑧|2+1
=

𝑧−𝑧̅

𝑖(|𝑧|2+1)
, 

 

and, given these definitions of 𝑥1, 𝑥2, and 𝑥3, we obtain the following formula: 

 

𝜁𝑁
−1(𝑧) = (

𝑧+𝑧̅

|𝑧|2+1
,

𝑧−𝑧̅

𝑖(|𝑧|2+1)
,
|𝑧|2−1

|𝑧|2+1
). 

 

Notice that the stereographic projection 𝜁𝑁(𝑃) will cover the whole sphere except the 

north pole (0,0,1), and the stereographic projection 𝜁𝑁
−1(𝑧) will cover the whole sphere 

except the south pole (0,0,−1). Hence, one needs two complex planes, one for each 

projection, which are “glued” back-to-back at 𝑥3 = 0. If 𝑃 → 𝑁, namely, if 𝑃 approaches 𝑁, 

then  
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|𝜁𝑁(𝑃)|
2 =

𝑥1
2+𝑥2

2

(1−𝑥3)
2 =

1−𝑥3
2

(1−𝑥3)
2 =

1+𝑥3

1−𝑥3
→ ∞. 

 

Consequently, we can extend 𝜁𝑁 continuously to all of the unit 2-sphere 𝑆2 by 

introducing a point at infinity, denoted by ∞, and setting 𝜁𝑁(𝑁) = ∞. In this way, we obtain 

the extended complex plane ℂ̅ = ℂ ∪ {∞}, and the stereographic projection 𝜁𝑁: 𝑆
2 → ℂ̅ is 

defined as above. When we consider 𝑆2 as being identified with ℂ̅, we call 𝑆2 the “Riemann 

sphere.”  

Consequently 

 

𝑓(𝑧) =
1

1+|𝑧|2
(𝑥, 𝑦, |𝑧|2), 𝑧 ∈ ℂ and 𝑓(∞) = (0,0,1), 

 

then 𝑓 is an one-to-one mapping of the extended complex plane ℂ̅ onto the sphere 𝑆2 =

{(𝑥1, 𝑥2, 𝑥3)|𝑥1
2 + 𝑥2

2 + 𝑥3
2 = 𝑥3} in the 3-dimensional Euclidean space ℝ3. The metric 

defined by 𝑑(𝑧1, 𝑧2) = |𝑓(𝑧1) − 𝑓(𝑧2)| is said to be the “chordal metric,” determining the 

metric space ℂ̅. If this is the case, then 

 

𝑑(𝑧1, 𝑧2) =
|𝑧1−𝑧2|

(1+|𝑧1|
2)
1
2+(1+|𝑧2|

2)
1
2

,  𝑧1, 𝑧2 ∈ ℂ, and 

𝑑(𝑧,∞) =
1

(1+|𝑧|2)
1
2

, 𝑧 ∈ ℂ.  

 

A thorough study of the chordal metric was made by the renowned Greek-German 

mathematician Constantine Carathéodory (1873–1950).457 

The usefulness of the complex numbers derives from the fact that every non-constant 

polynomial over ℂ can be factored into a product of linear factors. This fact is known as the 

Fundamental Theorem of Algebra. Because the complex space ℂ can be identified with ℝ2 as 

a metric space, the Heine–Borel Theorem (proven in section 2.3.6) applies to ℂ also. Thus, we 

can prove that the complex field is algebraically closed, meaning that any non-constant 

polynomial over ℂ can be factored into a product of linear factors; symbolically: If  

 

𝑝(𝑧) = ∑ 𝑎𝑘𝑧
𝑘𝑛

𝑘=0 , where 𝑎𝑘 ∈ ℂ, 𝑛 ≥ 1, and 𝑎𝑛 ≠ 0,  

 

then, according to the Fundamental Theorem of Algebra,  

 

𝑝(𝑧0) = 0 for some 𝑧0 ∈ ℂ,  

 

and, therefore, 𝑝(𝑧) = (𝑧 − 𝑧0)𝑞(𝑧), where 𝑞 is a polynomial of degree 𝑛 − 1. If 𝑛 − 1 ≥ 1, 

then 𝑞(𝑧) has a zero (complex root), and, hence, it has a linear factor. In this way, we can 

show that any non-constant polynomial over ℂ can be written as a product of linear factors.  

The Fundamental Theorem of Algebra (Euler–Gauss)458: If 𝑝(𝑧) is a non-constant 

polynomial over ℂ, then 𝑝(𝑧0) = 0 for some 𝑧0 ∈ ℂ. 

 
457Carathéodory, Funktionentheorie.  
458 See: Barbeau, Polynomials; Ebbinghaus, Hermes, Hirzebruch, Koecher, Mainzer, Neukirch, Prestel, and 

Remmert, Numbers; Haaser and Sullivan, Real Analysis. In 1608, in his Arithmetica Philosophica, Peter Roth 
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Proof: Let 𝑝(𝑧) = ∑ 𝑎𝑘𝑧
𝑘𝑛

𝑘=0 , 𝑛 ≥ 1, and 𝑎𝑛 ≠ 0, and let 

 

𝑚 = 𝑖𝑛𝑓{|𝑝(𝑧)||𝑧 ∈ ℂ}. 

 

Given that |𝑝(𝑟𝑒𝑖𝑥)| ≥ 𝑟𝑛(|𝑎𝑛| − 𝑟
−1|𝑎𝑛−1| − ⋯− 𝑟

−𝑛|𝑎0|),|𝑝(𝑟𝑒
𝑖𝑥)| becomes 

infinitely large as 𝑟 tends to infinity. Therefore, there exists a real number 𝑠 such that 

|𝑝(𝑟𝑒𝑖𝑥)| ≥ 𝑚 + 1 whenever 𝑟 > 𝑠. If 𝐴 = {𝑟𝑒𝑖𝑥|𝑟 ≤ 𝑠}, then 𝐴 is compact in the metric 

space ℂ, and 𝑚 = 𝑖𝑛𝑓{|𝑝(𝑧)||𝑧 ∈ 𝐴}. Because |𝑝| is a continuous real-valued function on 𝐴, 

then |𝑝| has a minimum value in 𝐴 (see section 2.7). Hence, ∃𝑧0 ∈ 𝐴||𝑝(𝑧0)| = 𝑚.  

 

If 𝑚 = 0, then the theorem is true. 

If 𝑚 ≠ 0, then let 𝑞(𝑧) =
𝑝(𝑧+𝑧0)

𝑝(𝑧0)
, 𝑧 ∈ ℂ,  

 

so that 𝑞 is a polynomial of degree 𝑛, and |𝑞(𝑧)| ≥ 1 ∀𝑧 ∈ ℂ.  (∗) 

 

Because 𝑞(0) = 1, the polynomial 𝑞(𝑧) can be written as follows: 

 

𝑞(𝑧) = 1 + 𝑏𝑘𝑧
𝑘 +⋯+ 𝑏𝑛𝑧

𝑛, 

 

where 𝑘 is the smallest positive integer ≤ 𝑛 such that 𝑏𝑘 ≠ 0. Because the absolute value of 

−
|𝑏𝑘|

𝑏𝑘
 is equal to 1, there exists an 𝑥0 ∈ [0,

2𝜋

𝑘
) such that 

 

𝑒𝑖𝑘𝑥0 = −
|𝑏𝑘|

𝑏𝑘
. 

 

Hence,  

 

𝑞(𝑟𝑒𝑖𝑥0) = 1 + 𝑏𝑘𝑟
𝑘𝑒𝑖𝑘𝑥0 + 𝑏𝑘+1𝑟

𝑘+1𝑒𝑖(𝑘+1)𝑥0 +⋯+ 𝑏𝑛𝑟
𝑛𝑒𝑖𝑛𝑥0 

= 1 − 𝑟𝑘|𝑏𝑘| + 𝑏𝑘+1𝑟
𝑘+1𝑒𝑖(𝑘+1)𝑥0 +⋯+ 𝑏𝑛𝑟

𝑛𝑒𝑖𝑛𝑥0. 

 

Then, if 𝑟𝑘|𝑏𝑘| < 1, we obtain 

 

|𝑞(𝑟𝑒𝑖𝑥0)| ≤ 1 − 𝑟𝑘(|𝑏𝑘| − 𝑟|𝑏𝑘+1| −⋯− 𝑟
𝑛−𝑘|𝑏𝑛|).  

Consequently, for sufficiently small 𝑟, we obtain |𝑞(𝑟𝑒𝑖𝑥0)| < 1, which contradicts (∗). 

This contradiction implies that the assumption that 𝑚 ≠ 0 cannot hold, and that 𝑝(𝑧0) = 0.■ 

 

 

explicitly stated the Fundamental Theorem of Algebra in the following (equivalent) form: An 𝑛th-degree 

polynomial has 𝑛 roots. Moreover, in 1629, in his Invention Nouvelle en l’Algèbre, Albert Girard, stated that 

every algebraic equation has as many roots (solutions) as the exponent of the highest term indicates. Significant 

attempts at proving the theorem were made by Leonhard Euler (1749), Daviet de Foncenex (1759), Joseph-Louis 

Lagrange (1772), and Pierre-Simon de Laplace (1795). The first rigorous proof of this theorem was given by the 

German mathematician and physicist Johann Carl Friedrich Gauss in 1799, and, in 1816, Gauss published a 

second proof and a third one. 
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Number of Zeros Theorem459: Every polynomial of degree 𝑛 ≥ 1 has exactly 𝑛 complex 

zeros, where zeros of multiplicity 𝑘 are counted 𝑘 times. 

 

Proof: Let 𝑦 = 𝑝(𝑥) be a polynomial function of degree 𝑛 ≥ 1 with leading coefficient 

𝑎𝑛. Then the Fundamental Theorem of Algebra guarantees that 𝑦 = 𝑝(𝑥) has at least one 

complex zero, say 𝑐1. By the Factor Theorem (section 2.6), since 𝑐1 is a zero, 𝑥 − 𝑐1 is a 

factor of 𝑝(𝑥), and, therefore, 

 

𝑝(𝑥) = (𝑥 − 𝑐1)𝑞1(𝑥), 

 

where the polynomial𝑞1(𝑥) has degree 𝑛 − 1 and leading coefficient 𝑎𝑛. If the degree of 

𝑞1(𝑥) is at least 1, then once again the Fundamental Theorem of Algebra guarantees that 𝑦 =

𝑞1(𝑥) has at least one zero, say 𝑐2. Hence, 

 

𝑞1(𝑥) = (𝑥 − 𝑐2)𝑞2(𝑥), 

 

where the polynomial𝑞2(𝑥) has degree 𝑛 − 2 and leading coefficient 𝑎𝑛. Then 

 

𝑝(𝑥) = (𝑥 − 𝑐1)(𝑥 − 𝑐2)𝑞2(𝑥). 

 

Repeating this process 𝑛 times, until 𝑞𝑛(𝑥) = 𝑎𝑛, we realize that 𝑝(𝑥) can be factored 

into 𝑛 linear factors and written as follows:  

 

𝑝(𝑥) = 𝑎𝑛(𝑥 − 𝑐1)(𝑥 − 𝑐2)… (𝑥 − 𝑐𝑛), 

 

and, therefore, by the Factor Theorem, 𝑦 = 𝑝(𝑥) has 𝑛 zeros, namely, 𝑐1, 𝑐2, … , 𝑐𝑛. Moreover, 

no other number, say 𝑣, distinct from 𝑐1, 𝑐2, … , 𝑐𝑛 can be a zero of 𝑝(𝑥), because 

 

𝑝(𝑣) = 𝑎𝑛(𝑣 − 𝑐1)(𝑣 − 𝑐2)… (𝑣 − 𝑐𝑛) ≠ 0, 

 

since none of the factors is zero. As a conclusion, every polynomial function of degree 𝑛 ≥ 1 

has exactly 𝑛 (not necessarily distinct) complex zeros.■ 

 

Conjugate-Pair Theorem460: If a complex number 𝑎 + 𝑏𝑖 is a zero of a polynomial 

function of degree 𝑛 ≥ 1 with real number coefficients, then the conjugate 𝑎 − 𝑏𝑖 is also a 

zero. 

 

Proof: Let 

 

𝑝(𝑥) = 𝑎𝑛𝑥
𝑛 + 𝑎𝑛−1𝑥

𝑛−1 +⋯+ 𝑎1𝑥 + 𝑎0 

be a polynomial of degree 𝑛 ≥ 1 with real number coefficients. If 𝑧 = 𝑎 + 𝑏𝑖 is a zero of 𝑦 =

𝑝(𝑥), then 𝑝(𝑧) = 0, so that 

 

 
459 Ibid. 
460 Ibid. 
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0 = 𝑎𝑛𝑧
𝑛 + 𝑎𝑛−1𝑧

𝑛−1 +⋯+ 𝑎1𝑧 + 𝑎0. 

 

Then we take the conjugate of both sides of the equation: 

 

0 = 𝑎𝑛𝑧𝑛 + 𝑎𝑛−1𝑧𝑛−1 +⋯+ 𝑎1𝑧 + 𝑎0̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 

= 𝑎𝑛𝑧
𝑛̅̅ ̅ + 𝑎𝑛−1𝑧

𝑛−1̅̅ ̅̅ ̅̅ + ⋯+ 𝑎1𝑧̅ + 𝑎0 

= 𝑎𝑛(𝑧̅)
𝑛 + 𝑎𝑛−1(𝑧̅)

𝑛−1 +⋯+ 𝑎1𝑧̅ + 𝑎0. 

 

The last equation implies that 𝑝(𝑧̅) = 0, and, therefore, 𝑧̅ is also a zero of 𝑦 = 𝑝(𝑥).■ 

 

 

2.9. THE BIRTH AND THE DEVELOPMENT  

OF INFINITESIMAL CALCULUS 
 

In general, the term “calculus” means a set of objects endowed with rules for their 

manipulation. “Infinitesimal calculus,” in particular, is a branch of mathematical analysis that 

concerns itself with the systematic study of the concept of an “infinitely small function,” 

namely, a function of a variable 𝑥 whose absolute value, |𝑓(𝑥)|, becomes and remains 

smaller than any given number as a result of variation of 𝑥. The method of the 

“infinitesimals,” that is, the “infinitely small” quantities, was originally used by ancient Greek 

mathematicians, who determined areas and volumes by the so-called “method of exhaustion,” 

in which infinitesimal quantities are used in order to prove that two given magnitudes (or two 

ratios between given magnitudes) are equal.461 

The method of exhaustion was originally developed in the fifth century B.C. by the 

Athenian scholar Antiphon, and it was put in a rigorous scientific setting shortly afterwards 

by the Greek mathematician and astronomer Eudoxus of Cnidus, who used it in order to 

calculate areas and volumes. The Greek mathematician Euclid, the acknowledged father of 

“Euclidean geometry,” and the Greek mathematician, physicist, and engineer Archimedes 

made extensive use of the method of exhaustion in order to prove several mathematical 

propositions. For instance, Archimedes used the method of exhaustion in order to compute 

the area of a circle by approximating the area of a circle from above and below by 

circumscribing and inscribing regular polygons of an increasingly larger number of sides (so 

that sides become “infinitesimals,” namely, infinitely small): each of the polygons is a union 

of triangles, and, therefore, it is easily verified that the area of a circle of radius 𝑟 and 

circumference 𝐶 is equal to the area of a triangle whose altitude is equal to 𝑟 and whose base 

is equal to 𝐶 = 2𝜋𝑟. Then, given that the area of a triangle is equal to half of the product of 

its base and altitude, we obtain the formula for the computation of the area of a circle: 
1

2
(𝑟𝐶) =

1

2
(𝑟2𝜋𝑟) = 𝜋𝑟2. Moreover, Archimedes was able to calculate the length of various 

tangents to the spiral (i.e., to a curve emanating from a point moving farther away as it 

revolves around the point).  

In few words, infinitesimal calculus, or simply calculus, is concerned with two kinds of 

problem: (i) problems of tangents to curves, and (ii) problems of areas or volumes of regions. 

 
461 See: Kline, Mathematical Thought. 
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Thus, having studied both of these kinds of problem in a rigorous and systematic way, 

Archimedes can be considered to be the first pioneer of calculus. Some other great pioneers of 

calculus are the Flemish Jesuit and mathematician Gregory of Saint Vincent (1584–1667), the 

Dutch-French philosopher and mathematician René Descartes (1596–1650), the Italian 

mathematician and Jesuate Bonaventura Francesco Cavalieri (1598–1647), the French lawyer 

and amateur mathematician Pierre de Fermat (1607–65), the English clergyman and 

mathematician John Wallis (1616–1703), the English Christian theologian and mathematician 

Isaac Barrow (1630–77), and the Scottish mathematician and astronomer James Gregory 

(1638–75). 

Infinitesimal calculus, or simply calculus, is primarily aimed at solving problems 

concerning “change.” Thus, infinitesimal calculus is used in many fields, including physics, 

engineering, biology, economics, statistics, the mathematical modelling of social, political, 

military, and psychological problems, etc. In the seventeenth century, infinitesimal calculus 

was erected as a rigorous framework of science as a result of and in the context of the 

revolutionary achievements that took place in the scientific discipline of celestial mechanics, 

whose protagonists were Nicolaus Copernicus, Galileo Galilei, Tycho Brahe, Johannes 

Kepler, and Isaac Newton. In its contemporary rigorous form, calculus was formulated 

independently in England by Sir Isaac Newton and in Germany by Gottfried Wilhelm Leibniz 

in the last quarter of the seventeenth century, using the algebraic set-up and, especially, the 

Cartesian set-up, which had been introduced and developed by their predecessors. Calculus 

consists of “differential calculus” (which is concerned with problems of tangents to curves) 

and “integral calculus” (which is concerned with problems of areas or volumes of regions). 

 

 

2.10. DIFFERENTIAL CALCULUS 
 

2.10.1. Derivative 

 

Let a function 𝑦 = 𝑓(𝑥) be defined at points 𝑥 and 𝑥1. The difference 𝑥1 − 𝑥 is called the 

“increment of the argument,” and it is denoted by 𝛥𝑥. The difference 𝑓(𝑥1) − 𝑓(𝑥) is called 

the “increment of the function,” and it is denoted by 𝛥𝑓 or 𝛥𝑦. Hence, 𝛥𝑥 = 𝑥1 − 𝑥 ⇔ 𝑥1 =

𝑥 + 𝛥𝑥, and 𝛥𝑓 = 𝑓(𝑥1) − 𝑓(𝑥) = 𝑓(𝑥 + 𝛥𝑥) − 𝑓(𝑥). 

For instance, the increment of the function 𝑦 = 𝑥2 when changing from the point 𝑥 to the 

point 𝑥 + 𝛥𝑥 is 𝛥𝑓 = 𝑓(𝑥 + 𝛥𝑥) − 𝑓(𝑥) = (𝑥 + 𝛥𝑥)2 − 𝑥2 = 2𝑥𝛥𝑥 + (𝛥𝑥)2. Using this 

formula, we can compute the value of 𝛥𝑓 for any given 𝑥 and 𝛥𝑥. For instance, for 𝑥 = 3 and 

𝛥𝑥 = 0.1, 𝛥𝑓 = 0.61.  

Notice that, for any linear function 𝑦 = 𝑘𝑥 + 𝑏, it holds that 
𝛥𝑦

𝛥𝑥
= 𝑘. The geometric 

significance of this equation was explained in section 2.2.6, and it is also illustrated in Figure 

2.19. 
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Figure 2.19. The Slope of a Straight Line and the Increment of a Linear Function. 

Theorem462: A function 𝑦 = 𝑓(𝑥) is continuous at the point 𝑥 = 𝑎 if and only if 

𝑙𝑖𝑚𝛥𝑥→0𝛥𝑓 = 0, where 𝛥𝑥 = 𝑥 − 𝑎 and 𝛥𝑓 = 𝑓(𝑥) − 𝑓(𝑎).  

Proof: This theorem follows directly from the definition of continuity (see section 2.7). 

Indeed, the function 𝑦 = 𝑓(𝑥) is continuous at the point 𝑥 = 𝑎 if and only if 𝑙𝑖𝑚𝑥→𝑎𝑓(𝑥) 

exists finitely and 𝑙𝑖𝑚𝑥→𝑎𝑓(𝑥) = 𝑓(𝑎), or, equivalently, if 

 

𝑙𝑖𝑚𝑥−𝑎→0(𝑓(𝑥) − 𝑓(𝑎)) = 0 ⇔ 𝑙𝑖𝑚𝛥𝑥→0𝛥𝑓 = 0.■ 

 

Drawing a Tangent Line to the Graph of a Function463 

In differential calculus, a main objective is to try to understand tangents to curves, as 

illustrated in Figure 2.20. Hence, it is important to define a tangent line to an arbitrary plane 

curve in a rigorous way. A tangent line cannot be rigorously defined as a straight line having 

only one common point with the corresponding curve. Indeed, the axis of the parabola 𝑦 = 𝑥2 

has only one point in common with the curve, but it does not touch the parabola. However, 

the straight line 𝑦 = 1 has infinitely many common points with the sinusoid 𝑦 = 𝑠𝑖𝑛𝑥, and it 

touches the sinusoid at each of these points. The requirement that the curve be located on one 

side of the straight line (e.g., when the axis of abscissas touches the curve 𝑦 = 𝑥3 at the point 

(0,0), even though at this point the curve intersects the axis of abscissas) is not a rigorous 

definition of a tangent line either. 

 

 

Figure 2.20. A Tangent Line to a Curve. 

 
462 See: Abbott, Understanding Analysis; Apostol, Mathematical Analysis; Courant, Differential and Integral 

Calculus; Dieudonné, Treatise on Analysis; DuChateau, Advanced Calculus; Fraleigh, Calculus with Analytic 

Geometry; Haaser and Sullivan, Real Analysis; Hardy, A Course of Pure Mathematics; Kolmogorov and Fomin, 

Introductory Real Analysis; Nikolski, A Course of Mathematical Analysis; Rudin, Principles of Mathematical 

Analysis, and his Real and Complex Analysis; Spivak, Calculus. 
463 Ibid. 
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In order to define a tangent line to an arbitrary plane curve in a rigorous way, we must 

use the concept of a limit (studied in sections 2.4, 2.5, and 2.6). Let 𝐿 be an arc of some 

curve, and 𝑀0 be a point of this curve. We draw a secant 𝑀0𝑁 through the point 𝑀0. If the 

point 𝑁, moving in the curve, approaches the point 𝑀0, then the secant 𝑀0𝑁 turns about the 

point 𝑀0. Thus, it may so happen that, as the point 𝑁 approaches 𝑀0, the secant tends to a 

certain limit position 𝑀0𝑇, so that 𝑀0𝑇 is referred to as the “secant” to the curve 𝐿 at the 

point 𝑀0, as illustrated in Figure 2.20. Then the “tangent line” to the curve 𝐿 at the point 𝑀0 

is defined as the limit position of the secant 𝑀0𝑁 as 𝑁 → 𝑀0. The limit position is 

independent of the direction from where the point 𝑁 approaches 𝑀0.  

However, the secant may not have a limit position, and then we say that it is impossible 

to draw a tangent line to the curve 𝐿 at the point 𝑀0. Usually, this is the case when 𝑀0 is a 

cusp point, a break, a self-intersection point, etc. for the curve 𝐿. For most scientifically 

useful curves, a tangent line can, indeed, be drawn almost at all points.  

Let us try to compute the slope of the tangent line for the case when the curve 𝐿 is the 

graph of a certain function 𝑦 = 𝑓(𝑥). Let 𝑀0 be a point of the graph with abscissa 𝑥0 and 

ordinate 𝑦0 = 𝑓(𝑥0). Assuming that the tangent line to the curve 𝐿 at the point 𝑀0 does exist, 

we take one more point 𝑁(𝑥0 + 𝛥𝑥, 𝑦0 + 𝛥𝑦) on the curve, as illustrated in Figure 2.21, and 

we draw a straight line through the points 𝑀0 and 𝑁. If 𝜑 is the slope of this secant to the 

positive direction of the 𝑥-axis, then  

 

 

Figure 2.21. The Slope of a Tangent Line. 

|𝐵𝑁| = 𝛥𝑦, |𝑀0𝐵| = 𝛥𝑥, and 𝑡𝑎𝑛𝜑 =
|𝐵𝑁|

|𝑀0𝐵|
=

𝛥𝑦

𝛥𝑥
, 

 

so that the slope of this secant is 𝑘𝑡𝑎𝑛 = 𝑙𝑖𝑚𝑁→𝑀0𝑡𝑎𝑛𝜑 = 𝑙𝑖𝑚𝛥𝑥→0𝑡𝑎𝑛𝜑. 

If we denote the slope of the tangent line to the axis of abscissas with 𝜃, then the slope of 

the tangent line is 

 

𝑘𝑡𝑎𝑛 = 𝑡𝑎𝑛𝜃 = 𝑙𝑖𝑚𝛥𝑥→0𝑡𝑎𝑛𝜑 = 𝑙𝑖𝑚𝛥𝑥→0
𝛥𝑦

𝛥𝑥
. 

 

Therefore, in order to draw a non-vertical tangent line to the graph of the function 𝑦 =

𝑓(𝑥) at a point with abscissa 𝑥0, it is necessary and sufficient that, at this point, the limit 

𝑙𝑖𝑚𝛥𝑥→0
𝛥𝑦

𝛥𝑥
 exists finitely, and, in fact, this limit is equal to the slope of the tangent line. In 

other words, we create an infinite sequence of slopes, and then we say that the slope of the 

given tangent line is the infinite limit of this sequence. Hence, infinitesimal calculus provides 



Dr. Nicolas Laos, The Dialectic of Rational Dynamicity 287 

us with abstract objects (such a tangent to a curve) at which only infinite tasks can arrive 

through the concept of a limit.  

As I have already explained, the concept of a limit has a deep philosophical significance, 

because it secures the theoretical convenience of being able to do an infinite number of tasks 

through a theoretical concept—namely, that of a limit—without actually doing each one of 

them, which would be practically impossible. This abstraction underpins the foundations of 

calculus as it was articulated by Isaac Newton and Gottfried Wilhelm von Leibniz in the 

seventeenth century. If, for a function 𝑦 = 𝑓(𝑥), at a fixed point 𝑥, there exists the limit of the 

ratio of the increment 𝛥𝑓(𝑥) of the function to the increment 𝛥𝑥 of the argument provided 

that 𝛥𝑥 → 0, then the function 𝑦 = 𝑓(𝑥) is said to be “differentiable at the point 𝑥,” and this 

limit is called the “derivative of the function” 𝑦 = 𝑓(𝑥) at the point 𝑥. If 𝑦 = 𝑓(𝑥), then all 

the following are equivalent notations for the derivative: 

 

𝑓′(𝑥) ≡ 𝑦′ ≡
𝑑𝑓

𝑑𝑥
≡

𝑑𝑦

𝑑𝑥
≡

𝑑

𝑑𝑥
(𝑓(𝑥)) ≡ 𝐷𝑓(𝑥) ≡ 𝑦̇, 

 

where 𝑓′(𝑥) = 𝑙𝑖𝑚𝛥𝑥→0
𝛥𝑓(𝑥)

𝛥𝑥
= 𝑙𝑖𝑚𝛥𝑥→0

𝑓(𝑥+𝛥𝑥)−𝑓(𝑥)

𝛥𝑥
. 

 

If 𝑦 = 𝑓(𝑥), then all the following are equivalent notations for the derivative evaluated at 

𝑥 = 𝑎: 

 

𝑓′(𝑎) ≡ 𝑦′|𝑥=𝑎 ≡
𝑑𝑓

𝑑𝑥
|𝑥=𝑎 ≡

𝑑𝑦

𝑑𝑥
|𝑥=𝑎 ≡ 𝐷𝑓(𝑎) ≡ 𝑦̇|𝑥=𝑎. 

 

The process of finding the derivative of a function is called “differentiation.” As I have 

already explained, if a tangent line can be drawn to the graph of a function 𝑦 = 𝑓(𝑥) at a 

point 𝑀0(𝑥0, 𝑓(𝑥0)), then the slope of the tangent line is equal to the limit 𝑙𝑖𝑚𝛥𝑥→0
𝛥𝑦

𝛥𝑥
, and 

this limit is the value of the derivative of the function 𝑦 = 𝑓(𝑥) at the point 𝑥0. Hence, the 

slope of the tangent line to the graph of a function 𝑦 = 𝑓(𝑥) is equal to the value of the 

derivative at the point of tangency, symbolically, 𝑘𝑡𝑎𝑛 = 𝑓
′(𝑥0). This is the geometric 

significance of the derivative.  

In the seventeenth century, Isaac Newton introduced the concept of a “fluxion” to 

describe what modern mathematicians call a “time derivative,” namely, the instantaneous rate 

of change, or “slope,” or “gradient” of a “fluent” (i.e., a time-varying quantity, or function) at 

a given point. Moreover, in his Analyst, published in 1734, the English philosopher and 

Bishop George Berkeley provided an intuitive exposition of mathematical analysis as follows: 

 

The Method of Fluxions is the general key by help whereof the modern mathematicians 

unlock the secrets of Geometry, and consequently of Nature . . . Lines are supposed to be 

generated by the motion of points, planes by the motion of lines, and solids by the motion of 

planes. And whereas quantities generated in equal times are greater or lesser according to the 

greater or lesser velocity wherewith they increase and are generated, a method hath been 

found to determine quantities from the velocities of their generating motions. And such 

velocities are called fluxions: and the quantities generated are called flowing quantities. These 

fluxions are said to be nearly as the increments of the flowing quantities, generated in the least 

equal particles of time; and to be accurately in the first proportion of the nascent, or in the last 

of the evanescent increments. Sometimes, instead of velocities, the momentaneous increments 
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or decrements of undetermined flowing quantities are considered, under the appellation of 

moments.464 

 

The essential idea behind the Method of Fluxions is captured in Figures 2.19, 2.20, and 

2.21, which show how to calculate the slope of a straight line, which is the graph of a linear 

function, and, especially, how to calculate the slopes of tangents to curves. In order to 

understand the physical, or mechanical, significance of Newton’s idea, let us consider the 

problem of computing the instantaneous velocity of a particle in rectilinear motion.  

Let 𝑠 = 𝑠(𝑡) denote the distance travelled by a point moving in a straight line on which a 

reference point, the unit of measurement, and the direction are chosen (notice that 𝑠(𝑡) is the 

position of the point on the straight line at instant 𝑡). In physics, the “average velocity” of 

motion during a time interval is defined as the ratio of the net displacement to the elapsed 

time, that is, the average velocity during the time interval from 𝑡1 to 𝑡2 is expressed by the 

quantity 

 

𝑣𝑎𝑣 =
𝑠(𝑡2)−𝑠(𝑡1)

𝑡2−𝑡1
. 

 

If we set 𝑡1 = 𝑡 and 𝑡2 − 𝑡1 = 𝛥𝑡, then we obtain 

 

𝑣𝑎𝑣 =
𝑠(𝑡+𝛥𝑡)−𝑠(𝑡)

𝛥𝑡
=

𝛥𝑠

𝛥𝑡
. 

 

Suppose that the average velocity of a particle is measured for a number of different time 

intervals, and that it is not constant. In other words, the particle under consideration is moving 

with varying velocity. Then we have to compute the velocity of the particle at any given 

instant of time, namely, the instantaneous velocity. The (numerical value of) the 

“instantaneous velocity,” namely, the (numerical value of) the velocity at instant 𝑡, is defined 

as the limit of the average velocity of motion during the time interval [𝑡, 𝑡 + 𝛥𝑡] provided that 

𝛥𝑡 → 0, symbolically,  

 

𝑣𝑖𝑛𝑠𝑡 = 𝑙𝑖𝑚𝛥𝑡→0
𝛥𝑠

𝛥𝑡
, 

 

which is the derivative of displacement 𝑠 = 𝑠(𝑡) with respect to time, namely,  

 

𝑣𝑖𝑛𝑠𝑡 =
𝑑𝑠(𝑡)

𝑑𝑡
. 

 

Similarly, we can compute the instantaneous rate of change of any other physical or 

(quantifiable) socio-economic phenomenon with respect to its independent variable. For 

instance, in economics, inflation is defined as the derivative of price (as a function of time) 

with respect to time; the rate of change of demand with respect to price is defined as the 

derivative of the quantity demanded (as a function of price) with respect to price; the point 

price-elasticity of demand, which measures the degree to which the desire for something 

changes as its price changes within the same demand curve, is equal to the absolute value of 

 
464 Berkeley, “Analyst and Its Effect upon the Calculus,” pp. 628–29.  
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the derivative of the quantity demanded with respect to price multiplied by the point’s price 

divided by its quantity; etc.465 

 

The Formal Definition of the Derivative of a Function466 

Let 𝑓: 𝑋 → ℝ be a function, and let 𝑎 ∈ 𝑋 be an accumulation point of 𝑋. Then, ∀𝑥 ∈

𝑋 − {𝑎}, we can define the function 

 

𝐹(𝑥) =
𝑓(𝑥)−𝑓(𝑎)

𝑥−𝑎
, 

 

and 𝑎 is an accumulation point of 𝑋 − {𝑎}. Hence, it is meaningful to consider the limit of 𝐹 

as 𝑥 → 𝑎.  

If 𝑓:𝑋 → ℝ, where 𝑋 ⊆ ℝ, and 𝑎 is an accumulation point of 𝑋, and if  

 

𝑙𝑖𝑚𝑥→𝑎
𝑓(𝑥)−𝑓(𝑎)

𝑥−𝑎
 exists, 

 

then the function 𝑓 is said to be “differentiable” at 𝑎, and the number  

 

𝑓′(𝑎) = 𝑙𝑖𝑚𝑥→𝑎
𝑓(𝑥)−𝑓(𝑎)

𝑥−𝑎
 is said to be the “derivative” of 𝑓 at 𝑎. 

 

We require that 𝑎 ∈ 𝑋 in order for the concept of 𝑓(𝑎) to be meaningful. Moreover, we 

require that 𝑎 be an accumulation point of 𝑋, because, as already stated, the limit of 𝐹 is 

defined at 𝑎 only if 𝑎 is an accumulation point of 𝑋.  

If in the aforementioned definition, we set 𝑥 − 𝑎 = ℎ, so that 𝑥 = 𝑎 + ℎ and ℎ → 0 when 

𝑥 → 𝑎, provided, of course, that 𝑎 + ℎ ∈ 𝑋, then we obtain the following formula for the 

derivative of 𝑓 at 𝑎 ∈ 𝑋: 

𝑓′(𝑎) = 𝑙𝑖𝑚ℎ→0
𝑓(𝑎+ℎ)−𝑓(𝑎)

ℎ
. 

 

If the derivative of a function exists, then it is unique. The uniqueness of the derivative of 

a function follows directly from the uniqueness of the limit of a function (proven in section 

2.6). 

At the point 𝑎 ∈ 𝑋, the function 𝐹 may not have a limit, but it may have one-sided limits. 

Then we define the one-sided derivatives of 𝑓 at 𝑎 as follows: (i) If 𝑙𝑖𝑚𝑥→𝑎−𝐹(𝑥) exists, then 

we say that the function 𝑓 is “differentiable at 𝑎 from the left,” and the number 𝑓−
′(𝑎) is 

called the “derivative of 𝑓 at 𝑎 from the left” (or the “left-hand derivative of 𝑓 at 𝑎”). (ii) By 

analogy, if 𝑙𝑖𝑚𝑥→𝑎+𝐹(𝑥) exists, then we say that the function 𝑓 is “differentiable at 𝑎 from 

the right,” and the number 𝑓+
′(𝑎) is called the “derivative of 𝑓 at 𝑎 from the right” (or the 

“right-hand derivative of 𝑓 at 𝑎”). According to what we already know regarding the limit of 

 
465 See: Lovell, Economics with Calculus. 
466 See: Abbott, Understanding Analysis; Apostol, Mathematical Analysis; Courant, Differential and Integral 

Calculus; Dieudonné, Treatise on Analysis; DuChateau, Advanced Calculus; Fraleigh, Calculus with Analytic 

Geometry; Haaser and Sullivan, Real Analysis; Hardy, A Course of Pure Mathematics; Kolmogorov and Fomin, 

Introductory Real Analysis; Nikolski, A Course of Mathematical Analysis; Piskunov, Differential and Integral 

Calculus; Rudin, Principles of Mathematical Analysis, and his Real and Complex Analysis; Spivak, Calculus. 
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a function (studied in section 2.6), 𝑓 is differentiable at 𝑎 ∈ 𝑋 if and only if its one-sided 

derivatives at 𝑎 exist and are equal to each other.  

If a function 𝑓 is differentiable at every point of 𝐴 ⊆ 𝑋, then 𝑓 is said to be 

“differentiable on the set 𝐴.” Then the function 𝑓′, whose value is defined to be 𝑓′(𝑥) ∀𝑥 ∈

𝐴, is said to be the “derivative of 𝑓 in the set 𝐴.” If 𝑓 is differentiable on 𝑋, namely, on its 

domain, then we simply say that 𝑓 is a differentiable function. If, in particular, 𝑋 = [𝑎, 𝑏], 

then the statement that 𝑓 is a differentiable function implies the following: (i) 𝑓′(𝑥) exists 

∀𝑥 ∈ (𝑎, 𝑏), (ii) 𝑓+
′(𝑎) exists, and (iii) 𝑓−

′(𝑏) exists.  

Recalling the definition of a convergent sequence (studied in section 2.4), we can 

articulate the following equivalent definition of the derivative of 𝑓 at 𝑎 ∈ 𝑋: A function 𝑓 is 

differentiable at 𝑎 ∈ 𝑋 if and only if, for every sequence 𝑥𝑛 ∈ 𝑋 − {𝑎} with 𝑥𝑛 → 𝑎, it holds 

that 

 

𝑙𝑖𝑚𝑥𝑛→𝑎
𝑓(𝑥𝑛)−𝑓(𝑎)

𝑥𝑛−𝑎
= 𝑓′(𝑎).  

 

Furthermore, the aforementioned definition can take the following form, which is based 

on the concept of a Cauchy sequence (studied in section 2.4): A number 𝑓′(𝑎) is said to be 

the derivative of a function 𝑓: 𝑋 → ℝ at 𝑎 ∈ 𝑋 if, ∀𝜀 > 0, there exists a 𝛿 ≡ 𝛿(𝜀) > 0 such 

that, ∀𝑥 ∈ 𝑋 with 0 < |𝑥 − 𝑎| < 𝛿, it holds that  

 

|
𝑓(𝑥)−𝑓(𝑎)

𝑥−𝑎
− 𝑓′(𝑎)| < 𝜀.  (∗) 

 

Let us define the function 𝜆𝑎: 𝛸 − {𝑎} → ℝ with 

 

𝜆𝑎(𝑥) =
𝑓(𝑥)−𝑓(𝑎)

𝑥−𝑎
− 𝑓′(𝑎). (∗∗) 

 

Then, by (∗), 𝑙𝑖𝑚𝑥→𝑎𝜆𝑎(𝑥) = 0.  

It can be easily verified that, if 𝑓(𝑥) = 𝑐 is a constant function, then 𝑓′(𝑥) = (𝑐)′ = 0. 

In view of the aforementioned definitions of the derivative of a function, we can prove 

the following characterization of derivatives:  

 

Characterization of Derivatives467: A function 𝑓:𝑋 → ℝ is differentiable at 𝑎 ∈ 𝑋, where 

𝑎 is an accumulation point of 𝑋, if and only if there exist a real number 𝑓′(𝑎) ∈ ℝ, a 𝛿 > 0, 

and a function 𝜆𝑎: 𝑋 − {𝑎} → ℝ with 𝑙𝑖𝑚𝑥→𝑎𝜆𝑎(𝑥) = 0 such that 

 

∀𝑥 ∈ 𝑋, 0 < |𝑥 − 𝑎| < 𝛿 ⇒ 𝑓(𝑥) − 𝑓(𝑎) = 𝑓′(𝑎)(𝑥 − 𝑎) + 𝜆𝑎(𝑥)(𝑥 − 𝑎).   (∗∗∗) 

 

Proof: Assume that (∗∗∗) is true. Then (∗∗) implies that 

 

𝑓′(𝑎) = 𝑙𝑖𝑚𝑥→𝑎
𝑓(𝑥)−𝑓(𝑎)

𝑥−𝑎
 exists. 

 

 
467 Ibid. 
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Conversely, if 𝑓′(𝑎) exists, then (∗) holds, and, therefore, the function 𝜆𝑎(𝑥) defined by 

(∗∗) satisfies (∗∗∗).■  

 

Notice that the derivative of a function 𝑓 at 𝑎 is a real number, but the derivative of 𝑓 is a 

function (specifically, an operator).  

 

Theorem468: If a function 𝑓(𝑥) is differentiable at 𝑥 = 𝑎 (having a finite derivative), then 

it is also continuous at 𝑥 = 𝑎. But the converse is not necessarily true.  

 

Proof: Assume that 𝑓 is differentiable at 𝑥 = 𝑎. Then the limit 

 

𝑙𝑖𝑚𝑥→𝑎
𝑓(𝑥)−𝑓(𝑎)

𝑥−𝑎
 exists and is equal to the real number 𝑓′(𝑎). 

Notice that 

 

𝑙𝑖𝑚𝑥→𝑎(𝑓(𝑥) − 𝑓(𝑎)) = 𝑙𝑖𝑚𝑥→𝑎 (
𝑓(𝑥)−𝑓(𝑎)

𝑥−𝑎
∙ (𝑥 − 𝑎)) = 𝑙𝑖𝑚𝑥→𝑎

𝑓(𝑥)−𝑓(𝑎)

𝑥−𝑎
∙

𝑙𝑖𝑚𝑥→𝑎(𝑥 − 𝑎) = 𝑓
′(𝑎) ∙ 0. 

 

Therefore, 

 

𝑙𝑖𝑚𝑥→0(𝑓(𝑥) − 𝑓(𝑎)) = 0 or 

𝑙𝑖𝑚𝑥→𝑎𝑓(𝑥) = 𝑓(𝑎), 

 

which proves that 𝑓 is continuous at 𝑥 = 𝑎. 

In order to prove that the converse is not necessarily true, it suffices to give an example. 

For instance, consider 𝑓(𝑥) = |𝑥| ∀𝑥 ∈ ℝ. Then, at 𝑥 = 0, the function is continuous, 

because 𝑙𝑖𝑚𝑥→0𝑓(𝑥) = 𝑓(0), but it is not differentiable at 𝑥 = 0, because 𝑓+
′(0) ≠ 𝑓−

′(0), 

and, in fact, 𝑓+
′(0) = 1 while 𝑓−

′(0) = −1.■ 

 

Remark: There exist functions that are continuous over the entire ℝ without being 

differentiable at any point of ℝ. Such a function is the so-called “Weierstrass function,” 

which is defined by the series 𝑓(𝑥) = ∑
1

2𝑛
∞
𝑛=0 𝑐𝑜𝑠(3𝑛𝑥), where 𝑥 ∈ ℝ. 

Using the aforementioned definitions of the derivative, the aforementioned 

Characterization of Derivatives, and theorems on limits, the following properties of the 

derivative can be easily verified: 

 

Theorem469: Let 𝑋 ⊆ ℝ be an interval, 𝑎 ∈ 𝑋, and 𝑓:𝑋 → ℝ and 𝑔: 𝑋 → ℝ be functions 

that are differentiable at 𝑎. Then: 

 

i. If 𝑘 ∈ ℝ, then the function 𝑘𝑓 is differentiable at 𝑎, and 

(𝑘𝑓)′(𝑎) = 𝑘𝑓′(𝑎). 

ii. The function 𝑓 + 𝑔 is differentiable at 𝑎, and 

 
468 Ibid. 
469 Ibid. 
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(𝑓 + 𝑔)′(𝑎) = 𝑓′(𝑎) + 𝑔′(𝑏). 

iii. The function 𝑓 ∙ 𝑔 is differentiable at 𝑎, and 

(𝑓 ∙ 𝑔)′(𝑎) = 𝑓′(𝑎)𝑔(𝑎) + 𝑓(𝑎)𝑔′(𝑎).  

iv. If 𝑔(𝑎) ≠ 0, then the function 
𝑓

𝑔
 is differentiable at 𝑎, and 

(
𝑓

𝑔
)
′
(𝑎) =

𝑓′(𝑎)𝑔(𝑎)−𝑓(𝑎)𝑔′(𝑎)

𝑔(𝑎)2
. 

 

Theorem (Power Rule)470:
𝑑

𝑑𝑥
𝑥𝑛 = 𝑛𝑥𝑛−1, where 𝑛 is a positive integer. 

 

Proof: If 𝑓(𝑥) = 𝑥𝑛, then, by definition, 

 

𝑓′(𝑥) = 𝑙𝑖𝑚ℎ→0
(𝑥+ℎ)𝑛−𝑥𝑛

ℎ
. 

 

Given that 

 

(𝑥 + ℎ)𝑛 = 𝑥𝑛 + 𝑛𝑥𝑛−1ℎ + (
𝑛
2
) 𝑥𝑛−2ℎ2 + (

𝑛
3
)𝑥𝑛−3ℎ3 +⋯+ 𝑛𝑥ℎ𝑛−1 + ℎ𝑛, 

 

we obtain 

 

(𝑥 + ℎ)𝑛 − 𝑥𝑛 = 𝑛𝑥𝑛−1ℎ + (
𝑛
2
) 𝑥𝑛−2ℎ2 + (

𝑛
3
)𝑥𝑛−3ℎ3 +⋯+ 𝑛𝑥ℎ𝑛−1 + ℎ𝑛. 

 

Hence, 

 

(𝑥+ℎ)𝑛−𝑥𝑛

ℎ
=

𝑛𝑥𝑛−1ℎ+(
𝑛
2
)𝑥𝑛−2ℎ2+(

𝑛
3
)𝑥𝑛−3ℎ3+⋯+𝑛𝑥ℎ𝑛−1+ℎ𝑛

ℎ
, 

 

which implies that 

 
(𝑥+ℎ)𝑛−𝑥𝑛

ℎ
= 𝑛𝑥𝑛−1 + (

𝑛
2
)𝑥𝑛−2ℎ + (

𝑛
3
)𝑥𝑛−3ℎ2 +⋯+ 𝑛𝑥ℎ𝑛−2 + ℎ𝑛−1. 

 

Therefore,  

 

𝑓′(𝑥) = 𝑙𝑖𝑚ℎ→0 [𝑛𝑥
𝑛−1 + (

𝑛
2
)𝑥𝑛−2ℎ + (

𝑛
3
)𝑥𝑛−3ℎ2 +⋯+ 𝑛𝑥ℎ𝑛−2 + ℎ𝑛−1] = 𝑛𝑥𝑛−1.■ 

 

Theorem (the derivative of a composite function: the Chain Rule)471: Consider two 

functions 𝑓: 𝐷𝑓 → ℝ and 𝑔: 𝑅𝑓 → ℝ (𝐷𝑓 ⊆ ℝ), where 𝐷𝑓 is the domain of 𝑓, and 𝑅𝑓 is the 

range of 𝑓. If 𝑎 is an accumulation point of 𝐷𝑓, if 𝑓(𝑎) = 𝑏 is an accumulation point of 𝑅𝑓, 

and if 𝑓′(𝑎) and 𝑔′(𝑏) exist, then the function ℎ = 𝑔  ⃘𝑓: 𝐷𝑓 → ℝ is differentiable at 𝑎, and its 

derivative is given by the formula 

 

 
470 Ibid. 
471 Ibid. 
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(𝑔  ⃘𝑓)′(𝑎) = 𝑔′(𝑓(𝑎))𝑓′(𝑎), 

 

that is, the derivative of 𝑔  ⃘𝑓 is the derivative of 𝑔(𝑥) evaluated at 𝑓(𝑥) times the derivative 

of 𝑓(𝑥).  

 

Proof: Given that 𝑓′(𝑎) and 𝑔′(𝑏) exist, the aforementioned Characterization of 

Derivatives, namely, (∗∗∗), implies that there exist 𝛿1 > 0 and 𝛿2 > 0 such that 

 

𝑓(𝑥) − 𝑓(𝑎) = 𝑓′(𝑎)(𝑥 − 𝑎) + 𝜆𝑎(𝑥)(𝑥 − 𝑎) and (1) 

 

𝑔(𝑦) − 𝑔(𝑏) = 𝑔′(𝑏)(𝑦 − 𝑏) + 𝜇𝑏(𝑦)(𝑦 − 𝑏), (2) 

 

∀𝑥 ∈ 𝐷𝑓 with 0 < |𝑥 − 𝑎| < 𝛿1 and ∀𝑦 ∈ 𝐷𝑔 with 0 < |𝑦 − 𝑏| < 𝛿2, where 

𝑙𝑖𝑚𝑥→𝑎𝜆𝑎(𝑥) = 0 and 𝑙𝑖𝑚𝑦→𝑏𝜇𝑏(𝑦) = 0. Let 

 

𝜇𝑏(𝑏) = 0. (3) 

 

Because 𝑔(𝑏) = 𝑔(𝑓(𝑎)) = ℎ(𝑎), and, for 𝑦 = 𝑓(𝑥), we obtain 𝑔(𝑦) = 𝑔(𝑓(𝑥)) =

ℎ(𝑥), equations (1) and (2) imply the following: 

 

ℎ(𝑥) − ℎ(𝑎) = 𝑔(𝑦) − 𝑔(𝑏) = 𝑔′(𝑏)(𝑦 − 𝑏) + 𝜇𝑏(𝑦)(𝑦 − 𝑏) 

= 𝑔′(𝑏)(𝑓(𝑥) − 𝑓(𝑎)) + 𝜇𝑏(𝑦)(𝑓(𝑥) − 𝑓(𝑎)) 

= 𝑔′(𝑏)[𝑓′(𝑎)(𝑥 − 𝑎) + 𝜆𝑎(𝑥)(𝑥 − 𝑎)] + 𝜇𝑏(𝑦)[𝑓
′(𝑎)(𝑥 − 𝑎) + 𝜆𝑎(𝑥)(𝑥 − 𝑎)] 

= 𝑔′(𝑏)𝑓′(𝑎)(𝑥 − 𝑎) + [𝑔′(𝑏)𝜆𝑎(𝑥) + 𝜇𝑏(𝑦)𝑓
′(𝑎) + 𝜇𝑏(𝑦)𝜆𝑎(𝑥)](𝑥 − 𝑎). 

 

Notice that 

 

𝑙𝑖𝑚𝑥→𝑎[𝑔
′(𝑏)𝜆𝑎(𝑥) + 𝜇𝑏(𝑦)𝑓

′(𝑎) + 𝜇𝑏(𝑦)𝜆𝑎(𝑥)] 

= 𝑙𝑖𝑚𝑥→𝑎[𝑔
′(𝑓(𝑎))𝜆𝑎(𝑥) + 𝜇𝑏(𝑓(𝑥))𝑓

′(𝑎) + 𝜇𝑏(𝑓(𝑥))𝜆𝑎(𝑥)] = 0, 

 

since: 𝑙𝑖𝑚𝑥→𝑎𝜆𝑎(𝑥) = 0, and, because 𝑓 is continuous at 𝑎 (since 𝑓 is differentiable at 𝑎), 

and due to (3), it holds that 

 

𝑙𝑖𝑚𝑥→𝑎𝜇𝑏(𝑓(𝑥))𝑓
′(𝑎) = 𝜇𝑏(𝑓(𝑎))𝑓

′(𝑎) = 𝜇𝑏(𝑏)𝑓
′(𝑎) = 0. 

 

Therefore, according to the aforementioned Characterization of Derivatives, namely, 

(∗∗∗), ℎ′(𝑎) exists, and ℎ′(𝑎) = 𝑔′(𝑓(𝑎))𝑓′(𝑎).■ 

 

Remark: A simple application of the chain rule is the following problem: If Mr. X runs 4 

times as fast as Mr. Y, and Mr. Y runs 3 times as fast as Mr. Z, how many times as fast as Mr. 

Z does Mr. X run? It is clear that 

 
𝑑𝑋

𝑑𝑍
=

𝑑𝑋

𝑑𝑌
∙
𝑑𝑌

𝑑𝑍
= 4 × 3 = 12. 
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Implicit Differentiation: Whenever the dependent variable 𝑦 is a function of the 

independent variable 𝑥, we express 𝑦 in terms of 𝑥. If this is the case, then we say that 𝑦 is an 

“explicit function” of 𝑥. For instance, in the equation 𝑦 = 3𝑥 + 2, 𝑦 is defined explicitly in 

terms of 𝑥. But, whenever the relation between the function 𝑦 and the variable 𝑥 is expressed 

by an equation where 𝑦 is not expressed entirely in terms of 𝑥, we say that the equation 

defines 𝑦 “implicitly” in terms of 𝑥. An equation defines a function implicitly if the function 

satisfies the given equation. For instance, the equation 𝑦 − 𝑥2 = 3 defines the function 𝑦 =

𝑥2 + 3 implicitly. Implicit differentiation allows us to find slopes of tangents to curves that 

are not functions (namely, to curves that fail the vertical line test472). Algorithm for implicit 

differentiation: 

 

i. Differentiate both sides of the equation, keeping in mind that 𝑦 is a function of 𝑥 

(and apply the Chain Rule where necessary).  

ii. Rewrite the equation so that every term containing 
𝑑𝑦

𝑑𝑥
 is on the left, and every term 

that does not contain 
𝑑𝑦

𝑑𝑥
 is on the right. 

iii. Factor out 
𝑑𝑦

𝑑𝑥
 on the left. 

iv. Solve for 
𝑑𝑦

𝑑𝑥
 by dividing both sides of the equation by an appropriate algebraic 

expression.  

 

Implicit differentiation is illustrated in the following example: Find 
𝑑𝑦

𝑑𝑥
 if 𝑥4 + 𝑦3 =

7. Since 𝑦 = 𝑓(𝑥), (𝑥4)′ + (𝑦3)′ = (7)′ ⇔ 4𝑥3 + 3𝑦2
𝑑𝑦

𝑑𝑥
= 0 ⇔ 3𝑦2

𝑑𝑦

𝑑𝑥
= −4𝑥3 ⇔

𝑑𝑦

𝑑𝑥
= −

4𝑥3

3𝑦2
.  

If 𝑓(𝑥) = 𝑙𝑛𝑥, then 𝑓′(𝑥) can be found through implicit differentiation: Since 𝑦 =

𝑙𝑛𝑥, 𝑒𝑦 = 𝑥 ⇔ 𝑒𝑦
𝑑𝑦

𝑑𝑥
= 1 ⇔

𝑑𝑦

𝑑𝑥
=

1

𝑒𝑦
=

1

𝑥
. Hence, 

𝑑(𝑙𝑛𝑥)

𝑑𝑥
=

1

𝑥
, 𝑥 > 0. In case 𝑢 is a 

differentiable function of 𝑥, we apply the chain rule: 
𝑑(𝑙𝑛𝑢)

𝑑𝑥
=

1

𝑢
∙
𝑑𝑢

𝑑𝑥
, 𝑢 > 0.  

If 𝑓(𝑥) = 𝑙𝑜𝑔𝑎𝑥, then the method of implicit differentiation can be applied, too: 

Since 𝑦 = 𝑙𝑜𝑔𝑎𝑥, 𝑎𝑦 = 𝑥 ⇔ (𝑙𝑛𝑎) ∙ 𝑎𝑦 ∙
𝑑𝑦

𝑑𝑥
= 1 ⇔

𝑑𝑦

𝑑𝑥
=

1

𝑙𝑛𝑎
∙
1

𝑎𝑦
=

1

𝑙𝑛𝑎
∙
1

𝑥
, 𝑥 > 0. In 

case, 𝑢 is a differentiable function of 𝑥, we apply the chain rule: 
𝑑(𝑙𝑜𝑔𝑎𝑢)

𝑑𝑥
=

1

𝑙𝑛𝑎
∙
1

𝑢
∙

𝑑𝑢

𝑑𝑥
, 𝑢 > 0. 

One more important application of implicit differentiation is to finding derivatives of 

inverse functions. Notice that the graph of 𝑓−1 is the reflection of the graph of 𝑓 across 

the line 𝑦 = 𝑥, and, therefore, if 
𝑑𝑦

𝑑𝑥
 is the slope of a line tangent to the graph of 𝑓, then 

𝑑𝑥

𝑑𝑦
=

1
𝑑𝑦

𝑑𝑥

 is the slope of a line tangent to the graph of 𝑓−1.  

 

 
472 Ibid (notice that every vertical line intersects the graph of a function at most once).  
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Theorem (the derivative of an inverse function)473: Let 𝐼 ⊆ ℝ be an interval, and let 

𝑓: 𝐼 → ℝ be a strictly monotonic function continuous over 𝐼. If 𝑓 is differentiable at 𝑎 ∈ 𝐼 

and 𝑓′(𝑎) ≠ 0, then the inverse function 𝑓−1: 𝐽 = 𝑓(𝐼) → ℝ is differentiable at 𝑏 =

𝑓(𝑎), and 

 

(𝑓−1)′(𝑏) =
1

𝑓′(𝑎)
=

1

𝑓′(𝑓−1(𝑏))
. 

 

Proof: In section 2.7, it was proved that, if𝑓: 𝐼 = [𝑎, 𝑏] → ℝ is strictly monotonic and 

continuous on the interval 𝐼, then 𝑓 has an inverse function that is strictly monotonic and 

continuous on 𝑓(𝐼), and, in fact, 𝑓−1 has the same kind of monotonicity as 𝑓. Hence, in 

this case, 𝑓−1 exists and is continuous on 𝑓(𝐼), namely,  

 

𝑙𝑖𝑚𝑦→𝑏𝑓
−1(𝑦) = 𝑓−1(𝑏), where 𝑦 ∈ 𝑓(𝐼). 

 

Moreover, 𝑓−1 is strictly monotonic, and it has the same kind of monotonicity as 𝑓. 

If 𝑦 = 𝑓(𝑥) and 𝑏 = 𝑓(𝑎), then 𝑦 ≠ 𝑏 ⇒ 𝑓−1(𝑦) ≠ 𝑓−1(𝑏), and 𝑦 → 𝑏 ⇒ 𝑓−1(𝑦) →

𝑓−1(𝑏) ⇒ 𝑥 → 𝑎. Therefore, 

 

(𝑓−1)′(𝑏) = 𝑙𝑖𝑚𝑦→𝑏
𝑓−1(𝑦)−𝑓−1(𝑏)

𝑦−𝑏
= 𝑙𝑖𝑚𝑥→𝑎

𝑥−𝑎

𝑓(𝑥)−𝑓(𝑎)
= 𝑙𝑖𝑚𝑥→𝑎

1
𝑓(𝑥)−𝑓(𝑎)

𝑥−𝑎

=
1

𝑓′(𝑎)
.■ 

 

Remark: The requirement that 𝑓′(𝑎) ≠ 0 secures that 𝑓−1 is differentiable at 𝑏 =

𝑓(𝑎). If 𝑓′(𝑎) = 0, then 𝑓−1 is not differentiable at 𝑏 = 𝑓(𝑎); indeed, if 𝑓−1 were 

differentiable at 𝑏, then, since 𝑓 is the inverse of 𝑓−1, the application of the 

aforementioned theorem to 𝑓−1 implies that 𝑓 is differentiable at 𝑎 = 𝑓−1(𝑏), and that 

1 = 𝑓′(𝑎)(𝑓−1)′(𝑏) = 0, which is absurd. For instance, consider the function 𝑓(𝑥) = 𝑥3 

with 𝑥 ∈ ℝ in case 𝑎 = 0.  

Notice that, if 𝑓(𝑥) is differentiable on an interval 𝐼 such that 𝑓′(𝑥) = 𝑤(𝑥) ∀𝑥 ∈ 𝐼, 

then the function 𝑓 is called the “primitive” of the function 𝑤. If 𝑓(𝑥) = 𝑔(𝑥) + 𝑟 ∀𝑥 ∈

𝐼, and if both 𝑓 and 𝑔 are differentiable on 𝐼, then 𝑓′(𝑥) = 𝑔′(𝑥) = 𝑤(𝑥) ∀𝑥 ∈ 𝐼, and, 

therefore, the function 𝑔 is also a primitive of 𝑤. Consequently, if a function 𝑤 has a 

primitive over an interval, it has any number of primitives over that interval, and any two 

of such primitives differ by some real number 𝑟. 

Many of the basic laws of the physical sciences, the biological sciences, and the 

social sciences are formulated in terms of mathematical equations involving certain 

known and unknown quantities and their derivatives. Such equations are called 

“differential equations” (see section 2.20). 

 

 
473 Ibid. 



Dr. Nicolas Laos, The Dialectic of Rational Dynamicity 296 

Higher Order Derivatives 

It is evident that the first derivative 
𝑑𝑦

𝑑𝑥
 expresses the rate of change of 𝑦 with respect to 𝑥 

(e.g., velocity). Then 
𝑑

𝑑𝑥
(
𝑑𝑦

𝑑𝑥
) ≡

𝑑2𝑦

𝑑𝑥2
≡ 𝑦′′ expresses the rate of change of the first derivative 

of 𝑦 with respect to 𝑥 (e.g., acceleration), and 
𝑑3𝑦

𝑑𝑥3
≡ 𝑦′′′ expresses the rate of change of the 

second derivative of 𝑦 with respect to 𝑥 (e.g., jerk). Of course, we can compute the 𝑛th 

derivative of 𝑦 = 𝑓(𝑥), denoted by 
𝑑𝑛𝑦

𝑑𝑥𝑛
≡ 𝑦(𝑛), where 𝑛 is called the order of the derivative. 

The 𝑛th derivative 𝑓(𝑛)(𝑥), where 𝑛 ∈ ℕ, is defined as the derivative of the derivative of 

order (𝑛 − 1), symbolically, 𝑓(𝑛)(𝑥) = (𝑓(𝑛−1)(𝑥))
′
. The process of obtaining higher order 

derivatives is called “successive differentiation.” 

 

Table of the Derivatives of Elementary Functions474 

Using the definition of the derivative of a function and the aforementioned theorems and 

methods of differentiation, we obtain the following formulas: 

 
𝑑

𝑑𝑥
(𝑐) = 0, where 𝑐 is any constant, 𝑥 ∈ ℝ;  

𝑑

𝑑𝑥
(𝑥) = 1, 𝑥 ∈ ℝ; 

𝑑

𝑑𝑥
(𝑒𝑥) = 𝑒𝑥, 𝑥 ∈ ℝ; 

𝑑

𝑑𝑥
(𝑎𝑥) = 𝑎𝑥𝑙𝑛(𝑎), 𝑥 ∈ ℝ, 𝑎 > 0; 

𝑑

𝑑𝑥
(𝑙𝑛|𝑥|) =

1

𝑥
, 𝑥 ∈ ℝ − {0}; 

𝑑

𝑑𝑥
(𝑙𝑜𝑔𝑎(𝑥)) =

1

𝑥𝑙𝑛𝑎
, 𝑥 > 0; 

𝑑

𝑑𝑥
(𝑠𝑖𝑛𝑥) = 𝑐𝑜𝑠𝑥, 𝑥 ∈ ℝ, because: 

(𝑠𝑖𝑛𝑥)′ = 𝑙𝑖𝑚ℎ→0
𝑠𝑖𝑛(𝑥+ℎ)−𝑠𝑖𝑛𝑥

ℎ
= 𝑙𝑖𝑚ℎ→0

2𝑠𝑖𝑛
ℎ

2
𝑐𝑜𝑠(𝑥+

ℎ

2
)

ℎ
= 𝑙𝑖𝑚ℎ→0

𝑠𝑖𝑛
ℎ

2
ℎ

2

∙ 𝑐𝑜𝑠 (𝑥 +
ℎ

2
) =

𝑐𝑜𝑠𝑥, since 𝑙𝑖𝑚𝑥→0
𝑠𝑖𝑛𝑥

𝑥
= 1; 

𝑑

𝑑𝑥
(𝑐𝑜𝑠𝑥) = −𝑠𝑖𝑛𝑥, 𝑥 ∈ ℝ, because: 

(𝑐𝑜𝑠𝑥)′ = [𝑠𝑖𝑛 (
𝜋

2
− 𝑥)]

′
= 𝑐𝑜𝑠 (

𝜋

2
− 𝑥) ∙ (

𝜋

2
− 𝑥)

′
= 𝑐𝑜𝑠 (

𝜋

2
− 𝑥) ∙ (−1) = −𝑠𝑖𝑛𝑥; 

𝑑

𝑑𝑥
(𝑡𝑎𝑛𝑥) =

1

𝑐𝑜𝑠2𝑥
= 𝑠𝑒𝑐2𝑥, 𝑥 ∈ ℝ− {𝑥|𝑥 = 𝑘𝜋 +

𝜋

2
}; 

𝑑

𝑑𝑥
(𝑐𝑜𝑡𝑥) = −

1

𝑠𝑖𝑛2𝑥
= −𝑐𝑠𝑐2𝑥, 𝑥 ∈ ℝ− {𝑥|𝑥 = 𝑘𝜋}, 

𝑑

𝑑𝑥
(𝑠𝑒𝑐𝑥) = 𝑠𝑒𝑐𝑥𝑡𝑎𝑛𝑥,  

𝑑

𝑑𝑥
(𝑐𝑠𝑐𝑥) = −𝑐𝑠𝑐𝑥𝑐𝑜𝑡𝑥, 

𝑑

𝑑𝑥
(𝑠𝑖𝑛−1𝑥) ≡

𝑑

𝑑𝑥
(𝑎𝑟𝑐𝑠𝑖𝑛𝑥) =

1

√1−𝑥2
, 𝑥 ∈ (−1,1),  

𝑑

𝑑𝑥
(𝑐𝑜𝑠−1𝑥) ≡

𝑑

𝑑𝑥
(𝑎𝑟𝑐𝑐𝑜𝑠𝑥) = −

1

√1−𝑥2
, 𝑥 ∈ (−1,1), 

𝑑

𝑑𝑥
(𝑡𝑎𝑛−1𝑥) ≡

𝑑

𝑑𝑥
(𝑎𝑟𝑐𝑡𝑎𝑛𝑥) =

1

1+𝑥2
, 𝑥 ∈ ℝ,  
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𝑑

𝑑𝑥
(𝑐𝑜𝑡−1𝑥) ≡

𝑑

𝑑𝑥
(𝑎𝑟𝑐𝑐𝑜𝑡𝑥) = −

1

1+𝑥2
, 𝑥 ∈ ℝ, 

𝑑

𝑑𝑥
(𝑠𝑖𝑛ℎ𝑥) = 𝑐𝑜𝑠ℎ𝑥, 𝑥 ∈ ℝ, 

𝑑

𝑑𝑥
(𝑐𝑜𝑠ℎ𝑥) = 𝑠𝑖𝑛ℎ𝑥, 𝑥 ∈ ℝ, 

𝑑

𝑑𝑥
(𝑡𝑎𝑛ℎ𝑥) =

1

𝑐𝑜𝑠ℎ2𝑥
, 𝑥 ∈ ℝ, 

𝑑

𝑑𝑥
(𝑐𝑜𝑡ℎ𝑥) = −

1

𝑠𝑖𝑛ℎ2𝑥
, 𝑥 ∈ ℝ − {0}, 

𝑑

𝑑𝑥
(𝑠𝑒𝑐ℎ𝑥) = −𝑡𝑎𝑛ℎ𝑥𝑠𝑒𝑐ℎ𝑥, 

𝑑

𝑑𝑥
(𝑐𝑠𝑐ℎ𝑥) = −𝑐𝑜𝑡ℎ𝑥𝑐𝑠𝑐ℎ𝑥, 

𝑑

𝑑𝑥
(𝑎𝑟𝑐𝑠𝑖𝑛ℎ𝑥) =

1

√𝑥2+1
, 𝑥 ∈ ℝ, 

𝑑

𝑑𝑥
(𝑎𝑟𝑐𝑐𝑜𝑠ℎ𝑥) =

1

√𝑥2−1
, 𝑥 ∈ (1,+∞), 

𝑑

𝑑𝑥
(𝑎𝑟𝑐𝑡𝑎𝑛ℎ𝑥) =

1

1−𝑥2
, 𝑥 ∈ (−1,1), 

𝑑

𝑑𝑥
(𝑎𝑟𝑐𝑐𝑜𝑡ℎ𝑥) =

1

1−𝑥2
, 𝑥 ∈ (−∞,−1) ∪ (1,+∞). 

 

The Differential of a Function475 

If the function 𝑦 = 𝑓(𝑥) is differentiable on the interval [𝑎, 𝑏], then the derivative of 𝑦 at 

some 𝑥 ∈ [𝑎, 𝑏] is 

 

𝑓′(𝑥) = 𝑙𝑖𝑚𝛥𝑥→0
𝛥𝑦

𝛥𝑥
. 

 

As 𝛥𝑥 → 0, the ratio 
𝛥𝑦

𝛥𝑥
 approaches a definite number 𝑓′(𝑥), and, therefore, it differs 

from the derivative 𝑓′(𝑥) by an infinitesimal: 

 
𝛥𝑦

𝛥𝑥
= 𝑓′(𝑥) + 𝑞, (∗) 

 

where 𝑞 → 0 as 𝛥𝑥 → 0. Multiplying every term of (∗) by 𝛥𝑥, we obtain 

 

𝛥𝑦 = 𝑓′(𝑥)𝛥𝑥 + 𝑞𝛥𝑥. (∗∗) 

 

If 𝑓′(𝑥) ≠ 0, for a constant 𝑥 and a variable 𝛥𝑥 → 0, then the product 𝑓′(𝑥)𝛥𝑥 is an 

infinitesimal of the first order with respect to 𝛥𝑥. However, the product 𝑞𝛥𝑥 is always an 

infinitesimal of higher order with respect to 𝛥𝑥, since 

 

𝑙𝑖𝑚𝛥𝑥→0
𝑞𝛥𝑥

𝛥𝑥
= 𝑙𝑖𝑚𝛥𝑥→0𝑞 = 0. 

 

Hence, the increment 𝛥𝑦 of the function consists of two terms, and the first of these terms 

(when 𝑓′(𝑥) ≠ 0) is called the “principal part” of the increment, and it is linear with respect 

to 𝑥. The product 𝑓′(𝑥)𝛥𝑥 is called the “differential” of the function, and it is denoted by 

𝑑𝑦or 𝑑𝑓(𝑥), so that 𝑑𝑦 = 𝑓′(𝑥)𝛥𝑥. Therefore, the derivative 𝑓′(𝑥) can be construed as the 
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ratio of the differential of the function 𝑦 = 𝑓(𝑥) to the differential of the independent variable 

𝑥. 

 

A Note about Complex Derivatives 

In case of a function 𝑔 that takes real inputs and gives complex outputs, the derivative 

with respect to its real input consists in taking the derivatives of the real and the imaginary 

parts separately, namely: 

 
𝑑𝑔

𝑑𝑥
=

𝑑𝑅𝑒(𝑔)

𝑑𝑥
+ 𝑖

𝑑𝐼𝑚(𝑔)

𝑑𝑥
, 

 

where 𝑖 = √−1, 𝑅𝑒(𝑔) is the real part of 𝑔, and 𝐼𝑚(𝑔) is the imaginary part of 𝑔. 

 

 

2.10.2. The Basic Theorems of Differential Calculus  

 

Rolle’s Theorem476: Let 𝑓: [𝑎, 𝑏] → ℝ be a function satisfying the following conditions: 

 

i. 𝑓 is continuous on the closed interval [𝑎, 𝑏], 

ii. 𝑓 is differentiable on the open interval (𝑎, 𝑏), and 

iii. 𝑓(𝑎) = 𝑓(𝑏).  

 

Then there exists at least one point 𝑐 ∈ (𝑎, 𝑏) such that 𝑓′(𝑐) = 0.  

 

Geometric interpretation: Under the above conditions, there exists a point 𝑐 at which the 

tangent line to the graph of 𝑦 = 𝑓(𝑥) is parallel to the 𝑥-axis, as shown in Figure 2.22. In 

particular, conditions (i) and (ii) imply that the curve 𝑦 = 𝑓(𝑥) is continuous from 𝑥 = 𝑎 to 

𝑥 = 𝑏, and it has a definite tangent at each point between 𝑥 = 𝑎 and 𝑥 = 𝑏; and condition (iii) 

implies that the ordinates at the endpoints 𝑎 and 𝑏 are equal.  

 

 

Figure 2.22. Rolle’s Theorem. 

Algebraic interpretation: Since, according to condition (iii), 𝑓(𝑎) = 𝑓(𝑏), let 𝑓(𝑎) =

𝑓(𝑏) = 0. Then Rolle’s Theorem means that, if 𝑓(𝑥) is a polynomial in 𝑥, and if 𝑎 and 𝑏 are 
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two roots of the equation 𝑓(𝑥) = 0, then the equation 𝑓′(𝑥) = 0 has at least one root between 

𝑎 and 𝑏. In fact, the French mathematician Michel Rolle, after whom the above theorem is 

named, proved the given theorem in 1691 only in the case of polynomial functions, and a 

general proof of this theorem was achieved and published by Augustin-Louis Cauchy in 1823. 

The name “Rolle’s Theorem” was first used by the German mathematician, logician, 

psychologist, and philosopher Moritz Wilhelm Drobisch in the 1830s.  

 

Proof: Since 𝑓 is continuous on the closed interval [𝑎, 𝑏], it is bounded and attains its 

supremum (least upper bound) and its infimum (greatest lower bound) in [𝑎, 𝑏], as it was 

proved in section 2.7. Let inf (𝑓) = 𝑚, sup (𝑓) = 𝑀, and 𝑓(𝑎) = 𝑓(𝑏) = 𝑘. Then it must 

hold that 𝑚 ≤ 𝑘 ≤ 𝑀.  

 

First case: If 𝑚 = 𝑘 = 𝑀 (i.e., if 𝑓 is a constant function), then 𝑓(𝑥) = 𝑘, and, therefore, 

𝑓′(𝑥) = 0 ∀𝑘 ∈ (𝑎, 𝑏). 

 

Second case: If 𝑚 ≠ 𝑀, then 𝑚 < 𝑘 or 𝑘 < 𝑀. Suppose that 𝑘 < 𝑀. There exists a 𝑐 ∈
(𝑎, 𝑏) such that 𝑓(𝑐) = 𝑀, since, in section 2.7, it was proved that, if 𝑓 is continuous on the 

closed interval [𝑎, 𝑏], then it attains its supremum and its infimum in [𝑎, 𝑏]. Moreover, 𝑓′(𝑐) 

exists, because 𝑎 < 𝑐 < 𝑏. Notice that 𝑓(𝑥) ≤ 𝑀 ∀𝑥 ∈ [𝑎, 𝑏]. Therefore, if 𝑎 ≤ 𝑥 < 𝑐, then 
𝑓(𝑥)−𝑓(𝑐)

𝑥−𝑐
=

𝑓(𝑥)−𝑀

𝑥−𝑐
≥ 0, so that 𝑙𝑖𝑚𝑥→𝑐−

𝑓(𝑥)−𝑓(𝑐)

𝑥−𝑐
≥ 0 ⇔ 𝑓−

′(𝑐) ≥ 0. If 𝑐 < 𝑥 ≤ 𝑏, then 

𝑓(𝑥)−𝑓(𝑐)

𝑥−𝑐
=

𝑓(𝑥)−𝑀

𝑥−𝑐
≤ 0, so that 𝑙𝑖𝑚𝑥→𝑐+

𝑓(𝑥)−𝑓(𝑐)

𝑥−𝑐
≤ 0 ⇔ 𝑓+

′(𝑐) ≤ 0. Consequently, 0 ≤

𝑓−
′(𝑐) = 𝑓′(𝑐) = 𝑓+

′(𝑐) ≤ 0 ⇒ 𝑓′(𝑐) = 0. We can work similarly in order to prove the 

theorem for 𝑚 < 𝑘.■ 

 

In mathematical analysis, the mean value theorems play a very important role, because 

they examine the relationship between the values of a function and the values of the 

derivative of the given function.  

 

Lagrange’s Mean Value Theorem477: If 𝑓: [𝑎, 𝑏] → ℝ is a function continuous on [𝑎, 𝑏] 

and differentiable on (𝑎, 𝑏), then there exists a 𝑐 ∈ (𝑎, 𝑏) such that 𝑓′(𝑐) =
𝑓(𝑏)−𝑓(𝑎)

𝑏−𝑎
. 

 

Geometric interpretation: As shown in Figure 2.23, Lagrange’s Mean Value Theorem 

implies that the slope of the chord passing through the points of the graph corresponding to 

the ends of the segment 𝑎 and 𝑏 is equal to 𝑘 = 𝑡𝑎𝑛𝜃 =
𝑓(𝑏)−𝑓(𝑎)

𝑏−𝑎
, and then there exists a 

point 𝑥 = 𝑐 inside the closed interval [𝑎, 𝑏] such that the tangent to the graph at 𝑥 = 𝑐 is 

parallel to the chord. 

 

Proof: Let 𝑔(𝑥) be a function whose domain is 𝐷𝑓 = [𝑎, 𝑏], and let 

 

𝑔(𝑥) = 𝑓(𝑥) − [𝑓(𝑎) +
𝑓(𝑏)−𝑓(𝑎)

𝑏−𝑎
(𝑥 − 𝑎)] = [𝑓(𝑥) − 𝑓(𝑎)] − [

𝑓(𝑏)−𝑓(𝑎)

𝑏−𝑎
(𝑥 − 𝑎)]. 
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Figure 2.23. Lagrange’s Mean Value Theorem. 

Because 𝑓 is continuous on [𝑎, 𝑏] and differentiable on (𝑎, 𝑏), 𝑔 is also, and 𝑔(𝑎) =

𝑔(𝑏) = 0. Therefore, due to Rolle’s Theorem, ∃𝑐 ∈ (𝑎, 𝑏)|𝑔′(𝑐) = 0, and 𝑔′(𝑥) = 𝑓′(𝑥) −
𝑓(𝑏)−𝑓(𝑎)

𝑏−𝑎
⇒ 𝑔′(𝑐) = 𝑓′(𝑐) −

𝑓(𝑏)−𝑓(𝑎)

𝑏−𝑎
.■ 

For instance, given 𝑓(𝑥) = 𝑥2 + 𝑥 + 1, if we are asked to find the point 𝑐 at which 𝑓′(𝑥) 

gets its mean value in [0,2], then we work as follows: we confirm that the hypotheses of 

Lagrange’s Mean Value Theorem are satisfied, and, therefore, ∃𝑐 ∈ (𝑎, 𝑏)|
𝑓(𝑏)−𝑓(𝑎)

𝑏−𝑎
=

𝑓′(𝑐) ⇒
𝑓(2)−𝑓(0)

2−0
= 3 = 𝑓′(𝑐) = 2𝑐 + 1 ⇒ 𝑐 = 1.  

Given a differentiable function 𝑓(𝑥) with, say, 𝑓(0) = 1 and |𝑓′(𝑥)| ≤ 4 for 0 ≤ 𝑥 ≤ 1, 

if we are asked to find the bounds on 𝑓(𝑥) in [0,1], we work as follows: ∀𝑥 ≠ 0,
𝑓(𝑥)−𝑓(0)

𝑥−0
=

𝑓(𝑥)−1

𝑥
= 𝑓′(𝑐), 0 < 𝑐 < 𝑥 &|𝑓′(𝑐)| ≤ 4. Moreover, because 𝑥 is positive, we have |

𝑓(𝑥)−1

𝑥
| =

|𝑓(𝑥)−1|

𝑥
≤ 4 ⇔ |𝑓(𝑥) − 1| ≤ 4𝑥 ⇔ −4𝑥 ≤ 𝑓(𝑥) − 1 ≤ 4𝑥 ⇔ 1 − 4𝑥 ≤ 𝑓(𝑥) ≤ 1 + 4𝑥. 

Since 𝑥 ∈ [0,1], we obtain 1 ≤ 𝑓(𝑥) ≤ 5. 

Augustin-Louis Cauchy has generalized Lagrange’s Mean Value Theorem, so that there 

is Cauchy’s Mean Value Theorem, too. 

 

Cauchy’s Mean Value Theorem478: Let 𝑓 and 𝑔 be two functions continuous on [𝑎, 𝑏] and 

differentiable on (𝑎, 𝑏) with 𝑔′(𝑥) ≠ 0 ∀𝑥 ∈ (𝑎, 𝑏). Then there exists a 𝑐 ∈ (𝑎, 𝑏) such that 
𝑓(𝑏)−𝑓(𝑎)

𝑔(𝑏)−𝑔(𝑎)
=

𝑓′(𝑐)

𝑔′(𝑐)
. 

 

Proof: Suppose that ℎ(𝑥) = [𝑔(𝑏) − 𝑔(𝑎)] ∙ [𝑓(𝑥) − 𝑓(𝑎)] − [𝑔(𝑥) − 𝑔(𝑎)] ∙
[𝑓(𝑏) − 𝑓(𝑎)]. Then ℎ(𝑎) = 0 = ℎ(𝑏). Because ℎ is continuous on [𝑎, 𝑏] and differentiable 

on (𝑎, 𝑏), Rolle’s Theorem implies that ∃𝑐 ∈ (𝑎, 𝑏)|ℎ′(𝑐) = 0. Hence, ℎ′(𝑐) = [𝑔(𝑏) −

𝑔(𝑎)] ∙ [𝑓′(𝑐)] − [𝑔′(𝑐)] ∙ [𝑓(𝑏) − 𝑓(𝑎)] ⇒ [𝑓′(𝑐)] ∙ [𝑔(𝑏) − 𝑔(𝑎)] = [𝑔′(𝑐)] ∙

[𝑓(𝑏) − 𝑓(𝑎)]. Dividing by 𝑔′(𝑐) ≠ 0 and by [𝑔(𝑏) − 𝑔(𝑎)], we obtain 
𝑓(𝑏)−𝑓(𝑎)

𝑔(𝑏)−𝑔(𝑎)
=

𝑓′(𝑐)

𝑔′(𝑐)
.■ 

 
478 Ibid. 
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L’Hôpital’s Rule479: Assume that the functions 𝑓 and 𝑔 are continuous on [𝑎, 𝑏] and 

differentiable on (𝑎, 𝑏) with 𝑓(𝑎) = 𝑔(𝑎) = 0 and 𝑔′(𝑥) ≠ 0 ∀𝑥 ∈ (𝑎, 𝑏). Then, if 

𝑙𝑖𝑚𝑥→𝑎+
𝑓′(𝑥)

𝑔′(𝑥)
= 𝐿 where 𝐿 ∈ ℝ̅ = ℝ ∪ {−∞,+∞}, it holds that 𝑙𝑖𝑚𝑥→𝑎+

𝑓(𝑥)

𝑔(𝑥)
= 𝐿. 

 

Proof: If 𝑙𝑖𝑚𝑥→𝑎+
𝑓′(𝑥)

𝑔′(𝑥)
= 𝐿, then,  

 

∀𝜀 > 0, ∃𝛿 > 0|𝑎 < 𝑥 < 𝑎 + 𝛿 ⇒ |
𝑓′(𝑥)

𝑔′(𝑥)
− 𝐿| < 𝜀. 

 

Due to Cauchy’s Mean Value Theorem, 

 

∀𝑥 𝑤𝑖𝑡ℎ 𝑎 < 𝑥 < 𝑎 + 𝛿, ∃𝑝 ∈ (𝑎, 𝑥)|
𝑓(𝑥)−𝑓(𝑎)

𝑔(𝑥)−𝑔(𝑎)
=

𝑓′(𝑝)

𝑔′(𝑝)
⇒

𝑓(𝑥)

𝑔(𝑥)
=

𝑓′(𝑝)

𝑔′(𝑝)
.  

 

Thus, since 𝑎 < 𝑝 < 𝑥 < 𝑎 + 𝛿, 

 

|
𝑓(𝑥)

𝑔(𝑥)
− 𝐿| = |

𝑓′(𝑝)

𝑔′(𝑝)
− 𝐿| < 𝜀, 

 

which holds ∀𝑥 𝑤𝑖𝑡ℎ 𝑎 < 𝑥 < 𝑎 + 𝛿, so that 

 

𝑙𝑖𝑚𝑥→𝑎+
𝑓(𝑥)

𝑔(𝑥)
= 𝐿. 

 

If 𝐿 = +∞, then 𝑙𝑖𝑚𝑥→𝑎+
𝑓′(𝑥)

𝑔′(𝑥)
= +∞ implies that,  

 

∀𝑡 > 0, ∃𝛿 > 0|𝑎 < 𝑥 < 𝑎 + 𝛿 ⇒
𝑓′(𝑥)

𝑔′(𝑥)
> 𝑡. 

 

For every such 𝑥, Cauchy’s Mean Value Theorem implies that there exists a 𝑝 ∈ (𝑎, 𝑥) 

such that  

 
𝑓(𝑥)

𝑔(𝑥)
=

𝑓′(𝑝)

𝑔′(𝑝)
> 𝑡, 

 

and, therefore, 𝑙𝑖𝑚𝑥→𝑎+
𝑓(𝑥)

𝑔(𝑥)
= +∞. In case 𝐿 = −∞, work similarly.■ 

 

Remark:  L’Hôpital’s Rule also holds if we are considering left-hand limits. Moreover, if 

𝑓 and 𝑔 are two functions such that 𝑙𝑖𝑚𝑥→𝑎𝑓(𝑥) = ∞ and 𝑙𝑖𝑚𝑥→𝑎𝑔(𝑥) = ∞, then 

𝑙𝑖𝑚𝑥→𝑎
𝑓(𝑥)

𝑔(𝑥)
= 𝑙𝑖𝑚𝑥→𝑎

𝑓′(𝑥)

𝑔′(𝑥)
. 

In other words, L’Hôpital’s Rule, named after the French mathematician Guillaume 

Marquis de l’Hôpital (1661–1704), tells us that, if we have an indeterminate form 0 0⁄  or 

∞ ∞⁄ , all we need to do is to differentiate both the numerator and the denominator and then 

 
479 Ibid.  
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compute the limit. For instance, 𝑙𝑖𝑚𝑥→∞
𝑙𝑛𝑥

𝑥
= 𝑙𝑖𝑚𝑥→∞

(𝑙𝑛𝑥)′

(𝑥)′
= 𝑙𝑖𝑚𝑥→∞

1

𝑥

1
= 0. Similarly, in 

order to compute 𝑙𝑖𝑚𝑛→∞ √𝑛
𝑛

, we set 𝑓(𝑥) = 𝑥
1

𝑥 ⇔ 𝑓(𝑥) = 𝑒
1

𝑥
𝑙𝑛𝑥

, so that 𝑙𝑖𝑚𝑥→∞𝑥
1

𝑥 =

𝑒𝑙𝑖𝑚𝑥→∞
𝑙𝑛𝑥

𝑥 = 𝑒𝑙𝑖𝑚𝑥→∞

1
𝑥
1 = 𝑒0 = 1. 

 

The Formulas of Taylor and MacLaurin480: In mathematical analysis, we can study the 

behavior of functions by approximating them through polynomials. According to Lagrange’s 

Mean Value Theorem,  

 

𝑓′(𝑐) =
𝑓(𝑏)−𝑓(𝑎)

𝑏−𝑎
⇒ 𝑓(𝑏) − 𝑓(𝑎) = (𝑏 − 𝑎)𝑓′(𝑐) ⇒ 𝑓(𝑏) = 𝑓(𝑎) +

𝑏−𝑎

1!
𝑓′(𝑐).  

 

Hence, if 𝑓:ℝ → ℝ is a continuous function such that 𝑓 has continuous derivatives of all 

orders at 𝑥 = 𝑐, then 𝑓(𝑥) can be expanded into a power series as follows: 

 

𝑓(𝑥) = 𝑓(𝑐) +
𝑥−𝑐

1!
𝑓′(𝑐) +

(𝑥−𝑐)2

2!
𝑓′′(𝑐) + ⋯+

(𝑥−𝑐)𝑛

𝑛!
𝑓(𝑛)(𝑐) +⋯, 

 

which is known as Taylor’s Formula, and it is named after the English mathematician Brook 

Taylor, who stated a version of it in 1715. For 𝑐 = 0, the aforementioned power series 

becomes 

 

𝑓(𝑥) = 𝑓(0) +
𝑥

1!
𝑓′(0) +

𝑥2

2!
𝑓′′(0) + ⋯+

𝑥𝑛

𝑛!
𝑓(𝑛)(0) + ⋯, 

 

which is known as MacLaurin’s Formula, and it is named after the Scottish mathematician 

Colin MacLaurin, who discovered it in the 1730s.  

Specifically, we can work as follows: Let us assume that the function 𝑦 = 𝑓(𝑥) is 

differentiable of order (𝑛 + 1) on some interval containing the point 𝑥 = 𝑎. We shall find a 

polynomial 𝑦 = 𝑃𝑛(𝑥) of degree at most equal to 𝑛, the value of which at 𝑥 = 𝑎 is equal to 

the value of the function 𝑓(𝑥) at this point, and the values of its derivatives up to the 𝑛th 

order at 𝑥 = 𝑎 are equal to the values of the corresponding derivatives of the function 𝑓(𝑥) at 

this point, symbolically: 

 

𝑃𝑛(𝑎) = 𝑓(𝑥) and  (1) 

 

𝑃𝑛
′(𝑎) = 𝑓′(𝑎), 𝑃𝑛

′′(𝑎) = 𝑓′′(𝑎),… , 𝑃𝑛
(𝑛)(𝑎) = 𝑓(𝑛)(𝑎).  (2) 

 

Such a polynomial is “close” to the function 𝑓(𝑥). Let us think of this polynomial as a 

polynomial in degrees of (𝑥 − 𝑎) with undetermined coefficients, namely, 

 

𝑃𝑛(𝑥) = 𝐴0 + 𝐴1(𝑥 − 𝑎) + 𝐴2(𝑥 − 𝑎)
2 +⋯+ 𝐴𝑛(𝑥 − 𝑎)

𝑛.  (3) 

 

The undetermined coefficients 𝐴0, 𝐴1, 𝐴2, … , 𝐴𝑛 must satisfy conditions (1) and (2). 

 
480 Ibid. 
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The derivatives of 𝑃𝑛(𝑥) are the following: 

 

𝑃𝑛
′(𝑥) = 𝐴1 + 2𝐴2(𝑥 − 𝑎) + 3𝐴3(𝑥 − 𝑎)

2 +⋯+ 𝑛𝐴𝑛(𝑥 − 𝑎)
𝑛−1

𝑃𝑛
′′(𝑥) = 2𝐴2 + 3 ∙ 2𝐴3(𝑥 − 𝑎) +⋯+ 𝑛(𝑛 − 1)𝐴𝑛(𝑥 − 𝑎)

𝑛−2

⋮

𝑃𝑛
(𝑛)(𝑥) = 𝑛(𝑛 − 1)…2 ∙ 1 ∙ 𝐴𝑛 }

 

 

.  (4) 

 

If we substitute into the left-hand and the right-hand sides of (3) and (4) the value of 𝑎 in 

place of 𝑥, and if, according to (1) and (2), we replace 𝑃𝑛(𝑎) with 𝑓(𝑎), 𝑃𝑛
′(𝑎) with 𝑓′(𝑎), 

etc., then we obtain 

 

𝑓(𝑎) = 𝐴0, 

𝑓′(𝑎) = 𝐴1, 

𝑓′′(𝑎) = 2 ∙ 1𝐴2, 

𝑓′′′(𝑎) = 3 ∙ 2 ∙ 1𝐴3, 

⋮ 

𝑓(𝑛)(𝑎) = 𝑛(𝑛 − 1)(𝑛 − 2)…2 ∙ 1𝐴𝑛, 

 

so that: 

 

𝐴0 = 𝑓(𝑎), 

𝐴1 = 𝑓
′(𝑎), 

𝐴2 =
1

2∙1
𝑓′′(𝑎), 

𝐴3 =
1

3∙2∙1
𝑓′′′(𝑎), 

⋮ 

𝐴𝑛 =
1

𝑛(𝑛−1)(𝑛−2)…2∙1
𝑓(𝑛)(𝑎). 

 

Substituting the aforementioned values of 𝐴0, 𝐴1, 𝐴2, … , 𝐴𝑛 into (3), we obtain the 

polynomial 

 

𝑃𝑛(𝑥) = 𝑓(𝑎) +
𝑥−𝑎

1
𝑓′(𝑎) +

(𝑥−𝑎)2

1∙2
𝑓′′(𝑎) +

(𝑥−𝑎)3

1∙2∙3
𝑓′′′(𝑎) + ⋯+

(𝑥−𝑎)𝑛

1∙2∙3…𝑛
𝑓(𝑛)(𝑎). 

 

Let  

 

𝑅𝑛(𝑥) = 𝑓(𝑥) − 𝑃𝑛(𝑥) ⇔ 𝑓(𝑥) = 𝑃𝑛(𝑥) + 𝑅𝑛(𝑥), 

 

namely, 𝑅𝑛(𝑥) is the difference of the values of the given function 𝑓(𝑥) and of the 

constructed polynomial 𝑃𝑛(𝑥), so that: 

 

𝑓(𝑥) = 𝑓(𝑎) +
𝑥−𝑎

1!
𝑓′(𝑎) +

(𝑥−𝑎)2

2!
𝑓′′(𝑎) +

(𝑥−𝑎)3

3!
𝑓′′′(𝑎) + ⋯+

(𝑥−𝑎)𝑛

𝑛!
𝑓(𝑛)(𝑎) +

𝑅𝑛(𝑥).  (5) 
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The expression 𝑅𝑛(𝑥) is called the “remainder,” and, for those values of 𝑥 that the 

remainder is sufficiently small, the polynomial 𝑃𝑛(𝑥) yields a satisfactory approximation of 

the function 𝑓(𝑥). In other words, formula (5), that is, Taylor’s Formula, enables one to 

replace the original function 𝑦 = 𝑓(𝑥) with the polynomial 𝑦 = 𝑃𝑛(𝑥) to an appropriate 

degree of accuracy equal to the remainder 𝑅𝑛(𝑥). 

 

Theorem (Taylor’s Formula)481: Let 𝑓: [𝑎, 𝑏] → ℝ be a function such that 𝑓(𝑛−1)(𝑥) is 

continuous on [𝑎, 𝑏], and 𝑓(𝑛) exists in (𝑎, 𝑏). If 𝑐 ∈ [𝑎, 𝑏], then, for every 𝑥 ∈ [𝑎, 𝑏], there 

exists a number 𝑝 between 𝑥 and 𝑐 such that  

 

𝑓(𝑥) = 𝑓(𝑐) +
𝑥−𝑐

1!
𝑓′(𝑐) +

(𝑥−𝑐)2

2!
𝑓′′(𝑐) + ⋯+

(𝑥−𝑐)𝑛−1

(𝑛−1)!
𝑓(𝑛−1)(𝑐) + 𝑅𝑛(𝑥), 

 

where  

 

𝑅𝑛(𝑥) =
(𝑥−𝑝)𝑛−𝑚∙(𝑥−𝑐)𝑚

𝑚(𝑛−1)!
𝑓(𝑛)(𝑝), and 𝑚 is a positive integer. 

 

Proof: Notice that the continuity of 𝑓(𝑛−1)(𝑥) implies the existence of the derivatives, 

𝑓′, 𝑓′′, … , 𝑓(𝑛−1) and their continuity on [𝑎, 𝑏]. Let 𝐽 be the closed interval whose endpoints 

are 𝑥 and 𝑐 (we do not know which of these two numbers is greater than the other). Consider 

the function 𝑔: 𝐽 → ℝ with 

 

𝑔(𝑡) = 𝑓(𝑡) + (𝑥 − 𝑡)𝑓′(𝑡) + ⋯+
(𝑥−𝑡)𝑛−1

(𝑛−1)!
𝑓(𝑛−1)(𝑡) + 𝐴(𝑥 − 𝑡)𝑚, 

 

where 𝐴 is a constant, which we choose in such a way that 𝑔(𝑥) = 𝑔(𝑐). Then 

 

𝑔(𝑥) = 𝑓(𝑥) and 

𝑔(𝑐) = 𝑓(𝑐) + (𝑥 − 𝑐)𝑓′(𝑐) + ⋯+
(𝑥−𝑐)𝑛−1

(𝑛−1)!
𝑓(𝑛−1)(𝑐) + 𝐴(𝑥 − 𝑐)𝑚, 

 

so that 

 

𝑅𝑛(𝑥) = 𝐴(𝑥 − 𝑐)
𝑚. (∗) 

 

We know that  

 

𝑓, 𝑓′, 𝑓′′, … , 𝑓(𝑛−1) are continuous on [𝑎, 𝑏], 

 

the function 𝑔 is continuous on 𝐽, 

 

𝑓, 𝑓′, 𝑓′′, … , 𝑓(𝑛−1) and (𝑥 − 𝑡)𝑚 are differentiable on (𝑎, 𝑏), and 

𝑔(𝑥) = 𝑔(𝑐). 

 

 
481 Ibid. 
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Then, due to Rolle’s Theorem, there exists a 𝑝 between 𝑥 and 𝑐 such that 𝑔′(𝑝) = 0. But 

 

𝑔′(𝑡) = 𝑓′(𝑡) + [−𝑓′(𝑡) + (𝑥 − 𝑡)𝑓′′(𝑡)] + [−(𝑥 − 𝑡)𝑓′′(𝑡) +
(𝑥 − 𝑡)2

2
𝑓′′′(𝑡)] + ⋯+ 

[−
(𝑥−𝑡)𝑛−2

(𝑛−2)!
𝑓(𝑛−1)(𝑡) +

(𝑥−𝑡)𝑛−1

(𝑛−1)!
𝑓(𝑛)(𝑡)] − 𝐴𝑚(𝑥 − 𝑡)𝑚−1. 

 

Therefore, by simplifying the first term in each parenthesis with its previous one, we 

obtain 

 

0 = 𝑔′(𝑝) =
(𝑥−𝑝)𝑛−1

(𝑛−1)!
𝑓(𝑛)(𝑝) − 𝐴𝑚(𝑥 − 𝑝)𝑚−1. 

 

Hence, 𝐴 =
(𝑥−𝑝)𝑛−𝑚

𝑚(𝑛−1)!
𝑓(𝑛)(𝑝), and (∗) implies that 

 

𝑅𝑛(𝑥) =
(𝑥−𝑝)𝑛−𝑚

𝑚(𝑛−1)!
(𝑥 − 𝑐)𝑚𝑓(𝑛)(𝑝), 

 

which proves the theorem.■ 

 

Remark: In the above theorem, 𝑅𝑛(𝑥) is called the “Schlömilch and Röche Remainder.” 

In particular: 

 

i. for 𝑚 = 1, we obtain 𝑅𝑛(𝑥) =
(𝑥−𝑐)(𝑥−𝑝)𝑛−1

(𝑛−1)!
𝑓(𝑛)(𝑝), 

which is known as the “Cauchy Remainder”; 

ii. for 𝑚 = 𝑛, we obtain 

𝑅𝑛(𝑥) =
(𝑥−𝑐)𝑛

𝑛!
𝑓(𝑛)(𝑝), 

which is known as the “Lagrange Remainder.”  

 

Because every number 𝑝 between 0 and 𝑥 can be expressed as 𝑝 = 𝑘𝑥 where 0 < 𝑘 < 1, 

the aforementioned remainders can be expressed, respectively, as follows: 

 

i. 𝑅𝑛(𝑥) =
𝑥𝑛(1−𝑘)𝑛−𝑚

𝑚(𝑛−1)!
𝑓(𝑛)(𝑘𝑥), 0 < 𝑘 < 1 (Schlömilch and Röche); 

ii. 𝑅𝑛(𝑥) =
𝑥𝑛(1−𝑘)𝑛−1

(𝑛−1)!
𝑓(𝑛)(𝑘𝑥), 0 < 𝑘 < 1 (Cauchy); 

iii. 𝑅𝑛(𝑥) =
𝑥𝑛

𝑛!
𝑓(𝑛)(𝑘𝑥), 0 < 𝑘 < 1 (Lagrange). 

 

Using MacLaurin’s formula, we can find a power series expansion of 𝑓:ℝ → ℝ defined 

by 𝑓(𝑥) = 𝑒𝑥 at the neighborhood of the origin as follows: Because 

 

𝑓(𝑥) = 𝑒𝑥, 𝑓′(𝑥) = 𝑒𝑥, 𝑓′′(𝑥) = 𝑒𝑥, … , 𝑓(𝑛)(𝑥) = 𝑒𝑥, and 

𝑓(0) = 1, 𝑓′(0) = 1, 𝑓′′(0) = 1,… , 𝑓(𝑛)(0) = 1, 

 

MacLaurin’s series expansion implies that  
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𝑒𝑥 = 1 +
𝑥

1!
+
𝑥2

2!
+
𝑥3

3!
+⋯+

𝑥𝑛

𝑛!
+⋯ = ∑

𝑥𝑛

𝑛!
∞
𝑛=0 , 

 

and, for 𝑥 = 1, we obtain 

 

𝑒 = 1 +
1

1!
+

1

2!
+

1

3!
+⋯+

1

𝑛!
+⋯, 

 

which was originally discovered by Leonhard Euler. Therefore, ∀𝑥 ∈ ℝ,  

 

𝑒𝑥 = 1 +
𝑥

1!
+
𝑥2

2!
+
𝑥3

3!
+⋯+

𝑥𝑛

𝑛!
+⋯ = ∑

𝑥𝑛

𝑛!
∞
𝑛=0 , 

 

and, given that 𝑓(𝑥) = 𝑒𝑥, 𝑓(𝑛)(𝑥) = 𝑒𝑥, and 𝑓(𝑛)(0) = 1, it holds that 

 

𝑒𝑥 = 1 +
𝑥

1!
+
𝑥2

2!
+
𝑥3

3!
+⋯+

𝑥𝑛−1

(𝑛−1)!
+ 𝑅𝑛(𝑥), 

 

where the Lagrange Remainder 𝑅𝑛(𝑥) =
𝑥𝑛

𝑛!
𝑒𝑘𝑥 with 0 < 𝑘 < 1. 

 

Furthermore, we can prove that 

 

𝑒 = 1 +
1

1!
+
1

2!
+
1

3!
+⋯+

1

𝑛!
+ ⋯ 

 

is irrational in the following way, which was originally proposed by the French 

mathematician and physicist Joseph Fourier in 1815: Because 

 

𝑒𝑥 = 1 +
𝑥

1!
+
𝑥2

2!
+
𝑥3

3!
+⋯+

𝑥𝑛

𝑛!
+⋯ = ∑

𝑥𝑛

𝑛!
∞
𝑛=0 , 

 

it holds that 

 

𝑒𝑥 = 1 +
𝑥

1!
+
𝑥2

2!
+
𝑥3

3!
+⋯+

𝑥𝑛−1

(𝑛−1)!
+
𝑥𝑛

𝑛!
𝑒𝑘𝑥, where 0 < 𝑘 < 1. 

 

For 𝑥 = 1, we obtain 

 

𝑒 = 1 +
1

1!
+

1

2!
+

1

3!
+⋯+

1

(𝑛−1)!
+

1

𝑛!
𝑒𝑘, 0 < 𝑘 < 1. 

 

In order to prove that 𝑒 is irrational, it suffices to prove that there exist no positive 

integers 𝑝 and 𝑞 such that 𝑒 =
𝑝

𝑞
. For the sake of contradiction, let 

 

1 +
1

1!
+

1

2!
+

1

3!
+⋯+

1

(𝑛−1)!
+
𝑒𝑘

𝑛!
=

𝑝

𝑞
 with 𝑛 ≥ 𝑞 + 1 and 𝑛 ≥ 3. Multiplying by 

(𝑛 − 1)!, we obtain 
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(𝑛 − 1)!
𝑝

𝑞
− (𝑛 − 1)! (1 +

1

1!
+

1

2!
+

1

3!
+⋯+

1

(𝑛−1)!
) =

𝑒𝑘

𝑛
. 

 

But this equation is not valid, because the first part is an integer, whereas the second part 

is not an integer, since 0 < 𝑘 < 1 ⇒ 𝑒0 < 𝑒𝑘 < 𝑒 ⇒ 1 < 𝑒𝑘 < 3, that is, 0 <
𝑒𝑘

𝑛
< 1. The 

aforementioned contradiction implies that 𝑒 is an irrational number. 

In addition, by defining 𝑠𝑖𝑛𝑥, 𝑐𝑜𝑠𝑥, 𝑡𝑎𝑛𝑥, and 𝑐𝑜𝑡𝑥 via exponential functions, we can 

verify Euler’s theorem according to which 𝑒𝑖𝑥 = 𝑐𝑜𝑠𝑥 + 𝑖𝑠𝑖𝑛𝑥, where 𝑖 = √−1, and we can 

prove that 𝑖𝑖 ∈ ℝ, since 𝑖𝑖 = (𝑒
𝑖𝜋

2 )
𝑖

= 𝑒𝑖
2𝜋

2 = 𝑒−
𝜋

2 (𝑖 = 𝑒𝑖
𝜋

2  derives from the representation 

𝑒𝑖𝑥 = cos𝑥 + 𝑖𝑠𝑖𝑛𝑥, which, for 𝑥 =
𝜋

2
, gives 𝑒𝑖

𝜋

2 = 𝑐𝑜𝑠
𝜋

2
+ 𝑖𝑠𝑖𝑛

𝜋

2
= 0+ 𝑖 ∙ 1 = 𝑖). 

 

 

2.10.3. Monotonicity, Critical Points, and Extreme Points of a Function  

 

Theorem482: If a function 𝑦 = 𝑓(𝑥) is differentiable on an interval (𝑎, 𝑏), then: 

 

i. 𝑓 is increasing on the interval (𝑎, 𝑏) if and only if 𝑓′(𝑥) ≥ 0 ∀ 𝑥 ∈ (𝑎, 𝑏); 

ii. 𝑓 is decreasing on the interval (𝑎, 𝑏) if and only if 𝑓′(𝑥) ≤ 0 ∀ 𝑥 ∈ (𝑎, 𝑏). 

 

Geometric significance: A differentiable function increases where its graph has positive 

slopes, and decreases where its graph has negative slopes.  

 

Proof: (i) Let 𝑓 be differentiable and increasing on the interval (𝑎, 𝑏). Consider an 

arbitrary point 𝑥0 ∈ (𝑎, 𝑏). If a function 𝑦 = 𝑓(𝑥) is increasing on (𝑎, 𝑏), then, by definition, 

the following conditions hold: 

∀𝑥 ∈ (𝑎, 𝑏), 𝑥 > 𝑥0 ⇒ 𝑓(𝑥) > 𝑓(𝑥0), and 

∀𝑥 ∈ (𝑎, 𝑏), 𝑥 < 𝑥0 ⇒ 𝑓(𝑥) < 𝑓(𝑥0). 

 

It can be easily verified that, in both cases, the following inequality holds: 

 
𝑓(𝑥)−𝑓(𝑥0)

𝑥−𝑥0
≥ 0, where 𝑥 ≠ 𝑥0. 

 

In the limit 𝑙𝑖𝑚𝑥→𝑥0

𝑓(𝑥)−𝑓(𝑥0)

𝑥−𝑥0
≥ 0, the left-hand side of the inequality is equal to the 

derivative of the function at the point 𝑥0. Therefore, 𝑙𝑖𝑚𝑥→𝑥0

𝑓(𝑥)−𝑓(𝑥0)

𝑥−𝑥0
≥ 0 ⇔ 𝑓′(𝑥0) ≥ 0, 

and this inequality holds for an arbitrary point 𝑥0 ∈ (𝑎, 𝑏). 

Conversely, suppose that 𝑓′(𝑥) ≥ 0 ∀ 𝑥 ∈ (𝑎, 𝑏). Hence, Lagrange’s Mean Value 

Theorem implies that, if 𝑥1 and 𝑥2 are two arbitrary points of the interval (𝑎, 𝑏) with 𝑥1 < 𝑥2, 

then 

 

∃𝑐 ∈ (𝑥1, 𝑥2)|𝑓(𝑥2) − 𝑓(𝑥1) = (𝑥2 − 𝑥1) ∙ 𝑓
′(𝑐).  

 
482 Ibid. 
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Because 𝑓′(𝑐) ≥ 0 and 𝑥2 − 𝑥1 > 0, it holds that 𝑓(𝑥2) − 𝑓(𝑥1) ≥ 0. Therefore, 

𝑓(𝑥2) ≥ 𝑓(𝑥1), meaning that 𝑓 is increasing on the interval (𝑎, 𝑏). 

 

(ii) Its proof is similar to the proof of (i).■ 

 

Remark: If 𝑓: 𝐴 → ℝ is differentiable on the interval 𝐴, then, if 𝑓′(𝑥) > 0 (resp. 𝑓′(𝑥) <

0) ∀ 𝑥 ∈ 𝐴, 𝑓 is strictly increasing (resp. strictly decreasing) on 𝐴. Moreover, notice that, if 

𝑓′(𝑥) = 0 for all 𝑥 ∈ 𝐴, then 𝑓(𝑥) is constant on the interval 𝐴. 

 

Example 1: Let us investigate the monotonicity of 𝑓(𝑥) = 𝑥2 − 2𝑥 + 10. Because 

𝑓′(𝑥) = 2𝑥 − 2, 𝑓(𝑥) increases in (1,+∞) and decreases in (−∞,1). Similarly, we can 

investigate the monotonicity of 𝑓(𝑥) = 𝑠𝑖𝑛𝑥 as follows: given that 𝑓′(𝑥) = 𝑐𝑜𝑠𝑥, and that 

𝑐𝑜𝑠𝑥 is positive in the first and the fourth quadrants, and negative in the second and the third 

quadrants, 𝑓(𝑥) = 𝑠𝑖𝑛𝑥 is increasing on the intervals (0,
𝜋

2
) and (

3𝜋

2
, 2𝜋) and decreasing on 

(
𝜋

2
,
3𝜋

2
). 

 

Example 2: We can prove that, if 𝑥 < 𝑦, then 𝑥 + 𝑐𝑜𝑠𝑥 < 𝑦 + 𝑐𝑜𝑠𝑦 as follows: If 

𝑓(𝑤) = 𝑤 + 𝑐𝑜𝑠𝑤, then the fact that 𝑓′(𝑤) = 1 − 𝑠𝑖𝑛𝑤 ≥ 0implies that 𝑓(𝑤) is increasing. 

Therefore, for 𝑥 < 𝑦, 𝑓(𝑥) < 𝑓(𝑦) ⇒ 𝑥 + 𝑐𝑜𝑠𝑥 < 𝑦 + 𝑐𝑜𝑠𝑦.  

The points at which the derivative of a function 𝑓 is equal to zero or does not exist are 

called the “critical points” of 𝑓.  

A function 𝑓: 𝐴 → ℝ, where 𝐴 ⊆ ℝ, has a “local maximum” (resp. “local minimum”) at 

𝑎 ∈ 𝐴 if and only if, there exists a 𝛿 > 0 such that 𝑓(𝑎) ≥ 𝑓(𝑥) (resp. 𝑓(𝑎) ≤ 𝑓(𝑥)) for 

every 𝑥 ∈ 𝑁𝛿(𝑎) ∩ 𝐴, that is, for every 𝑥 ∈ (𝑎 − 𝛿, 𝑎 + 𝛿) ∩ 𝐴. Then the real number 𝑓(𝑎) is 

called a “local maximum” (resp. “local minimum”) of 𝑓 at 𝑥 = 𝑎 ∈ 𝐴. The local maximum 

and the local minimum of 𝑓 are called the “local extrema,” or the “local extreme values,” of 

𝑓. Thus, at a point 𝑎 ∈ 𝐴 at which 𝑓: 𝐴 → ℝ has a local extremum (i.e., a local maximum or a 

local minimum), the difference 𝑓(𝑥) − 𝑓(𝑎) maintains the same sign for all 𝑥 in the 

neighborhood 𝑁𝛿(𝑎) = (𝑎 − 𝛿, 𝑎 + 𝛿). If the function 𝑓: 𝐴 → ℝ is continuous, and if 𝐴 is a 

closed interval, say 𝐴 = [𝑢, 𝑣], then, by the theorems on continuous functions that were 

proved in section 2.7, there exist 𝑥𝑘 and 𝑥𝑙 in [𝑢, 𝑣] such that 𝑓(𝑥𝑘) = min (𝑓(𝑥)) and 

𝑓(𝑥𝑙) = max (𝑓(𝑥)) with 𝑥 ∈ [𝑢, 𝑣]. Then 𝑓(𝑥𝑘) ≤ 𝑓(𝑥) ∀𝑥 ∈ [𝑢, 𝑣], and 𝑓(𝑥𝑙) ≥

𝑓(𝑥) ∀𝑥 ∈ [𝑢, 𝑣]. The value 𝑓(𝑥𝑘), which is the least value of 𝑓 for 𝑥 ∈ [𝑢, 𝑣], is called a 

“global minimum,” or simply a “minimum” of 𝑓. By analogy, then, 𝑓(𝑥𝑙) is called a “global 

maximum,” or simply a “maximum” of 𝑓. 

A necessary condition for the existence of an extremum is determined by the following 

theorem: 

 

Fermat’s Extreme Value Theorem483: Assume that 𝑓: 𝐴 → ℝ, where 𝐴 ⊆ ℝ, has a local 

extremum at 𝑎 ∈ 𝐴, where 𝑎 is an interior point of 𝐴. Moreover, assume that 𝑓′(𝑎) exists. 

Then 𝑓′(𝑎) = 0. 

 

 
483 Ibid. 
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Proof: In fact, Fermat’s Extreme Value Theorem states that, if a continuous function 𝑓 

has a local maximum at a point 𝑎, then , before that point, 𝑓 is increasing, and, after that 

point, 𝑓 is decreasing. By analogy, we can show that, if a continuous function 𝑓 has a local 

minimum at a point 𝑎, then , before that point, 𝑓 is decreasing, and, after that point, 𝑓 is 

increasing. Thus, exactly at the point of a local extremum, the tangent to the graph of 𝑓 is 

parallel to the 𝑥-axis (and, hence, its derivative is equal to zero). 

We can start by assuming that 𝑎 is a local maximum, and then prove that the derivative 

vanishes. According to the definition of a local maximum, 𝑓(𝑥) ≤ 𝑓(𝑎) ∀𝑥 ∈ 𝐴, and, 

therefore,  

 

𝑓(𝑥) − 𝑓(𝑎) ≤ 0. Hence: 

 

{

𝑥𝑛 → 𝑎
𝑥𝑛 < 𝑎
𝑥𝑛 ∈ 𝐴

} ⇒ 𝑙𝑖𝑚𝑥𝑛→𝑎
𝑓(𝑥𝑛)−𝑓(𝑎)

𝑥𝑛−𝑎
≥ 0 ⇔ 𝑓−

′(𝑎) ≥ 0, 

 

and 

 

{

𝑧𝑛 → 𝑎
𝑧𝑛 > 𝑎
𝑧𝑛 ∈ 𝐴

} ⇒ 𝑙𝑖𝑚𝑧𝑛→𝑎
𝑓(𝑧𝑛)−𝑓(𝑎)

𝑧𝑛−𝑎
≤ 0 ⇔ 𝑓+

′(𝑎) ≤ 0. 

 

Because 𝑓 is differentiable at 𝑎, it follows that 𝑓−
′(𝑎) = 𝑓+

′(𝑎) = 𝑓′(𝑎) = 0, since 

𝑓+
′(𝑎) ≤ 0 and 𝑓−

′(𝑎) ≥ 0.  

By analogy, we can prove that, if 𝑎 is a local minimum, then 𝑓′(𝑎) = 0.■ 

 

First Derivative Test: If 𝑥 = 𝑎 is a critical point of 𝑓(𝑥), namely, a point at which the 

function is continuous, and the derivative is either equal to zero or does not exist, then 𝑥 = 𝑎 

is: 

i. a local maximum of 𝑓(𝑥) if 𝑓′(𝑥) > 0 to the left of 𝑥 = 𝑎, and 𝑓′(𝑥) < 0 to the 

right of 𝑥 = 𝑎; 

ii. a local minimum of 𝑓(𝑥) if 𝑓′(𝑥) < 0 to the left of 𝑥 = 𝑎, and 𝑓′(𝑥) > 0 to the right 

of 𝑥 = 𝑎; 

iii. not a local extremum of 𝑓(𝑥) if 𝑓′(𝑥) is of the same sign on both sides of 𝑥 = 𝑎. 

 

Second Derivative Test: If 𝑥 = 𝑎 is a critical point of 𝑓(𝑥) such that 𝑓′(𝑎) = 0, then 𝑥 =

𝑎: 

 

i. is a local maximum of 𝑓(𝑥) if 𝑓′′(𝑎) < 0; 

ii. is a local minimum of 𝑓(𝑥) if 𝑓′′(𝑎) > 0; 

iii. may be a local maximum, or a local minimum, or neither if 𝑓′′(𝑎) = 0 (i.e., the test 

is inconclusive). In this case, we can use a test based on substituting into the given 

equation a value a little less and a value a little greater than 𝑥 = 𝑎 and examining the 

direction of the graph of 𝑓(𝑥).  
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Hence, in order to find the relative extrema (and/or classify the critical points) of 𝑓(𝑥), 

we work as follows: 

 

Step 1: We find all critical points of 𝑓(𝑥). 

Step 2: We use the First Derivative Test or the Second Derivative Test on each critical 

point.  

 

In order to find the global extrema of the continuous function 𝑓(𝑥) on the interval [𝑎, 𝑏], 

we work as follows: 

 

Step 1: We find all critical points of 𝑓(𝑥) in [𝑎, 𝑏]. 

Step 2: We evaluate 𝑓(𝑥) at all points found in Step 1. 

Step 3: We evaluate 𝑓(𝑎) and 𝑓(𝑏).  

Step 4: We identify the global maximum (i.e., the greatest value of 𝑓(𝑥)) and the global 

minimum (i.e., the smallest value of 𝑓(𝑥)) from the evaluations obtained in Steps 2 

and 3. 

 

Example 1: Assume that, in order to transfer commodities from an area 𝐴 to a different 

area 𝐵 as shown in Figure 2.24, we have to use two different means of transportation, and that 

the point 𝑃 denotes the corresponding transit station. The transportation cost from point 𝐴 to 

point 𝑃 is 𝑐1 dollars per tonne per kilometer, and the transportation cost from point 𝑃 to point 

𝐵 is 𝑐2 dollars per tonne per kilometer. 

We can find the optimum location of 𝑃, for which the total transportation cost for the 

transfer of one tonne of commodities from 𝐴 to 𝐵 is the minimum possible as follows: The 

total transportation cost is 𝑐1(𝑎 − 𝑥) + 𝑐2√𝑥
2 + ℎ2. Hence, the problem reduces to the 

computation of the minimum of the function 

 

𝑓(𝑥) = 𝑐1(𝑎 − 𝑥) + 𝑐2√𝑥2 + ℎ2, 𝑥 ∈ [0, 𝑎].  
 

 

Figure 2.24. A Transportation Problem. 

Then 𝑓′(𝑥) = −𝑐1 + 𝑐2 ∙
𝑥

√𝑥2+ℎ2
, which vanishes at the point 𝑥0 =

𝑐1ℎ

√𝑐2
2−𝑐1

2
, 𝑐2 > 𝑐1. It is easily 

verified that 𝑓′′(𝑥0) is positive. Therefore, 𝑓 has a global maximum at 𝑥0, and, in order for 

𝑥 ∈ [0, 𝑎], the following condition must be satisfied:  

 

𝑐1ℎ ≤ 𝑎√𝑐2
2 − 𝑐1

2. 
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Example 2: We can prove that the rectangle of maximum perimeter inscribed in a given 

circle is a square, as shown in Figure 2.25. 

 

 

Figure 2.25. Largest Rectangle Inscribed in a Circle. 

The diameter 𝐷 is constant (since the circle is given). Hence, 

 

𝑥2 + 𝑦2 = 𝐷 ⇒ 2𝑥 + 2𝑦𝑦′ = 0 ⇒ 𝑦′ = −
𝑥

𝑦
. 

 

Regarding the perimeter 𝑃 of the inscribed rectangle, we have: 

 

𝑃 = 2𝑥 + 2𝑦 ⇒
𝑑𝑃

𝑑𝑥
= 2 + 2𝑦′ = 0 ⇒ 2 + 2(−

𝑥

𝑦
) = 0 ⇒ 𝑦 = 𝑥, 

 

which proves that the largest rectangle inscribed in a given circle is a square. 

 

Example 3: We can compute the shortest distance from a point (1 + 𝑛, 0) to the curve 

𝑦 = 𝑥𝑛, where 𝑛 is an arbitrary positive integer, as follows: The distance between the given 

point and the curve is given by 

 

𝑑 = √[𝑥 − (1 + 𝑛)]2 + 𝑦2 ⇒ 𝑑 = √[𝑥 − (1 + 𝑛)]2 + 𝑥2𝑛. 

 

Hence, the derivative of 𝑑 is 

 
𝑑𝑑

𝑑𝑥
=

2[𝑥−(1+𝑛)]+2𝑛𝑥2𝑛−1

2√[𝑥−(1+𝑛)]2+𝑥2𝑛
= 0 ⇒ 𝑥 − 1 − 𝑛 + 𝑛𝑥2𝑛−1 = 0, 

 

so that 𝑥 + 𝑛𝑥2𝑛−1 = 1 + 𝑛, and, therefore, 𝑥 = 1. Consequently, 

 

𝑑 = √[1 − (1 + 𝑛)]2 + 12𝑛 ⇒ 𝑑 = √𝑛2 + 12𝑛, so that the required distance is 

𝑑 = √1 + 𝑛2. 

 

Example 4: Assume that, in order to produce 𝑥 units of product 𝐴 a company spends 

𝐶(𝑥) = 𝑎𝑥2 + 𝑏𝑥 dollars, where 𝑎, 𝑏 ∈ ℝ. If the product is sold at 𝑝 dollars per unit, then we 
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can compute the sales volume at which profit is maximized as follows: When this company 

sells 𝑥 units of product 𝐴, its revenue is 

 

𝑅(𝑥) = 𝑝𝑥,  

 

and, therefore, the company’s profit is 

 

𝑃(𝑥) = 𝑅(𝑥) − 𝐶(𝑥) = 𝑝𝑥 − (𝑎𝑥2 + 𝑏𝑥) = (𝑝 − 𝑏)𝑥 − 𝑎𝑥2.  

 

Then 𝑃′(𝑥) = [(𝑝 − 𝑏)𝑥 − 𝑎𝑥2]′ = 𝑝 − 𝑏 − 2𝑎𝑥 

⇒ 𝑃′(𝑥) = 0 ⇒ 𝑝 − 𝑏 − 2𝑎𝑥 = 0 ⇒ 𝑥 =
𝑝−𝑏

2𝑎
. 

 

Hence, 𝑃′′(𝑥) = (𝑝 − 𝑏 − 2𝑎𝑥)′ = −2𝑎 < 0,  

 

and, because the second derivative is negative, the point 𝑥 =
𝑝−𝑏

2𝑎
 is the maximum point, that 

is, the given company will maximize its profit at this point. 

 

Miscellaneous Examples: Maxima and minima can be used in economics in order to 

maximize the beneficial values, such as profit, efficiency, output of a company, etc., and in 

order to minimize negative values, such as expenses, efforts, etc., as well as in order to study 

inventory control, economic order quantity, etc. Thus, computing maxima and minima 

through differential calculus has important applications to linear programming and game 

theory, too. Furthermore, in other cases, the shape of a container may be determined by 

minimizing the amount of material required to manufacture it. For instance, the design of 

piping systems is determined by the minimization of pressure drop, which, in turn, minimizes 

required pump sizes and reduces cost. Moreover, the shapes of steel beams are determined by 

the maximization of strength. 

 

 

2.10.4. Concave-Up and Concave-Down Functions 

 

A function is said to be “concave up” (or “concave upward,” or “convex”) if its slope 

increases, as shown, for instance, in Figure 2.26 (i.e., it “opens” up). A function is said to be 

“concave down” (or “concave downward,” or simply “concave”) if its slope decreases, as 

shown, for instance, in Figure 2.27 (i.e., it “opens” down).  

 

 

Figure 2.26. A Concave-Up Function. 
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Figure 2.27. A Concave-Down Function. 

Let 𝑓 be a function differentiable on (𝑎, 𝑏). (i) If 𝑓′ is increasing (or if 𝑓′′(𝑥) > 0 on 

(𝑎, 𝑏)), then 𝑓 is concave up on (𝑎, 𝑏). (ii) If 𝑓′ is decreasing (or if 𝑓′′(𝑥) < 0 on (𝑎, 𝑏)), 

then 𝑓 is concave down on (𝑎, 𝑏). 

If 𝑓: (𝑎, 𝑏) → ℝ changes its direction of concavity at 𝑥0, then the point (𝑥0, 𝑓(𝑥0)) is said 

to be a “point of inflection.” In other words, 𝑥0 is a point of inflection if 𝑥0 ∈ (𝑎, 𝑏), so that 

either 𝑓 is concave down in (𝑎, 𝑥0) and concave up in (𝑥0, 𝑏), or 𝑓 is concave up in (𝑎, 𝑥0) 

and concave down in (𝑥0, 𝑏).  

Remark: If 𝑓: (𝑎, 𝑏) → ℝ is a function two times differentiable and (𝑎, 𝑏) ∈ ℝ, then the 

point (𝑥0, 𝑓(𝑥0)) is a point of inflection of 𝑓 if either 𝑓′′(𝑥0) does not exists, or 𝑓′′(𝑥0) = 0 

and 𝑓′′(𝑥0 − ℎ) ∙ 𝑓
′′(𝑥0 + ℎ) < 0 for 𝑥 ≠ 0 and 𝑥0 − ℎ, 𝑥0 + ℎ ∈ (𝑎, 𝑏). 

For instance, we can determine the concavity and the points of inflection of 𝑓(𝑥) =

5𝑥3 − 2𝑥 + 7 as follows: 𝑓′(𝑥) = 15𝑥2 − 2, and 𝑓′′(𝑥) = 30𝑥 = 0 ⇒ 𝑥 = 0. Because 

30𝑥 < 0 if 𝑥 < 0, the graph of 𝑓 is concave down for 𝑥 < 0. Because 30𝑥 > 0 if 𝑥 > 0, the 

graph of 𝑓 is concave up for 𝑥 > 0. For 𝑥 = 0, 𝑓(𝑥) = 7, and the point (0,7) is a point of 

inflection. 

 

 

2.10.5. Asymptotes of a Function 

 

When we study a function and, especially, when we try to sketch its graph, it is often 

necessary to know the behavior of the given function at a point or when it approaches some 

straight line. For this reason, we study the asymptotes of a function.  

A straight line 𝑙 is called an “asymptote” of a function 𝑓 if the distance from a changing 

point of the curve (the graph of 𝑓) to 𝑙 tends to zero when this point approaches infinity 

moving along a branch of the curve. There are three kinds of asymptotes:  

 

 

Figure 2.28. Horizontal Asymptote. 
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i. Horizontal asymptote, shown, for instance in Figure 2.28: a straight line 𝑦 = 𝑙 is said 

to be a horizontal asymptote of a function 𝑓(𝑥) if 𝑙𝑖𝑚𝑥→+∞𝑓(𝑥) = 𝑙𝑖𝑚𝑥→−∞𝑓(𝑥) =

𝑙, provided that both +∞ and −∞ are accumulation points of the domain of 𝑓(𝑥). 

ii. Vertical asymptote, shown, for instance, in Figure 2.29: a straight line 𝑥 = 𝑝 such 

that 𝑝 ∈ ℝ is an accumulation point of the domain of a function 𝑓(𝑥) is said to be a 

vertical asymptote of 𝑓(𝑥) if 𝑙𝑖𝑚𝑥→𝑝𝑓(𝑥) = +∞ 𝑜𝑟 − ∞. 

 

 

Figure 2.29. Vertical Asymptote. 

iii. Oblique asymptote, as shown, for instance, in Figure 2.30: a straight line 𝑦 = 𝑎𝑥 + 𝑏 

is said to be an oblique asymptote of a function 𝑓(𝑥) if  

(a) 𝑎 = 𝑙𝑖𝑚𝑥→+∞
𝑓(𝑥)

𝑥
𝑎𝑛𝑑𝑏 = 𝑙𝑖𝑚𝑥→+∞[𝑓(𝑥) − 𝑎𝑥], or 

(b) 𝑎 = 𝑙𝑖𝑚𝑥→−∞
𝑓(𝑥)

𝑥
𝑎𝑛𝑑𝑏 = 𝑙𝑖𝑚𝑥→−∞[𝑓(𝑥) − 𝑎𝑥]. 

 

 

Figure 2.30. An Oblique Asymptote. 
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2.10.6. Steps for Function Investigation and Curve Sketching 

 

1. Determine the domain 𝐷𝑓 of the given function 𝑓. 

2. Examine if 𝑓 is continuous. 

3. Examine if 𝑓 is periodic, or even, or odd. Then the investigation of a function can 

take place in a subset of 𝐷𝑓. If 𝑓 is periodic (i.e., if it repeats its values at regular 

intervals), then its investigation takes place in an one-period interval. If 𝑓 is even or 

odd, then its investigation takes place in 𝐷𝑓 ∩ ℝ
+. If 𝑓 is even, then it is symmetric 

about the 𝑦-axis. If 𝑓 is odd, then its center of symmetry is the origin of the 

coordinate system. 

4. Examine if 𝑓 is two times differentiable. 

5. Determine the monotonicity and the extrema of 𝑓. 

6. Find the points of inflection of 𝑓 and the intervals wherein 𝑓 is concave up or 

concave down. 

7. Find the asymptotes of 𝑓. 

 

 

2.10.7. Curvature and Radius of Curvature484 

 

By the term “curvature,” we refer to the measure of how sharply a curve bends. Let us 

consider a plane curve defined by the equation 𝑦 = 𝑓(𝑥). Moreover, let us assume that 𝑓(𝑥) 

has a continuous second derivative. We draw tangents to the curve at the points 𝑃 and 𝑃1 with 

abscissas 𝑥 and 𝑥 + 𝛥𝑥, respectively, and we denote by 𝜑 and 𝜑 + 𝛥𝜑 the angles of 

inclination of these tangents. In particular, Figure 2.31 shows the tangent to the curve at a 

point 𝑃(𝑥, 𝑦), and this tangent forms an angle 𝜑 with the horizontal axis (𝑥-axis). 

 

 

Figure 2.31. Curvature. 

 
484 Ibid. 
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As a consequence of the displacement 𝛥𝑠 along the arc of the curve, the point 𝑃 moves to 

the point 𝑃1, and, therefore, the position of the tangent changes. In particular, the angle of 

inclination of the tangent to the positive 𝑥-axis at the point 𝑃1 is 𝜑 + 𝛥𝜑. Hence, as the point 

moves by the distance 𝛥𝑠, the tangent rotates by the angle 𝛥𝜑, and we assume that the angle 

𝜑 increases when rotating clockwise. Then the absolute value  

 

|
𝛥𝜑

𝛥𝑠
| 

 

is said to be the “mean curvature” of the arc 𝑃𝑃1. The “curvature of the curve” at the point 𝑃 

is defined as 

 

𝐾 = lim 𝛥𝑠→0 |
𝛥𝜑

𝛥𝑠
| 

 

where 𝜑, 𝛥𝜑, and 𝛥𝑠 are defined as previously (i.e., 𝐾 characterizes the speed of rotation of 

the tangent to the curve at the given point). Hence, we have the following formulas:  

 

i. If 𝑦 = 𝑓(𝑥) is a plane curve, then the curvature at any point 𝑃(𝑥, 𝑦) is expressed in 

terms of the first and the second derivatives of the function 𝑓(𝑥) by the formula 

𝐾 =
|𝑓′′(𝑥)|

[1+(𝑓′(𝑥))2]
3
2

. 

ii. If a curve is defined in parametric form by the equations 𝑥 = 𝑥(𝑡) and 𝑦 = 𝑦(𝑡), 

then its curvature at an arbitrary point 𝑃(𝑥, 𝑦) is given by the formula 

𝐾 =
|𝑥′𝑦′′−𝑦′𝑥′′|

[(𝑥′)2+(𝑦′)2]
3
2

. 

iii. If a curve is given by the polar equation 𝑟 = 𝑟(𝜃), the curvature is given by the 

formula 

𝐾 =
|𝑟2+2(𝑟′)2−𝑟𝑟′′|

[𝑟2+(𝑟′)2]
3
2

. 

 

The “radius of curvature” of a curve at a point 𝑃(𝑥, 𝑦) is the inverse of the curvature 𝐾 of 

the curve at the given point, namely: 

 

𝑅 =
1

𝐾
. 

 

Therefore, if 𝑦 = 𝑓(𝑥) is a plane curve, then the radius of curvature at any point 𝑃(𝑥, 𝑦) 

is expressed in terms of the first and the second derivatives of the function 𝑓(𝑥) by the 

formula 

 

𝑅 =
[1+(𝑓′(𝑥))2]

3
2

|𝑓′′(𝑥)|
, 

 

and 𝑅 characterizes the radius of the circular arc that best approximates the curve at the given 

point. 
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Notice that: (i) positive curvature means that the contour will be convergent, because it is 

concave up (or convex), and, thus, if we have a triangle in positive curvature (e.g., in the case 

of geometry on the sphere), the sum of its angles is greater than 𝜋 (180ο); (ii) negative 

curvature means that the contour will be divergent, because it is concave down (or simply 

concave), and, thus, if we have a triangle in negative curvature (e.g., in the case of hyperbolic 

geometry), the sum of its angles is less than 𝜋 (180ο); and (iii) zero curvature means that the 

contour is straight, that is, neither convergent nor divergent, and, thus, if we have a triangle in 

zero curvature (e.g., in the case of Euclidean geometry), the sum of its angles is equal to 𝜋 

(180ο).  

 

 

2.10.8. Differentiation of Multivariable Functions485 

 

So far, we have studied exclusively functions of a single (independent) variable 𝑥, but we 

can also apply the concept of differentiation to functions of several variables 𝑥, 𝑦, … Notice 

that, if 𝑓: 𝐴 → ℝ, where 𝐴 ⊆ ℝ𝑛, is a function, then its “limit” at the point 

𝑃0(𝑥10 , 𝑥20 , … , 𝑥𝑛0) ∈ 𝐷(𝐴), where 𝐷(𝐴) is the derived set of 𝐴 (i.e., the set containing all 

the accumulation points of 𝐴), is the real number 𝐿 if and only if, ∀𝜀 > 0, there exist 𝛿𝑖 =

𝛿𝑖(𝜀) > 0, where 𝑖 = 1,2,… , 𝑛, so that, ∀𝑃(𝑥1, 𝑥2, … , 𝑥𝑛) ∈ 𝐴 with 0 < |𝑥𝑖 − 𝑥𝑖0| < 𝛿𝑖 , 

where 𝑖 = 1,2,… , 𝑛, the following condition is satisfied: |𝑓(𝑥1, 𝑥2, … , 𝑥𝑛) − 𝐿| < 𝜀; and then 

we write 

 

𝑙𝑖𝑚𝑃→𝑃0𝑓(𝑃) = 𝐿 ≡ 𝑙𝑖𝑚(𝑥1,𝑥2,…,𝑥𝑛)→(𝑥10 ,𝑥20 ,…,𝑥𝑛0)
𝑓(𝑥1, 𝑥2, … , 𝑥𝑛) = 𝐿. 

 

A function 𝑓: 𝐴 → ℝ, where 𝐴 ⊆ ℝ𝑛, is said to be continuous at the point 𝑃0 ∈ 𝐴 ∩ 𝐷(𝐴) 

(where 𝐷(𝐴) is the derived set of 𝐴) if 𝑙𝑖𝑚𝑃→𝑃0𝑓(𝑃) = 𝑓(𝑃0). The properties of the limit and 

the continuity of multivariable functions are analogous to the properties of the limit and the 

continuity of functions of one variable.  

Suppose that 𝑓(𝑥, 𝑦) is a function of two real variables 𝑥 and 𝑦, and that the limits 

 

𝑙𝑖𝑚𝛥𝑥→0
𝑓(𝑥+𝛥𝑥,𝑦)−𝑓(𝑥,𝑦)

𝛥𝑥
 and 𝑙𝑖𝑚𝛥𝑦→0

𝑓(𝑥,𝑦+𝛥𝑦)−𝑓(𝑥,𝑦)

𝛥𝑦
 

 

exist for all values of 𝑥 and 𝑦 in question, so that 𝑓(𝑥, 𝑦) possesses a derivative 
𝑑𝑓

𝑑𝑥
 with 

respect to 𝑥 and a derivative 
𝑑𝑓

𝑑𝑦
 with respect to 𝑦. These derivatives are called the “partial 

derivatives” of 𝑓, and they are denoted by  

 
𝜕𝑓

𝜕𝑥
,
𝜕𝑓

𝜕𝑦
 or 

𝑓𝑥(𝑥, 𝑦), 𝑓𝑦(𝑥, 𝑦). 

 

 
485 Ibid. 
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In general, when calculating partial derivatives, we treat all independent variables other 

than the variable with respect to which we differentiate as constants. For instance, if 

𝑓(𝑥, 𝑦) = 𝑥2 − 3𝑥𝑦 − 5, then 

 
𝜕𝑓

𝜕𝑥
=

𝜕

𝜕𝑥
(𝑥2 − 3𝑥𝑦 − 5) =

𝜕

𝜕𝑥
(𝑥2) −

𝜕

𝜕𝑥
(3𝑥𝑦) −

𝜕

𝜕𝑥
(5) = 2𝑥 − 3𝑦, and 

𝜕𝑓

𝜕𝑦
=

𝜕

𝜕𝑦
(𝑥2 − 3𝑥𝑦 − 5) =

𝜕

𝜕𝑦
(𝑥2) −

𝜕

𝜕𝑦
(3𝑥𝑦) −

𝜕

𝜕𝑦
(5) = −3𝑥. 

 

Partial differentiation of 𝑓:ℝ2 → ℝ at 𝑃(𝑥0, 𝑦0): 

 
𝜕𝑓(𝑥,𝑦)

𝜕𝑥
|(𝑥0,𝑦0) = 𝑙𝑖𝑚𝑥→𝑥0

𝑓(𝑥,𝑦0)−𝑓(𝑥0,𝑦0)

𝑥−𝑥0
, 

𝜕𝑓(𝑥,𝑦)

𝜕𝑦
|(𝑥0,𝑦0) = 𝑙𝑖𝑚𝑦→𝑦0

𝑓(𝑥0,𝑦)−𝑓(𝑥0,𝑦0)

𝑦−𝑦0
. 

 

Given a function 𝑓:ℝ3 → ℝ of three variables 𝑥, 𝑦, and 𝑧, the partial derivative of 𝑓 with 

respect to 𝑥 is defined as 

 
𝜕𝑓(𝑥,𝑦,𝑧)

𝜕𝑥
= 𝑙𝑖𝑚𝛥𝑥→0

𝑓(𝑥+𝛥𝑥,𝑦,𝑧)−𝑓(𝑥,𝑦,𝑧)

𝛥𝑥
, 

the partial derivative of 𝑓 with respect to 𝑦 is defined as 

 
𝜕𝑓(𝑥,𝑦,𝑧)

𝜕𝑦
= 𝑙𝑖𝑚𝛥𝑦→0

𝑓(𝑥,𝑦+𝛥𝑦,𝑧)−𝑓(𝑥,𝑦,𝑧)

𝛥𝑦
, 

 

and , the partial derivative of 𝑓 with respect to 𝑧 is defined as 

 
𝜕𝑓(𝑥,𝑦,𝑧)

𝜕𝑧
= 𝑙𝑖𝑚𝛥𝑧→0

𝑓(𝑥,𝑦,𝑧+𝛥𝑧)−𝑓(𝑥,𝑦,𝑧)

𝛥𝑧
. 

 

Generalization: If 𝑓:ℝ𝑛 → ℝ is a function, that is, 

 

ℝ𝑛 ∋ (𝑥1, 𝑥2, … , 𝑥𝑛) → 𝑓(𝑥1, 𝑥2, … , 𝑥𝑛) ∈ ℝ, 

 

then  

 

𝜕𝑓(𝑥1, 𝑥2, … , 𝑥𝑖 , … , 𝑥𝑛)

𝜕𝑥𝑖
|(𝑥10 ,𝑥20 ,…,𝑥𝑖0 ,…,𝑥𝑛0)

 

= 𝑙𝑖𝑚𝛥𝑥𝑖→0

𝑓(𝑥10 , 𝑥20 , … , 𝑥𝑖0 + 𝛥𝑥,… , 𝑥𝑛0) − 𝑓(𝑥10 , 𝑥20 , … , 𝑥𝑖0 , … , 𝑥𝑛0)

𝛥𝑥𝑖
 

 

is the partial derivative of 𝑓(𝑥1, 𝑥2, … , 𝑥𝑛) with respect to 𝑥𝑖, where 𝑖 = 1,2,… , 𝑛, at the point 

(𝑥10 , 𝑥20 , … , 𝑥𝑖0 , … , 𝑥𝑛0).  

Let 𝑓:ℝ2 → ℝ be a function defined over 𝐷𝑓, and let 𝑓 be differentiable at (𝑥0, 𝑦0). Then 
𝜕𝑓

𝜕𝑥
|(𝑥0,𝑦0) and 

𝜕𝑓

𝜕𝑦
|(𝑥0,𝑦0) exist. Moreover, 
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𝜕

𝜕𝑥
(
𝜕𝑓

𝜕𝑥
) =

𝜕2𝑓

𝜕𝑥2
, 

𝜕

𝜕𝑥
(
𝜕2𝑓

𝜕𝑥2
) =

𝜕3𝑓

𝜕𝑥3
, 

⋮ 
𝜕

𝜕𝑥
(
𝜕𝑛−1𝑓

𝜕𝑥𝑛−1
) =

𝜕𝑛𝑓

𝜕𝑥𝑛
. 

 

By analogy, 

 
𝜕

𝜕𝑦
(
𝜕𝑓

𝜕𝑦
) =

𝜕2𝑓

𝜕𝑦2
, 

𝜕

𝜕𝑦
(
𝜕2𝑓

𝜕𝑦
) =

𝜕3𝑓

𝜕𝑦3
, 

⋮ 
𝜕

𝜕𝑦
(
𝜕𝑛−1𝑓

𝜕𝑦𝑛−1
) =

𝜕𝑛𝑓

𝜕𝑦𝑛
. 

 

Notice that 
𝜕2𝑓

𝜕𝑥2
 and 

𝜕2𝑓

𝜕𝑦2
 can be written as 𝑓𝑥𝑥(𝑥, 𝑦) and 𝑓𝑦𝑦(𝑥, 𝑦), respectively. Moreover, 

𝑓𝑥𝑦 ≡
𝜕2𝑓

𝜕𝑦𝜕𝑥
≡

𝜕

𝜕𝑦
(
𝜕𝑓

𝜕𝑥
), and 𝑓𝑦𝑥 ≡

𝜕2𝑓

𝜕𝑥𝜕𝑦
≡

𝜕

𝜕𝑥
(
𝜕𝑓

𝜕𝑦
). 

The geometric significance of 
𝜕𝑓

𝜕𝑥
|(𝑥0,𝑦0) and 

𝜕𝑓

𝜕𝑦
|(𝑥0,𝑦0) is illustrated in Figure 2.32. Let us 

consider a function 𝑧 = 𝑓(𝑥, 𝑦), whose graph in ℝ3 is a surface. We suppose that 𝑃(𝑥0, 𝑦0) is 

an arbitrary point of the domain of 𝑓. Notice that, in ℝ3, the equation 𝑦 = 𝑦0 represents a 

plane 𝛱 that is perpendicular to the 𝑦-axis. This plane intersects the surface 𝑧 = 𝑓(𝑥, 𝑦) by a 

curve 𝐶 whose equation is 𝑧 = 𝑓(𝑥, 𝑦0). If 𝑄(𝑥0, 𝑦0, 𝑧0) is a point belonging to 𝐶, so that its 

orthogonal projection to the plane 𝑥𝑂𝑦 is the point 𝑃, then the slope of the tangent to the 

curve 𝐶 at 𝑄 is equal to 
𝜕𝑓

𝜕𝑥
|(𝑥0,𝑦0) = 𝑡𝑎𝑛𝜑, where 𝜑 is the angle formed by the 𝑥-axis and the 

tangent to the curve 𝐶 at 𝑄, as shown in Figure 2.32. In the same way, we can show that the 

slope of the tangent to the curve 𝐶 at 𝑄 is equal to 
𝜕𝑓

𝜕𝑦
|(𝑥0,𝑦0) = 𝑡𝑎𝑛𝜃, where 𝜃 is the angle 

formed by the 𝑦-axis and the tangent to the curve 𝐶 at 𝑄. 

 

 

Figure 2.32. Partial Derivative 
𝜕𝑓

𝜕𝑥
|(𝑥0,𝑦0) = 𝑡𝑎𝑛𝜑. 
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Let 𝑓:ℝ2 → ℝ be a function of two real variables such that 
𝜕𝑓

𝜕𝑥
 and 

𝜕𝑓

𝜕𝑦
 exist. Then the 

“total differential” of 𝑓(𝑥, 𝑦) is denoted by 𝑑𝑓, and it is defined by  

 

𝑑𝑓 =
𝜕𝑓

𝜕𝑥
𝑑𝑥 +

𝜕𝑓

𝜕𝑦
𝑑𝑦, 

 

meaning that any infinitely small change in (𝑥, 𝑦) consists of a change 𝑑𝑥 in 𝑥 and a change 

𝑑𝑦 in 𝑦, so that the change in 𝑓(𝑥, 𝑦) resulting from the change in 𝑥 is 
𝜕𝑓

𝜕𝑥
𝑑𝑥, the change in 

𝑓(𝑥, 𝑦) resulting from the change in 𝑦 is 
𝜕𝑓

𝜕𝑦
𝑑𝑦, and the total change in 𝑓(𝑥, 𝑦) resulting from 

the change in (𝑥, 𝑦) is 
𝜕𝑓

𝜕𝑥
𝑑𝑥 +

𝜕𝑓

𝜕𝑦
𝑑𝑦. 

In general, if 𝑓:ℝ𝑛 → ℝ is a function of 𝑛 real variables, 𝑥1, 𝑥2, … , 𝑥𝑛, then the total 

differential of 𝑓 is 

 

𝑑𝑓 =
𝜕𝑓

𝜕𝑥1
𝑑𝑥1 +

𝜕𝑓

𝜕𝑥2
𝑑𝑥2 +⋯+

𝜕𝑓

𝜕𝑥𝑛
𝑑𝑥𝑛, 

 

provided that 
𝜕𝑓

𝜕𝑥1
,
𝜕𝑓

𝜕𝑥2
, … ,

𝜕𝑓

𝜕𝑥𝑛
 exist.  

If 𝑓(𝑥1, 𝑥2, … , 𝑥𝑛) = 𝑐 for all 𝑥1, 𝑥2, … , 𝑥𝑛 belonging to the domain of 𝑓, and if 𝑐 ∈ ℝ, 

then 𝑑𝑓 = 0. For instance, the 1-sphere 𝑆1 = {(𝑥, 𝑦) ∈ ℝ2|𝑥2 + 𝑦2 = 1} is a constant 

function of 2 variables, and the 2-sphere 𝑆2 = {(𝑥, 𝑦, 𝑧) ∈ ℝ3|𝑥2 + 𝑦2 + 𝑧2 = 1} is a 

constant function of 3 variables.  

The mixed partial derivatives 𝑓𝑥𝑦 and 𝑓𝑦𝑥 are equal to each other in the following cases: 

 

i. if 𝑓, 𝑓𝑥, 𝑓𝑦, and 𝑓𝑥𝑦 are continuous in the neighborhood of a point of the domain of 𝑓; 

or 

ii. if 𝑓𝑥𝑦 and 𝑓𝑦𝑥 are continuous in the neighborhood of a point of the domain of 𝑓. 

 

Differentiation of Composite Functions, Harmonic Functions, and Homogeneous 

Functions486 

If 𝑧 = 𝑓(𝑥, 𝑦) is a differentiable function such that 𝑥 and 𝑦 are functions of two variables 

𝑟 and 𝑠, namely, 𝑥 = 𝑔(𝑟, 𝑠) and 𝑦 = ℎ(𝑟, 𝑠), then it holds that 

 
𝜕𝑧

𝜕𝑟
=

𝜕𝑧

𝜕𝑥

𝜕𝑥

𝜕𝑟
+

𝜕𝑧

𝜕𝑦

𝜕𝑦

𝜕𝑟
 and 

𝜕𝑧

𝜕𝑠
=

𝜕𝑧

𝜕𝑥

𝜕𝑥

𝜕𝑠
+

𝜕𝑧

𝜕𝑦

𝜕𝑦

𝜕𝑠
. 

 

By analogy, we can generalize for a function 𝑧 = 𝑓(𝑥1, 𝑥2, … , 𝑥𝑛), whose variables are 

functions of 𝑘 variables, namely,𝑥1 = 𝑔1(𝑟1, 𝑟2, … , 𝑟𝑘),… , 𝑥𝑛 = 𝑔𝑛(𝑟1, 𝑟2, … , 𝑟𝑘), as follows: 

 
𝜕𝑧

𝜕𝑟𝑖
=

𝜕𝑧

𝜕𝑥1

𝜕𝑥1

𝜕𝑟𝑖
+

𝜕𝑧

𝜕𝑥2

𝜕𝑥2

𝜕𝑟𝑖
+⋯+

𝜕𝑧

𝜕𝑥𝑛

𝜕𝑥𝑛

𝜕𝑟𝑖
, where 𝑖 = 1,2,… , 𝑘. 

 
486 Ibid. 
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Obviously, in case 𝑥1, 𝑥2, … , 𝑥𝑛 depend on only one variable 𝑟,  

 
𝜕𝑧

𝜕𝑟
=

𝜕𝑧

𝜕𝑥1

𝜕𝑥1

𝜕𝑟
+⋯+

𝜕𝑧

𝜕𝑥𝑛

𝜕𝑥𝑛

𝜕𝑟
. 

 

For instance, if 𝑧 = 𝑥2 + 𝑦2, 𝑥 = 𝑟𝑐𝑜𝑠𝜃, and 𝑦 = 𝑟𝑠𝑖𝑛𝜃, then  

 
𝜕𝑧

𝜕𝑟
=

𝜕𝑧

𝜕𝑥

𝜕𝑥

𝜕𝑟
+

𝜕𝑧

𝜕𝑦

𝜕𝑦

𝜕𝑟
= 2𝑥𝑐𝑜𝑠𝜃 + 2𝑦𝑠𝑖𝑛𝜃 = 2(𝑟𝑐𝑜𝑠𝜃)𝑐𝑜𝑠𝜃 + 2(𝑟𝑠𝑖𝑛𝜃)𝑠𝑖𝑛𝜃 =

2𝑟(𝑐𝑜𝑠2𝜃 + 𝑠𝑖𝑛2𝜃) = 2𝑟, and 
𝜕𝑧

𝜕𝜃
=

𝜕𝑧

𝜕𝑥

𝜕𝑥

𝜕𝜃
+

𝜕𝑧

𝜕𝑦

𝜕𝑦

𝜕𝜃
= 2𝑥(−𝑟𝑠𝑖𝑛𝜃) + 2𝑦(𝑟𝑐𝑜𝑠𝜃) = −2𝑟2𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃 + 2𝑟2𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃 = 0. 

 

Let 𝑓(𝑥, 𝑦) be a function where 𝑥 = 𝑥(𝑟) and 𝑦 = 𝑦(𝑟). Then it holds that  

 

𝜕2𝑓

𝜕𝑟2
=

𝜕2𝑓

𝜕𝑥2
(
𝑑𝑥

𝑑𝑟
)
2
+ 2

𝜕2𝑓

𝜕𝑥𝜕𝑦

𝑑𝑥

𝑑𝑟

𝑑𝑦

𝑑𝑟
+
𝜕2𝑓

𝜕𝑦2
(
𝑑𝑦

𝑑𝑟
)
2
+
𝜕𝑓

𝜕𝑥

𝑑2𝑓

𝑑𝑟2
+
𝜕𝑓

𝜕𝑦

𝑑2𝑦

𝑑𝑟2
= (

𝜕𝑓

𝜕𝑥

𝑑𝑥

𝑑𝑟
+
𝜕𝑓

𝜕𝑦

𝑑𝑦

𝑑𝑟
)
2
+

𝜕𝑓

𝜕𝑥

𝑑2𝑥

𝑑𝑟2
+
𝜕𝑓

𝜕𝑦

𝑑2𝑦

𝑑𝑟2
. 

 

Similarly, if 𝑓(𝑥, 𝑦) is a function with 𝑥 = 𝑥(𝑟, 𝑠) and 𝑦 = 𝑦(𝑟, 𝑠), it holds that 

 

𝜕2𝑓

𝜕𝑟2
=

𝜕2𝑓

𝜕𝑥2
(
𝜕𝑥

𝜕𝑟
)
2
+ 2

𝜕2𝑓

𝜕𝑥𝜕𝑦

𝜕𝑥

𝜕𝑟

𝜕𝑦

𝜕𝑟
+
𝜕2𝑓

𝜕𝑦2
(
𝜕𝑦

𝜕𝑟
)
2
+
𝜕𝑓

𝜕𝑥

𝜕2𝑓

𝜕𝑟2
+
𝜕𝑓

𝜕𝑦

𝜕2𝑦

𝜕𝑟2
= (

𝜕𝑓

𝜕𝑥

𝜕𝑥

𝜕𝑟
+
𝜕𝑓

𝜕𝑦

𝜕𝑦

𝜕𝑟
)
2
+

𝜕𝑓

𝜕𝑥

𝜕2𝑥

𝜕𝑟2
+
𝜕𝑓

𝜕𝑦

𝜕2𝑦

𝜕𝑟2
, 

 

and 

 

𝜕2𝑓

𝜕𝑠2
=

𝜕2𝑓

𝜕𝑥2
(
𝜕𝑥

𝜕𝑠
)
2
+ 2

𝜕2𝑓

𝜕𝑥𝜕𝑦

𝜕𝑥

𝜕𝑠

𝜕𝑦

𝜕𝑠
+
𝜕2𝑓

𝜕𝑦2
(
𝜕𝑦

𝜕𝑠
)
2
+
𝜕𝑓

𝜕𝑥

𝜕2𝑓

𝜕𝑠2
+
𝜕𝑓

𝜕𝑦

𝜕2𝑦

𝜕𝑠2
= (

𝜕𝑓

𝜕𝑥

𝜕𝑥

𝜕𝑠
+
𝜕𝑓

𝜕𝑦

𝜕𝑦

𝜕𝑠
)
2
+

𝜕𝑓

𝜕𝑥

𝜕2𝑥

𝜕𝑠2
+
𝜕𝑓

𝜕𝑦

𝜕2𝑦

𝜕𝑠2
. 

 

Moreover, 

 
𝜕2𝑓

𝜕𝑟𝜕𝑠
=

𝜕2𝑓

𝜕𝑥2
𝜕𝑥

𝜕𝑟

𝜕𝑥

𝜕𝑠
+

𝜕2𝑓

𝜕𝑥𝜕𝑦
(
𝜕𝑥

𝜕𝑟

𝜕𝑦

𝜕𝑠
+
𝜕𝑥

𝜕𝑠

𝜕𝑦

𝜕𝑟
) +

𝜕2𝑓

𝜕𝑦2
𝜕𝑦

𝜕𝑟

𝜕𝑦

𝜕𝑠
+
𝜕𝑓

𝜕𝑥

𝜕2𝑥

𝜕𝑟𝜕𝑠
+
𝜕𝑓

𝜕𝑦

𝜕2𝑦

𝜕𝑟𝜕𝑠
. 

 

A function 𝑓(𝑥, 𝑦) of two arbitrary real variables 𝑥 and 𝑦 is said to be “harmonic” if its 

value at any point is equal to the average of its value along any circle around that point, 

provided that 𝑓(𝑥, 𝑦) is defined within the circle. For instance, in physics, harmonic functions 

describe those conditions of equilibrium such as the temperature of electric charge 

distribution over a region in which the value at each point is constant. In general, given a 

function 𝑓:ℝ𝑛 → ℝ of 𝑛 real variables 𝑥1, 𝑥2, … , 𝑥𝑛, we say that 𝑓:ℝ𝑛 → ℝ is a “harmonic 

function” if it satisfies the “equation of Laplace,” namely: 
𝜕2𝑓

𝜕𝑥1
2 +

𝜕2𝑓

𝜕𝑥2
2 +⋯+

𝜕2𝑓

𝜕𝑥𝑛
2 = 0.  
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For instance, the function 𝑓(𝑥, 𝑦) = 𝑥2 − 𝑦2 is harmonic, because: 
𝜕𝑓

𝜕𝑥
= 2𝑥, 

𝜕2𝑓

𝜕𝑥2
= 2, 

𝜕𝑓

𝜕𝑦
= −2𝑦, and 

𝜕2𝑓

𝜕𝑦2
= −2, so that 

𝜕2𝑓

𝜕𝑥2
+
𝜕2𝑓

𝜕𝑦2
= 0.  

If a function is such that, whenever all its arguments are multiplied by a factor, its value 

is multiplied by some power of this factor, then it is said to be “homogeneous.” Symbolically: 

If, for a parameter 𝜆 and a constant 𝑛,  

 

𝑓(𝜆𝑥1, 𝜆𝑥2, … , 𝜆𝑥𝑛) = 𝜆
𝑛𝑓(𝑥1, 𝑥2, … , 𝑥𝑛), 

 

then 𝑓:ℝ𝑛 → ℝ is a “homogeneous function of degree 𝑛.” 

 

Euler’s Theorem on Homogeneous Functions487: If 𝑓(𝑥1, 𝑥2, … , 𝑥𝑛) is a homogeneous 

function of degree 𝑛, then 

 

𝑥1
𝜕𝑓

𝜕𝑥1
+ 𝑥2

𝜕𝑓

𝜕𝑥2
+⋯+ 𝑥𝑛

𝜕𝑓

𝜕𝑥𝑛
= 𝑛𝑓. 

 

Proof: Let us prove that, if 𝑓(𝜆𝑥, 𝜆𝑦) = 𝜆𝑛𝑓(𝑥, 𝑦), then 𝑥
𝜕𝑓

𝜕𝑥
+ 𝑦

𝜕𝑓

𝜕𝑦
= 𝑛𝑓. Set 𝜆𝑥 = 𝑎 

and 𝜆𝑦 = 𝑏, so that  

 

𝑓(𝑎, 𝑏) = 𝜆𝑛𝑓(𝑥, 𝑦) ⇒
𝜕𝑓(𝑎,𝑏)

𝜕𝜆
=

𝜕𝑓

𝜕𝑎

𝜕𝑎

𝜕𝜆
+
𝜕𝑓

𝜕𝑏

𝜕𝑏

𝜕𝜆
=

𝜕𝑓

𝜕𝑎
𝑥 +

𝜕𝑓

𝜕𝑏
𝑦.  

 

Moreover, 
𝜕[𝜆𝑛𝑓(𝑥,𝑦)]

𝜕𝜆
= 𝑛𝜆𝑛−1𝑓(𝑥, 𝑦). 

Taking advantage of the fact that 𝜆 is an arbitrary real number, we can choose an element 

that facilitates our calculations. In particular, if 𝜆 = 1, then 𝑛𝜆𝑛−1𝑓(𝑥, 𝑦) implies that 𝑎 = 𝑥 

and 𝑏 = 𝑦, so that 𝑥
𝜕𝑓

𝜕𝑥
+ 𝑦

𝜕𝑓

𝜕𝑦
= 𝑛𝑓.■ 

 

For instance, we can prove that 𝑓(𝑥, 𝑦) = 𝑥3𝑦𝑙𝑛
𝑥

𝑦
⇒ 𝑥

𝜕𝑓

𝜕𝑥
+ 𝑦

𝜕𝑓

𝜕𝑦
= 4𝑓(𝑥, 𝑦) as follows: 

Because 𝑓(𝜆𝑥, 𝜆𝑦) = 𝜆3𝑥3𝜆𝑦𝑙𝑛
𝑥

𝑦
= 𝜆4𝑥3𝑦𝑙𝑛

𝑥

𝑦
= 𝜆4𝑓(𝑥, 𝑦). The given expression is just a 

direct consequence of Euler’s theorem on homogeneous functions. 

 

Differentiation of Implicit Functions488 

A function of the form 𝑓(𝑥, 𝑦, 𝑧) where 𝑧 = 𝑔(𝑥, 𝑦), that is, 𝑓[𝑥, 𝑦, 𝑔(𝑥, 𝑦)], is called 

“implicit,” while 𝑧 = 𝑔(𝑥, 𝑦) is an explicit function. An equation of the form 𝐹(𝑥, 𝑦) = 0 

determines an implicit function 𝑦 = 𝑓(𝑥) in 𝐴 ⊆ ℝ if and only if, ∀𝑥 ∈ 𝐴, 𝐹[𝑥, 𝑓(𝑥)] = 0.  

Remarks: Let 𝐹(𝑥, 𝑦) = 0 be an equation defined in 𝐴 ⊆ ℝ2, and let (𝑥0, 𝑦0) be a point 

of 𝐴. We assume that 𝐹𝑥 and 𝐹𝑦 exist and are continuous, 𝐹(𝑥0, 𝑦0) = 0, and 𝐹𝑦(𝑥0, 𝑦0) ≠ 0. 

Then there exists a neighborhood of 𝑥0, say 𝑁(𝑥0), in the interior of which the equation 

 
487 Ibid. 
488 Ibid. 



Dr. Nicolas Laos, The Dialectic of Rational Dynamicity 323 

𝐹(𝑥, 𝑦) = 0 determines a continuous function 𝑦 = 𝑓(𝑥) in a unique way, so that 𝐹𝑥 is 

continuous, 𝑦0 = 𝑓(𝑥0), and 
𝜕𝑦

𝜕𝑥
= −

𝐹𝑥

𝐹𝑦
. Notice that: 

 

𝜕2𝑦

𝜕𝑥2
= −

𝐹𝑥𝑥𝐹𝑦
2−2𝐹𝑥𝑦𝐹𝑥𝐹𝑦+𝐹𝑦𝑦𝐹𝑥

2

𝐹𝑦
3 . 

 

For instance, using the aforementioned formula, we can find the second-order derivative 

of the function 𝑦 = 𝑦(𝑥) that is determined by the equation 𝐹(𝑥, 𝑦) = 𝑦3 − 𝑦𝑥 = 0, by 

calculating 𝐹𝑥 = −𝑦, 𝐹𝑦 = 3𝑦
2 − 𝑥, 𝐹𝑥𝑥 = 0, 𝐹𝑦𝑦 = 6𝑦, and 𝐹𝑥𝑦 = −1, so that 

𝜕2𝑦

𝜕𝑥2
=

−
𝐹𝑥𝑥𝐹𝑦

2−2𝐹𝑥𝑦𝐹𝑥𝐹𝑦+𝐹𝑦𝑦𝐹𝑥
2

𝐹𝑦
3 =

2𝑦(3𝑦2−𝑥)−6𝑦3

(3𝑦2−𝑥)3
. 

An equation of the form 𝐹(𝑥, 𝑦, 𝑧) = 0 determines an implicit function 𝑧 = 𝑧(𝑥, 𝑦) in 

𝐴 ⊆ ℝ2 if and only if, ∀(𝑥, 𝑦) ∈ 𝐴, it holds that 𝐹[𝑥, 𝑦, 𝑓(𝑥, 𝑦)] = 0. For instance, the 

equation 𝑥2 + 𝑦2 − 𝑧 = 0 determines the implicit function 𝑧 = 𝑥2 + 𝑦2.  

 

Remarks: Let 𝐹(𝑥, 𝑦, 𝑧) = 0 be an equation defined in 𝐴 ⊆ ℝ3, and let (𝑥0, 𝑦0, 𝑧0) be a 

point of the interior of 𝐴. We assume that 𝐹𝑥, 𝐹𝑦, and 𝐹𝑧 exist and are continuous, 

𝐹(𝑥0, 𝑦0, 𝑧0) = 0, and 𝐹𝑧(𝑥0, 𝑦0, 𝑧0) ≠ 0. Then there exists a neighborhood of (𝑥0, 𝑦0), say 

𝑁(𝑥0, 𝑦0), in the interior of which the equation 𝐹(𝑥, 𝑦, 𝑧) = 0 determines a continuous 

implicit function 𝑧 = 𝑧(𝑥, 𝑦) in a unique way, so that 𝐹𝑥 and 𝐹𝑦 are continuous and 𝑧0 =

𝑧(𝑥0, 𝑦0). Moreover, notice that: 

 
𝜕𝑧

𝜕𝑥
= −

𝐹𝑥

𝐹𝑧
, and 

𝜕𝑧

𝜕𝑦
= −

𝐹𝑦

𝐹𝑧
. (∗) 

 

The points (𝑥0, 𝑦0, 𝑧0) of the surface 𝐹(𝑥, 𝑦, 𝑧) = 0 for which 
𝜕𝐹

𝜕𝑧
|(𝑥0,𝑦0,𝑧0) ≠ 0 and 

𝐹(𝑥0, 𝑦0, 𝑧0) = 0 are called “ordinary points.” The points of the surface 𝐹(𝑥, 𝑦, 𝑧) = 0 for 

which 𝐹𝑥 = 𝐹𝑦 = 𝐹𝑧 = 0 are called “singular points,” and, obviously, (∗) does not hold at 

singular points. The total differential of an implicit function 𝑧 = 𝑧(𝑥, 𝑦) that is determined by 

the equation 𝐹(𝑥, 𝑦, 𝑧) = 0 is given by 

 
𝜕𝐹

𝜕𝑥
𝑑𝑥 +

𝜕𝐹

𝜕𝑦
𝑑𝑦 +

𝜕𝐹

𝜕𝑧
𝑑𝑧 = 0. 

 

Jacobian (or Functional) Determinant489 

Let 𝑓 and 𝑔 be functions of 𝑥 and 𝑦 connected by an identical relation  

 

ℎ(𝑓, 𝑔) = 0. (∗) 

 

Differentiating (∗) with respect to 𝑥 and 𝑦, we obtain 

 
𝜕ℎ

𝜕𝑓

𝜕𝑓

𝜕𝑥
+
𝜕ℎ

𝜕𝑔

𝜕𝑔

𝜕𝑥
= 0 and 

𝜕ℎ

𝜕𝑓

𝜕𝑓

𝜕𝑦
+
𝜕ℎ

𝜕𝑔

𝜕𝑔

𝜕𝑦
= 0,  

 
489 Ibid. 
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so that, eliminating the derivatives of ℎ, we obtain 

 

𝐽 = |
𝑓𝑥 𝑓𝑦
𝑔𝑥 𝑔𝑦

| = 𝑓𝑥𝑔𝑦 − 𝑓𝑦𝑔𝑥 = 0, 

 

where 𝑓𝑥 , 𝑔𝑥 , 𝑓𝑦, 𝑔𝑦 are the derivatives of 𝑓 and 𝑔 with respect to 𝑥 and 𝑦. The 

aforementioned condition is necessary and sufficient for the existence of a relation such as 

(∗). Two functions 𝑓 and 𝑔 are said to be “dependent” or “independent” according as they are 

or are not connected by such a relation as (∗), respectively. It is usual to call 𝐽 the “Jacobian 

determinant” (or the “functional determinant”) of 𝑓 and 𝑔 with respect to 𝑥 and 𝑦, and to 

write 

 

𝐽 =
𝜕(𝑓,𝑔)

𝜕(𝑥,𝑦)
. 

 

The Jacobian determinant of 𝑛 functions, 𝑓1, 𝑓2, … , 𝑓𝑛, of 𝑛 real variables, 𝑥1, 𝑥2, … , 𝑥𝑛, 

with respect to 𝑥1, 𝑥2, … , 𝑥𝑛 is defined by 

 

𝐽 =
𝜕(𝑓1,𝑓2,…,𝑓𝑛)

𝜕(𝑥1,𝑥2,…,𝑥𝑛)
=
|

|

𝜕𝑓1

𝜕𝑥1

𝜕𝑓1

𝜕𝑥2
…

𝜕𝑓1

𝜕𝑥𝑛

𝜕𝑓2

𝜕𝑥1

𝜕𝑓2

𝜕𝑥2
…

𝜕𝑓2

𝜕𝑥𝑛

⋮
𝜕𝑓𝑛

𝜕𝑥1

⋮
𝜕𝑓𝑛

𝜕𝑥2

⋮
…

⋮
𝜕𝑓𝑛

𝜕𝑥𝑛

|

|
. 

 

It is named after the nineteenth-century German mathematician Carl Gustav Jacob Jacobi. 

Notice that, if 𝑥1 = 𝑥1(𝑟1, 𝑟2, … , 𝑟𝑛),… , 𝑥𝑛 = 𝑥𝑛(𝑟1, 𝑟2, … , 𝑟𝑛), then 

 
𝜕(𝑓1,𝑓2,…,𝑓𝑛)

𝜕(𝑟1,𝑟2,…,𝑟𝑛)
=

𝜕(𝑓1,𝑓2,…,𝑓𝑛)

𝜕(𝑥1,𝑥2,…,𝑥𝑛)
∙
𝜕(𝑥1,𝑥2,…,𝑥𝑛)

𝜕(𝑟1,𝑟2,…,𝑟𝑛)
. 

 

Jacobians are useful in order to compute the partial derivatives of implicit functions: 

 

Case I: Let {
𝑓(𝑥, 𝑦, 𝑧) = 0

𝑔(𝑥, 𝑦, 𝑧) = 0
} be a system such that  

 

the functions 𝑓 and 𝑔 have continuous fist-order partial derivatives, 𝑓(𝑥0, 𝑦0, 𝑧0) = 0 =

𝑔(𝑥0, 𝑦0, 𝑧0), and 
𝜕(𝑓,𝑔)

𝜕(𝑦,𝑧)
|(𝑥0,𝑦0,𝑧0) ≠ 0. Every system of this form has a unique solution 𝑦 =

𝑦(𝑥) and 𝑧 = 𝑧(𝑥), where 𝑦(𝑥) and 𝑧(𝑥) are two functions whose derivatives (with respect to 

𝑥) are continuous on a neighborhood of 𝑥0, so that 𝑦0 = 𝑦(𝑥0) and 𝑧0 = 𝑧(𝑥0). Then 

 

𝑑𝑦

𝑑𝑥
= −

𝜕(𝑓,𝑔)

𝜕(𝑥,𝑧)

𝜕(𝑓,𝑔)

𝜕(𝑦,𝑧)

 and 
𝑑𝑧

𝑑𝑥
= −

𝜕(𝑓,𝑔)

𝜕(𝑦,𝑥)

𝜕(𝑓,𝑔)

𝜕(𝑦,𝑧)

. 

 

Equivalently, we can write: 
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𝑑𝑥

|
𝑓𝑦 𝑓𝑧
𝑔𝑦 𝑔𝑧

|
=

𝑑𝑦

|
𝑓𝑧 𝑓𝑥
𝑔𝑧 𝑔𝑥

|
=

𝑑𝑧

|
𝑓𝑥 𝑓𝑦
𝑔𝑥 𝑔𝑦

|
. 

 

Case II: Let {
𝑓(𝑥, 𝑦, 𝑧, 𝑡) = 0

𝑔(𝑥, 𝑦, 𝑧, 𝑡) = 0
} be a system such that  

 

the functions 𝑓 and 𝑔 have continuous fist-order partial derivatives, 𝑓(𝑥0, 𝑦0, 𝑧0, 𝑡0) = 0 =

𝑔(𝑥0, 𝑦0, 𝑧0, 𝑡0), and 
𝜕(𝑓,𝑔)

𝜕(𝑧,𝑡)
|(𝑥0,𝑦0,𝑧0,𝑡0) ≠ 0. Every system of this form has a unique solution 

𝑧 = 𝑧(𝑥, 𝑦) and 𝑡 = 𝑡(𝑥, 𝑦), where 𝑧(𝑥, 𝑦) and 𝑡(𝑥, 𝑦) are two functions whose partial 

derivatives are continuous on a neighborhood of (𝑥0, 𝑦0), so that 𝑧0 = 𝑧(𝑥0, 𝑦0) and 𝑡0 =

𝑡(𝑥0, 𝑦0). Then 

 

𝜕𝑧

𝜕𝑥
= −

𝜕(𝑓,𝑔)

𝜕(𝑥,𝑡)

𝜕(𝑓,𝑔)

𝜕(𝑧,𝑡)

, 
𝜕𝑧

𝜕𝑦
= −

𝜕(𝑓,𝑔)

𝜕(𝑦,𝑡)

𝜕(𝑓,𝑔)

𝜕(𝑧,𝑡)

, 
𝜕𝑡

𝜕𝑥
= −

𝜕(𝑓,𝑔)

𝜕(𝑧,𝑥)

𝜕(𝑓,𝑔)

𝜕(𝑧,𝑡)

, and 
𝜕𝑡

𝜕𝑦
= −

𝜕(𝑓,𝑔)

𝜕(𝑧,𝑦)

𝜕(𝑓,𝑔)

𝜕(𝑧,𝑡)

. 

 

Mean Value Theorems490 

 

First Mean Value Theorem491: If a function 𝑓: 𝐴 → ℝ, where 𝐴 ⊆ ℝ2, is differentiable at 

the points of the straight line segment 𝑎𝑏̅̅ ̅, where 𝑎 = (𝑎1, 𝑎2) and 𝑏 = (𝑏1, 𝑏2), then there 

exists a number 𝜃 with 0 < 𝜃 < 1 such that 

 

𝑓′[𝑎 + 𝜃(𝑏 − 𝑎)] =
𝑓(𝑏)−𝑓(𝑎)

𝑏−𝑎
, 

 

where 𝑓′ is the partial derivative of 𝑓(𝑥, 𝑦) with respect to 𝑥.  

 

 

Figure 2.33. Mean Value Theorem. 

 

 
490 Ibid.  
491 Ibid. 
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Geometric interpretation: As shown in Figure 2.33, if 𝐴(𝑎1, 𝑎2, 𝑓(𝑎1, 𝑎2)) and 

𝐵(𝑏1, 𝑏2, 𝑓(𝑏1, 𝑏2)) are two points of the curve 𝑧 = 𝑓(𝑥, 𝑦) that correspond to points 𝑎 and 𝑏, 

then there exists a point 𝑃 of the curve  

 

{

𝑥 = 𝑎1 + 𝑡(𝑏1 − 𝑎1)

𝑦 = 𝑎2 + 𝑡(𝑏2 − 𝑎2)

𝑧 = 𝑓(𝑎 + 𝑡(𝑏 − 𝑎))

}, where 𝑡 ∈ [0,1], 

 

of the surface 𝑧 = 𝑓(𝑥, 𝑦) such that the tangent at 𝑃 is parallel to the chord 𝐴𝐵. 

 

Equivalent formulation: If a function 𝑓:ℝ2 → ℝ is differentiable, 𝑋0 = (𝑥0, 𝑦0), and 𝑋 =
(𝑥0 + ℎ, 𝑦0 + 𝑘), then there exists a 𝐶 that lies on the line joining 𝑋0 and 𝑋 such that  

 

𝑓(𝑋) = 𝑓(𝑋0) + 𝑓
′(𝐶)(𝑋 − 𝑋0), 

 

namely, there exists a 𝑐 ∈ (0,1) such that 

 

𝑓(𝑥0 + ℎ, 𝑦0 + 𝑘) = 𝑓(𝑥0, 𝑦0) + ℎ𝑓𝑥(𝐶) + 𝑘𝑓𝑦(𝐶), 

 

where 𝐶 = (𝑥0 + 𝑐ℎ, 𝑦0 + 𝑐𝑘). 

 

Proof: Let 𝐹: [0,1] → ℝ be defined by 

 

𝐹(𝑡) = 𝑓(𝑥0 + 𝑡ℎ, 𝑦0 + 𝑡𝑘), where 𝑡 ∈ [0,1]. 

 

Thus, 𝐹(𝑡) is differentiable, and 

 

𝐹′(𝑡) = 𝑓𝑥
𝑑𝑥

𝑑𝑡
+ 𝑓𝑦

𝑑𝑦

𝑑𝑡
= ℎ𝑓𝑥 + 𝑘𝑓𝑦. 

 

According to Lagrange’s Mean Value Theorem, there exists a 𝑐 ∈ (0,1) such that 

 

𝐹(1) − 𝐹(0) = 𝐹′(𝑐), 

 

which proves the theorem.■ 

 

Remark: The result can be extended to any number of variables. 

 

Taylor’s Theorem of the Mean for Multivariable Functions492: If all the 𝑛th partial 

derivatives of 𝑓(𝑥, 𝑦) are continuous in a closed region, and the (𝑛 + 1)st partial derivatives 

exist in the open region, namely, in some neighborhood of a point (𝑥0, 𝑦0) in the domain of 𝑓, 

then 

 

 
492 Ibid. 
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𝑓(𝑥0 + ℎ, 𝑦0 + 𝑘) = 𝑓(𝑥0, 𝑦0) + (ℎ
𝜕

𝜕𝑥
+ 𝑘

𝜕

𝜕𝑦
)𝑓(𝑥0, 𝑦0) +

1

2!
(ℎ

𝜕

𝜕𝑥
+ 𝑘

𝜕

𝜕𝑦
)
2
𝑓(𝑥0, 𝑦0) +

⋯+
1

𝑛!
(ℎ

𝜕

𝜕𝑥
+ 𝑘

𝜕

𝜕𝑦
)
𝑛
𝑓(𝑥0, 𝑦0) + 𝑅𝑛,  

 

where 𝑅𝑛 is the remainder given by 

 

𝑅𝑛 =
1

(𝑛+1)!
(ℎ

𝜕

𝜕𝑥
+ 𝑘

𝜕

𝜕𝑦
)
𝑛+1

𝑓(𝑥0 + 𝜃ℎ, 𝑦0 + 𝜃𝑘), where 𝜃 ∈ (0,1). 

 

Proof: For simplicity, let 𝑛 = 2 (i.e., terms up to order 3). Moreover, let 𝑥 = 𝑥0 + 𝑡ℎ, 

and 𝑦 = 𝑦0 + 𝑡𝑘, where 𝑡 ∈ [0,1]. We define a function 

 

𝐹(𝑡) = 𝑓(𝑥0 + 𝑡ℎ, 𝑦0 + 𝑡𝑘), so that 

𝐹′(𝑡) =
𝜕𝑓

𝜕𝑥

𝑑𝑥

𝑑𝑡
+
𝜕𝑓

𝜕𝑦

𝑑𝑦

𝑑𝑡
= (ℎ

𝜕

𝜕𝑥
+ 𝑘

𝜕

𝜕𝑦
)𝑓(𝑥0 + 𝑡ℎ, 𝑦0 + 𝑡𝑘). 

 

Similarly, we can compute the second-order derivative: 

 

𝐹′′(𝑡) = ℎ (
𝜕2𝑓

𝜕𝑥2
ℎ +

𝜕2𝑓

𝜕𝑦𝜕𝑥
𝑘) + 𝑘 (

𝜕2𝑓

𝜕𝑥𝜕𝑦
ℎ +

𝜕2𝑓

𝜕𝑦2
𝑘), 

 

since ℎ corresponds to 
𝑑𝑥

𝑑𝑡
, 𝑘 corresponds to 

𝑑𝑦

𝑑𝑡
, (

𝜕2𝑓

𝜕𝑥2
ℎ +

𝜕2𝑓

𝜕𝑦𝜕𝑥
𝑘) =

𝑑

𝑑𝑡
(
𝜕𝑓

𝜕𝑥
), and (

𝜕2𝑓

𝜕𝑥𝜕𝑦
ℎ +

𝜕2𝑓

𝜕𝑦2
𝑘) =

𝑑

𝑑𝑡
(
𝜕𝑓

𝜕𝑦
). Hence, 

 

𝐹′′(𝑡) = ℎ2
𝜕2𝑓

𝜕𝑥2
+ 2ℎ𝑘

𝜕2𝑓

𝜕𝑥𝜕𝑦
+ 𝑘2

𝜕2𝑓

𝜕𝑦2
= (ℎ

𝜕

𝜕𝑥
+ 𝑘

𝜕

𝜕𝑦
)
2
𝑓(𝑥0 + 𝑡ℎ, 𝑦0 + 𝑡𝑘). 

 

Similarly, we can compute the third-order derivative: 

𝐹′′′(𝑡) = ℎ2 (
𝜕3𝑓

𝜕𝑥3
ℎ +

𝜕3𝑓

𝜕𝑦𝜕𝑥2
𝑘) + 2ℎ𝑘 (

𝜕3𝑓

𝜕𝑥2𝜕𝑦
ℎ +

𝜕3𝑓

𝜕𝑥𝜕𝑦2
𝑘) + 𝑘2 (

𝜕3𝑓

𝜕𝑥𝜕𝑦2
ℎ +

𝜕3𝑓

𝜕𝑦3
𝑘) =

(ℎ
𝜕

𝜕𝑥
+ 𝑘

𝜕

𝜕𝑦
)
3
𝑓(𝑥0 + 𝑡ℎ, 𝑦0 + 𝑡𝑘). 

 

By Taylor’s Theorem for 𝐹(𝑡) about 0, we have 

𝐹(𝑡) = 𝐹(0) + 𝑡𝐹′(0) +
𝑡2

2!
𝐹′′(0) +

𝑡3

3!
𝐹′′′(𝜃𝑡), where 𝜃 ∈ (0,1). 

 

Thus, 

 

𝐹(1) = 𝐹(0) + 𝐹′(0) +
1

2!
𝐹′′(0) +

1

3!
𝐹′′′(𝜃), where 𝜃 ∈ (0,1). 

 

In view of the foregoing results, we obtain: 
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𝑓(𝑥0 + ℎ, 𝑦0 + 𝑘) = 𝑓(𝑥0, 𝑦0) + (ℎ
𝜕

𝜕𝑥
+ 𝑘

𝜕

𝜕𝑦
)𝑓(𝑥0, 𝑦0) +

1

2!
(ℎ

𝜕

𝜕𝑥
+ 𝑘

𝜕

𝜕𝑦
)
2
𝑓(𝑥0, 𝑦0) +

1

3!
(ℎ

𝜕

𝜕𝑥
+ 𝑘

𝜕

𝜕𝑦
)
3
𝑓(𝑥0 + 𝜃ℎ, 𝑦0 + 𝜃𝑘). 

 

Consequently, in general (inductively), we have: 

 

𝑓(𝑥0 + ℎ, 𝑦0 + 𝑘) = 𝑓(𝑥0, 𝑦0) + (ℎ
𝜕

𝜕𝑥
+ 𝑘

𝜕

𝜕𝑦
)𝑓(𝑥0, 𝑦0) +

1

2!
(ℎ

𝜕

𝜕𝑥
+ 𝑘

𝜕

𝜕𝑦
)
2
𝑓(𝑥0, 𝑦0) +

⋯+
1

𝑛!
(ℎ

𝜕

𝜕𝑥
+ 𝑘

𝜕

𝜕𝑦
)
𝑛
𝑓(𝑥0, 𝑦0) +

1

(𝑛+1)!
(ℎ

𝜕

𝜕𝑥
+ 𝑘

𝜕

𝜕𝑦
)
𝑛+1

𝑓(𝑥0 + 𝜃ℎ, 𝑦0 + 𝜃𝑘), where 𝜃 ∈

(0,1).■ 

 

Remark: Equivalently, we can write: 

 

𝑓(𝑥, 𝑦) = 𝑓(𝑥0, 𝑦0) + ((𝑥 − 𝑥0)
𝜕

𝜕𝑥
+ (𝑦 − 𝑦0)

𝜕

𝜕𝑦
)𝑓(𝑥0, 𝑦0) +⋯+

1

(𝑛+1)!
((𝑥 −

𝑥0)
𝜕

𝜕𝑥
+ (𝑦 − 𝑦0)

𝜕

𝜕𝑦
)

𝑛+1

𝑓(𝑥0 + 𝜃(𝑥 − 𝑥0), 𝑦0 + 𝜃(𝑦 − 𝑦0)), 

 

where 𝜃 ∈ (0,1). If 𝑙𝑖𝑚𝑛→∞𝑅𝑛 = 0 ∀(𝑥, 𝑦) in a region, then we can obtain the infinite series 

expansion of the function 𝑓(𝑥, 𝑦) in powers of (𝑥 − 𝑥0) and (𝑦 − 𝑦0) convergent in this 

region. Notice that, if we want to write the infinite series expansion of the function 𝑓(𝑥, 𝑦) in 

the neighborhood of the point (𝑥0, 𝑦0) = (0,0), then we apply MacLaurin’s formula: 

 

𝑓(𝑥, 𝑦) = 𝑓(0,0) +
1

1!
(𝑥

𝜕

𝜕𝑥
+ 𝑦

𝜕

𝜕𝑦
) 𝑓(0,0) +⋯+

1

𝑛!
(𝑥

𝜕

𝜕𝑥
+ 𝑦

𝜕

𝜕𝑦
)
𝑛
𝑓(0,0) + 𝑅𝑛, 

𝑅𝑛 =
1

(𝑛+1)!
(𝑥

𝜕

𝜕𝑥
+ 𝑦

𝜕

𝜕𝑦
)
𝑛+1

𝑓(𝜃𝑥, 𝜃𝑦), 0 < 𝜃 < 1. 

 

Maxima, Minima, and Saddle Points493 

 

A function 𝑓: 𝐴 → ℝ, where 𝐴 ⊆ ℝ2, is said to have a “local minimum” (resp. a “local 

maximum”) at a point (𝑥0, 𝑦0) ∈ 𝐴 if there exists a neighborhood 𝑁(𝑥0, 𝑦0) in 𝐴 such that 

𝑓(𝑥0, 𝑦0) ≤ 𝑓(𝑥, 𝑦) (resp. 𝑓(𝑥0, 𝑦0) ≥ 𝑓(𝑥, 𝑦)) for every (𝑥, 𝑦) ∈ 𝑁(𝑥0, 𝑦0). The local 

minimum and the local maximum are called the “local extrema” of 𝑓. If the local extrema 

refer to the entire domain 𝐴, then they are called the “global extrema” of 𝑓.  

 

Theorem494: If a function 𝑧 = 𝑓(𝑥, 𝑦) has an extremum at (𝑥0, 𝑦0), then each first-order 

partial derivative of 𝑧 either vanishes at (𝑥0, 𝑦0) or does not exist.  

Proof: If 𝑦 = 𝑦0, then 𝑓(𝑥, 𝑦0) is a function of one variable, 𝑥. Since 𝑧 = 𝑓(𝑥, 𝑦) has an 

extremum (maximum or minimum) at 𝑥 = 𝑥0, 
𝜕𝑧

𝜕𝑥
|(𝑥0,𝑦0) is either equal to zero or does not 

exist. Similarly, we can prove that 
𝜕𝑧

𝜕𝑦
|(𝑥0,𝑦0) is either equal to zero or does not exist.■ 

 
493 Ibid. 
494 Ibid. 
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Remark: The aforementioned theorem is a necessary condition of an extremum, but it is 

not sufficient for investigating the extrema of a function. For instance, the function 𝑧 = 𝑦2 −

𝑥2 has derivatives 
𝜕𝑧

𝜕𝑥
= −2𝑥 and 

𝜕𝑧

𝜕𝑦
= 2𝑦, which vanish at (0,0), but, at (0,0), this function 

has neither a maximum nor a minimum. In particular, at the origin, this function is equal to 

zero, and it takes on both positive and negative values at points arbitrarily close to the origin, 

for which reason (0,0) is neither a maximum nor a minimum.  

The points at which 
𝜕𝑧

𝜕𝑥
= 0 or does not exist and

𝜕𝑧

𝜕𝑦
= 0 or does not exist are said to be 

the “critical points” of the function 𝑧 = 𝑓(𝑥, 𝑦); and, whenever a function reaches an 

extremum at some point, this occurs only at a critical point.  

 

Theorem of Local Extrema495: If 𝑃(𝑥0, 𝑦0) is a critical point of 𝑓(𝑥, 𝑦), and if 

 

𝐷 =
𝜕2𝑓(𝑥0,𝑦0)

𝜕𝑥2
∙
𝜕2𝑓(𝑥0,𝑦0)

𝜕𝑦2
− [

𝜕2𝑓(𝑥0,𝑦0)

𝜕𝑥𝜕𝑦
]
2

, (∗) 

 

then: 

 

i. (𝑥0, 𝑦0) is a local maximum if 𝐷 > 0 and 
𝜕2𝑓(𝑥0,𝑦0)

𝜕𝑥2
< 0; 

ii. (𝑥0, 𝑦0) is a local minimum if 𝐷 > 0 and 
𝜕2𝑓(𝑥0,𝑦0)

𝜕𝑥2
> 0; 

iii. 𝑓(𝑥, 𝑦) has neither a maximum nor a minimum if 𝐷 < 0; 

iv. (𝑥0, 𝑦0) may or may not be an extremum if 𝐷 = 0 (in this case, additional 

investigation is required). 

 

Proof: We shall prove only case (i), because the proof of each of the other cases is 

analogous. Taylor’s Theorem of the Mean for Multivariable Functions implies that, for 

𝑓𝑥(𝑥0, 𝑦0) = 0 = 𝑓𝑦(𝑥0, 𝑦0), 𝑓(𝑥0 + 𝛥𝑥, 𝑦0 + 𝛥𝑦) − 𝑓(𝑥0, 𝑦0) =
1

2!
[(𝛥𝑥)2𝑓𝑥𝑥 +

2(𝛥𝑥)(𝛥𝑦)𝑓𝑥𝑦 + (𝛥𝑦)
2𝑓𝑦𝑦], where 𝑓𝑥𝑥(𝑥0 + 𝜃𝛥𝑥, 𝑦 + 𝜃𝛥𝑦) and 𝑓𝑦𝑦(𝑥0 + 𝜃𝛥𝑥, 𝑦 + 𝜃𝛥𝑦) are 

defined, and 0 < 𝜃 < 1. Then  

 

𝑓(𝑥0 + 𝛥𝑥, 𝑦0 + 𝛥𝑦) − 𝑓(𝑥0, 𝑦0) =
1

2
𝑓𝑥𝑥 [(𝛥𝑥 +

𝑓𝑥𝑦

𝑓𝑥𝑥
𝛥𝑦)

2

+ (
𝑓𝑥𝑥𝑓𝑦𝑦−𝑓𝑥𝑦

2

𝑓𝑥𝑥
2 ) (𝛥𝑦)2]. 

 

By hypothesis, there exists a neighborhood of (𝑥0, 𝑦0) such that 𝑓𝑥𝑥 < 0 and 𝑓𝑥𝑥𝑓𝑦𝑦 −

𝑓𝑥𝑦
2 > 0. Therefore, 𝑓(𝑥0 + 𝛥𝑥, 𝑦0 + 𝛥𝑦) ≤ 𝑓(𝑥0, 𝑦0) for every sufficiently small 𝛥𝑥 and 𝛥𝑦, 

meaning that 𝑓(𝑥, 𝑦) attains a local maximum at (𝑥0, 𝑦0).■ 

 

Remark: In (∗), if 𝐷 < 0, then (𝑥0, 𝑦0) is called a “saddle point,” and it is neither a local 

maximum nor a local minimum of 𝑓(𝑥, 𝑦). A saddle point resembles the center point of a 

horse saddle or the low point of a ridge joining two peaks, and, therefore, a saddle point is 

that peculiar point on a surface which is simultaneously a peak along a path on the given 

surface and a dip along another path on the given surface. Moreover, if, in (∗), 𝐷 = 0, then:  

 
495 Ibid. 
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i. (𝑥0, 𝑦0) is a local maximum if and only if 𝑓(𝑥, 𝑦) − 𝑓(𝑥0, 𝑦0) ≤ 0 for every (𝑥, 𝑦) 

that belongs to a neighborhood of (𝑥0, 𝑦0). 

ii. (𝑥0, 𝑦0) is a local minimum if and only if 𝑓(𝑥, 𝑦) − 𝑓(𝑥0, 𝑦0) ≥ 0 for every (𝑥, 𝑦) 

that belongs to a neighborhood of (𝑥0, 𝑦0). 
 

The global extrema of a multivariable function can be found in the following way: If 

𝑓: 𝐴 → ℝ, where 𝐴 ⊂ ℝ𝑛, is continuous on a compact set 𝐴 ⊂ ℝ𝑛, then, due to Weierstrass’s 

Theorem, 𝑓 has a global minimum and a global maximum in 𝐴, that is, there exist at least one 

point 𝑝1 ∈ 𝐴 and at least one point 𝑝2 ∈ 𝐴 as well as real numbers 𝑚,𝑀 with 0 ≤ 𝑚 ≤ 𝑀 

such that the following holds: 

 

𝑚 ≤ 𝑓(𝑥1, 𝑥2, … , 𝑥𝑛) ≤ 𝑀 with 𝑓(𝑝1) = 𝑚 and 𝑓(𝑝2) = 𝑀.  

 

If the partial derivatives of 𝑓 exist, if 𝐼𝑛𝑡(𝐴) denotes the interior of 𝐴, and if 𝐴 − 𝐼𝑛𝑡(𝐴) 

is the boundary of 𝐴, then the global extrema of 𝑓 are located (and should be pursued) among 

those points of 𝐼𝑛𝑡(𝐴) at which the partial derivatives of 𝑓 become equal to zero and among 

those points of 𝐴 − 𝐼𝑛𝑡(𝐴) which are the local extrema of 𝑓(𝑥1, 𝑥2, … , 𝑥𝑛) with 

(𝑥1, 𝑥2, … , 𝑥𝑛) ∈ 𝐴 − 𝐼𝑛𝑡(𝐴).  

The aforementioned results about local and global extrema can be extended to any 

number of variables. 

In order to find the local extrema of a function whose independent variables must satisfy 

at least one specific condition (constraint), we can apply different methods. The major 

methods that can be used in order to find constrained local extrema are the following: 

 

Method I: Suppose that we want to find the local extrema of a function 𝑓(𝑥1, 𝑥2, … , 𝑥𝑛) 

that is defined on an open set 𝐴 ⊆ ℝ𝑛. Moreover, suppose that the independent variables 

𝑥1, 𝑥2, … , 𝑥𝑛 of 𝑓 satisfy the following 𝑚 conditions, where 𝑚 < 𝑛: 

 

{

𝑔1(𝑥1, 𝑥2, … , 𝑥𝑛) = 0

𝑔2(𝑥1, 𝑥2, … , 𝑥𝑛) = 0
⋮

𝑔𝑚(𝑥1, 𝑥2, … , 𝑥𝑛) = 0

}. 

 

Then, by the aforementioned system of 𝑚 equalities, we determine the 𝑚 variables via 

the rest 𝑛 −𝑚 ones, and we make the pertinent substitutions in 𝑓(𝑥1, 𝑥2, … , 𝑥𝑛) in order to 

obtain a function of 𝑛 −𝑚 variables whose local extrema can be found more easily.  

 

Method II: If we want to find the local extrema of 𝑓(𝑥1, 𝑥2, 𝑥3) that is subject to the 

constraints 𝑔1(𝑥1, 𝑥2, 𝑥3) = 0 and 𝑔2(𝑥1, 𝑥2, 𝑥3) = 0, then we can work as follows: 

 

First, we form the auxiliary function  

 

ℎ = 𝑓 + 𝜆1𝑔1 + 𝜆2𝑔2, where 𝜆1 and 𝜆2 are parameters called Lagrange multipliers.  

 

Second, we solve the system 
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{
 
 

 
 
ℎ𝑥1 = 0

ℎ𝑥2 = 0

ℎ𝑥3 = 0

𝑔1 = 0
𝑔2 = 0}

 
 

 
 

 

 

for 𝑥1, 𝑥2, 𝑥3, 𝜆1, 𝜆2. Let one solution of the given system be 𝑥1 = 𝑎1, 𝑥2 = 𝑎2, 𝑥3 = 𝑎3, 𝜆1 =

𝑏1, 𝜆2 = 𝑏2. 

 

Third, we calculate the matrix 

[
 
 
 
 
𝜕𝑔1
𝜕𝑥1

𝜕𝑔1
𝜕𝑥2

𝜕𝑔1
𝜕𝑥3

𝜕𝑔2
𝜕𝑥1

𝜕𝑔2
𝜕𝑥2

𝜕𝑔2
𝜕𝑥3]

 
 
 
 

 

 

for 𝑥1 = 𝑎1, 𝑥2 = 𝑎2, 𝑥3 = 𝑎3. Then we calculate the 2-square sub-determinants of the given 

matrix (2 is the number of constraints). If at least one of the sub-determinants of this matrix is 

different from zero, then, possibly, 𝑓 attains a local extremum at the point (𝑎1, 𝑎2, 𝑎3). 

Four, because there are three independent variables (𝑥1, 𝑥2, 𝑥3) and two constraints 

(𝑔1, 𝑔2), we form a determinant 𝐷 of order 3 + 2 = 5, so that 

 

𝐷 =

|

|

|ℎ𝑥1𝑥1 ℎ𝑥1𝑥2 ℎ𝑥1𝑥3
ℎ𝑥2𝑥1 ℎ𝑥2𝑥2 ℎ𝑥2𝑥3
ℎ𝑥3𝑥1 ℎ𝑥3𝑥2 ℎ𝑥3𝑥3

𝜕𝑔1
𝜕𝑥1
𝜕𝑔1
𝜕𝑥2
𝜕𝑔1
𝜕𝑥3

𝜕𝑔2
𝜕𝑥1
𝜕𝑔2
𝜕𝑥2
𝜕𝑔2
𝜕𝑥3

𝜕𝑔1
𝜕𝑥1

𝜕𝑔1
𝜕𝑥2

𝜕𝑔1
𝜕𝑥3

0 0

𝜕𝑔2
𝜕𝑥1

𝜕𝑔2
𝜕𝑥2

𝜕𝑔2
𝜕𝑥3

0 0
|

|

|

 

 

for 𝑥1 = 𝑎1, 𝑥2 = 𝑎2, 𝑥3 = 𝑎3, 𝜆1 = 𝑏1, 𝜆2 = 𝑏2. If 𝐷(𝑎1, 𝑎2, 𝑎3, 𝑏1, 𝑏2) > 0, then 𝑓 attains a 

local minimum. If 𝐷(𝑎1, 𝑎2, 𝑎3, 𝑏1, 𝑏2) < 0, then 𝑓 attains a local maximum. 

 

Method III: If we want to find the local extrema of 𝑓(𝑥, 𝑦) under the condition that 

𝑔(𝑥, 𝑦) = 0, then we may use Lagrange multipliers in order to determine the possible 

positions of extrema, and, subsequently, we may apply either the method of differentiating 

implicit functions (in which case, the problem reduces to finding the extrema of a function of 

one variable) or the definition of local extrema (we work similarly if we are given a function 

of three variables and two constraints). Alternatively, we can parametrize the constraint 

𝑔(𝑥, 𝑦) = 0 by setting 𝑥 = 𝑎𝑐𝑜𝑠𝑡 and 𝑦 = 𝑏𝑠𝑖𝑛𝑡, where 𝑡 ∈ [0,2𝜋], and then we have to find 

the local extrema of 𝑓(𝑎𝑐𝑜𝑠𝑡, 𝑏𝑠𝑖𝑛𝑡), which is a function of one variable. 
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Remark: Now, let us find the local extrema of an implicit function. Given an equation 

𝑓(𝑥, 𝑦) = 0 where 𝑓(𝑥, 𝑦) has continuous first-order and second-order partial derivatives, 

suppose that (𝑥0, 𝑦0) is a solution to the system  

 

{
𝑓(𝑥, 𝑦) = 0

𝑓𝑥(𝑥, 𝑦) = 0
}, 

 

and that 𝑓𝑦(𝑥0, 𝑦0) ≠ 0. Then, according to the method of implicit differentiation that has 

been already discussed, the equation 𝑓(𝑥, 𝑦) = 0 determines a function, say 𝑦 = 𝑦(𝑥), where 

𝑥 ∈ 𝐴 ⊂ ℝ. We assume that 𝑥0 ∈ 𝐼𝑛𝑡(𝐴). Then: 

 

i. if 𝑓𝑦(𝑥0, 𝑦0)𝑓𝑥𝑥(𝑥0, 𝑦0) > 0, then 𝑦 = 𝑦(𝑥) attains a local maximum at 𝑥0, 𝑦(𝑥0) =

𝑦0; 

ii. if 𝑓𝑦(𝑥0, 𝑦0)𝑓𝑥𝑥(𝑥0, 𝑦0) < 0, then 𝑦 = 𝑦(𝑥) attains a local minimum at 𝑥0, 𝑦(𝑥0) =

𝑦0; 

iii. if 𝑓𝑦(𝑥0, 𝑦0)𝑓𝑥𝑥(𝑥0, 𝑦0) = 0 (i.e., if 𝑓𝑥𝑥(𝑥0, 𝑦0) = 0, given that, by hypothesis, 

𝑓𝑦(𝑥0, 𝑦0) ≠ 0), then this method is inconclusive.  

 

In case of a function 𝑓(𝑥, 𝑦, 𝑧), we work in an analogous way: If (𝑥0, 𝑦0, 𝑧0) is a solution 

to the system 

{

𝑓(𝑥, 𝑦, 𝑧) = 0

𝑓𝑥(𝑥, 𝑦, 𝑧) = 0

𝑓𝑦(𝑥, 𝑦, 𝑧) = 0
}, 

 

and 𝑓𝑧(𝑥0, 𝑦0, 𝑧0) ≠ 0, then, according to the method of implicit differentiation that has been 

already discussed, the equation 𝑓(𝑥, 𝑦, 𝑧) = 0 determines a function, say 𝑧 = 𝑧(𝑥, 𝑦), where 

(𝑥, 𝑦) ∈ 𝐴 ⊂ ℝ2. We assume that (𝑥0, 𝑦0) ∈ 𝐼𝑛𝑡(𝐴). Then: 

 

i. if 𝑓𝑧(𝑥0, 𝑦0, 𝑧0)𝑓𝑥𝑥(𝑥0, 𝑦0, 𝑧0) > 0 and  

|
𝑓𝑥𝑥(𝑥0, 𝑦0, 𝑧0) 𝑓𝑥𝑦(𝑥0, 𝑦0, 𝑧0)

𝑓𝑦𝑥(𝑥0, 𝑦0, 𝑧0) 𝑓𝑦𝑦(𝑥0, 𝑦0, 𝑧0)
| > 0,  

then (𝑥0, 𝑦0) is the location of a local maximum, 𝑧(𝑥0, 𝑦0) = 𝑧0; 

ii. if 𝑓𝑧(𝑥0, 𝑦0, 𝑧0)𝑓𝑥𝑥(𝑥0, 𝑦0, 𝑧0) < 0 and  

|
𝑓𝑥𝑥(𝑥0, 𝑦0, 𝑧0) 𝑓𝑥𝑦(𝑥0, 𝑦0, 𝑧0)

𝑓𝑦𝑥(𝑥0, 𝑦0, 𝑧0) 𝑓𝑦𝑦(𝑥0, 𝑦0, 𝑧0)
| > 0, 

then (𝑥0, 𝑦0) is the location of a local minimum, 𝑧(𝑥0, 𝑦0) = 𝑧0;  

iii. if  

|
𝑓𝑥𝑥(𝑥0, 𝑦0, 𝑧0) 𝑓𝑥𝑦(𝑥0, 𝑦0, 𝑧0)

𝑓𝑦𝑥(𝑥0, 𝑦0, 𝑧0) 𝑓𝑦𝑦(𝑥0, 𝑦0, 𝑧0)
| = 0, 

then this method is inconclusive.  

 

Curvilinear Coordinates and Transformations496 

 
496 Ibid. 
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Let us consider an arbitrary domain in a Euclidean space ℝ𝑛. By the term “domain,” we 

mean an arbitrary set 𝐴 in a Euclidean space such that every point 𝑝 of 𝐴 is contained in 𝐴 

together with a ball with center 𝑝 and sufficiently small radius. Additionally, let us consider a 

second copy of the Euclidean space, say ℝ1
𝑛. In order to define the coordinates of the point 𝑝 

in the domain 𝐴, we have to associate with this point a set of numbers, called coordinates, in 

such a way that distinct sets of numbers (coordinates) should correspond to different points of 

the domain. The operation of associating with each point 𝑝 of a domain 𝐴 a set of 𝑛 real 

numbers gives rise to a set of 𝑛 functions 𝑥1(𝑝), 𝑥2(𝑝),… , 𝑥𝑛(𝑝) defined in the domain 𝐴. In 

this case, the functions 𝑥1, 𝑥2, … , 𝑥𝑛 are coordinates in the Euclidean space ℝ1
𝑛. These 

functions are usually required to be continuous and even smooth (almost everywhere 

differentiable) in the domain 𝐴, in the sense that a small change in the position of 𝑝 should 

lead to a small change in its coordinates, and a smooth deformation of 𝑝 should yield a 

smooth variation of its coordinates.  

Assume that we have two copies of a Euclidean space: ℝ𝑛 with Cartesian coordinates 

𝑦1, 𝑦2, … , 𝑦𝑛 and ℝ1
𝑛 with Cartesian coordinates 𝑥1, 𝑥2, … , 𝑥𝑛 (ℝ1

𝑛 is an “arithmetic” 

Euclidean space, in the sense that it identifies its points with real sequences of length 𝑛). A 

“continuous coordinate system” in a domain 𝐴 of a Euclidean space ℝ𝑛 is defined as a system 

of functions 𝑥1(𝑦1, 𝑦2, … , 𝑦𝑛),… , 𝑥𝑛(𝑦1, 𝑦2, … , 𝑦𝑛) that map the domain 𝐴 continuously and 

bijectively onto a certain domain 𝐵 of ℝ1
𝑛 (i.e., the system of functions 

𝑥1(𝑦1, 𝑦2, … , 𝑦𝑛),… , 𝑥𝑛(𝑦1, 𝑦2, … , 𝑦𝑛) determines a homeomorphism of 𝐴 onto 𝐵).  

Let 𝑓: 𝐴 → 𝐵 be a smooth mapping defined by a set of functions 

𝑥1(𝑦1, 𝑦2, … , 𝑦𝑛),… , 𝑥𝑛(𝑦1, 𝑦2, … , 𝑦𝑛). A “curvilinear coordinate system” in a domain 𝐴 of a 

Euclidean space ℝ𝑛 is defined as a system of smooth functions 

𝑥1(𝑦1, 𝑦2, … , 𝑦𝑛),… , 𝑥𝑛(𝑦1, 𝑦2, … , 𝑦𝑛) that map bijectively the domain 𝐴 onto a certain 

domain 𝐵 of ℝ1
𝑛 and are such that the Jacobian 𝐽(𝑓) is not zero at all points of 𝐴. The 

condition that the Jacobian 𝐽(𝑓) is not zero at all points of 𝐴 means that the inverse mapping 

𝑓−1 is not only continuous but also smooth, according to the Implicit Function Theorem. In 

other words, a curvilinear coordinate system is defined by two smooth mutually inverse 

mappings establishing a homeomorphism between a domain 𝐴 and a domain 𝐵. 

Let us consider a system of 𝑛 functions 𝑓1, 𝑓2, … , 𝑓𝑛 of 𝑛 coordinates 𝑥1, 𝑥2, … , 𝑥𝑛: 

 

{

𝑦1 = 𝑓1(𝑥1, 𝑥2, … , 𝑥𝑛)

𝑦2 = 𝑓2(𝑥1, 𝑥2, … , 𝑥𝑛)
⋮

𝑦𝑛 = 𝑓𝑛(𝑥1, 𝑥2, … , 𝑥𝑛)

}. (𝑆) 

 

The system (𝑆) determines a mapping 𝐹 from ℝ𝑛 to ℝ𝑛, and this mapping is often called 

a “transformation” of ℝ𝑛. Moreover, the system (𝑆) may be “locally invertible,” namely, we 

may be able to define a system of functions 

 

{

𝑥1 = 𝑔1(𝑦1, 𝑦2, … , 𝑦𝑛)

𝑥2 = 𝑔2(𝑦1, 𝑦2, … , 𝑦𝑛)
⋮

𝑥𝑛 = 𝑔𝑛(𝑦1, 𝑦2, … , 𝑦𝑛)

}, (𝑆∗) 
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such that its equations are the unique solutions to (𝑆) in the neighborhood of some point. The 

system (𝑆∗), consisting of the functions that solve (𝑆), determines a transformation that is the 

inverse of 𝐹. If the functions 𝑓1, 𝑓2, … , 𝑓𝑛 have continuous first-order partial derivatives in a 

neighborhood of a point (𝑝1, 𝑝2, … , 𝑝𝑛) ∈ ℝ
𝑛, if the Jacobian determinant 

 
𝜕(𝑓1,𝑓2,…,𝑓𝑛)

𝜕(𝑥1,𝑥2,…,𝑥𝑛)
|(𝑝1,𝑝2,…,𝑝𝑛) ≠ 0, 

 

and 𝑎1 = 𝑓1(𝑝1, 𝑝2, … , 𝑝𝑛), 𝑎2 = 𝑓2(𝑝1, 𝑝2, … , 𝑝𝑛), … , 𝑎𝑛 = 𝑓𝑛(𝑝1, 𝑝2, … , 𝑝𝑛), then the system 

(𝑆) has a unique solution in terms of 𝑥1, 𝑥2, … , 𝑥𝑛, and the functions 𝑥𝑖 = 𝑔𝑖(𝑦1, 𝑦2, … , 𝑦𝑛), 

where 𝑖 = 1,2,… , 𝑛, which solve (𝑆), have continuous first-order derivatives in a 

neighborhood of the point (𝑝1, 𝑝2, … , 𝑝𝑛), and 𝑝𝑖 = 𝑓𝑖(𝑎1, 𝑎2, … , 𝑎𝑛). 

For instance, let us consider the system {
𝑥 = 𝑟𝑐𝑜𝑠𝜃
𝑦 = 𝑟𝑠𝑖𝑛𝜃

}, where 𝑟 ≥ 0 and 0 ≤ 𝜃 < 2𝜋. This 

system determines a transformation that is one-to-one and continuously differentiable, since 

 
𝜕(𝑥,𝑦)

𝜕(𝑟,𝜃)
= |

𝑐𝑜𝑠𝜃 𝑠𝑖𝑛𝜃
−𝑟𝑠𝑖𝑛𝜃 𝑟𝑐𝑜𝑠𝜃

| = 𝑟.  

 

Hence, for 𝑟 ≠ 0, the given transformation is invertible. In particular, the inverse of the 

given transformation is the transformation {
𝑟 = √𝑥2 + 𝑦2

𝜃 = 𝑎𝑟𝑐𝑡𝑎𝑛
𝑦

𝑥

}. Notice that the given 

transformation is not one-to-one at the origin, 𝑟 = 0, where the Jacobian 𝐽 = 0: as (𝑥, 𝑦) 

tends to (0,0) along the line 𝑦 = 𝑘𝑥, then (𝑟, 𝜃) tends to (0, 𝑎𝑟𝑐𝑡𝑎𝑛𝑘), and then (𝑥, 𝑦) =
(0,0) corresponds to (𝑟, 𝜃) = (0, 𝑎𝑟𝑐𝑡𝑎𝑛𝑘) for all 𝑘, and the transformation is not one-to-one 

near this point. 

 

Cylindrical Coordinates497: We can locate a point 𝑃(𝑥, 𝑦, 𝑧) in ℝ3 via the real numbers 

𝑟, 𝜃, 𝑧. As we can see in Figure 2.34, 𝑟 = 𝑂𝑃′, where 𝑃′ is the projection of the point 𝑃 on the 

plane 𝑂𝑥𝑦, and 𝜃 is the angle ∠𝐴𝑂𝑃′. Hence, we have the following transformation: 

 

𝑥 = 𝑟𝑐𝑜𝑠𝜃, 𝑦 = 𝑟𝑠𝑖𝑛𝜃, and 𝑧 = 𝑧,  

 

and these relations imply that 𝑟2 = 𝑥2 + 𝑦2, 𝜃 = 𝑎𝑟𝑐𝑡𝑎𝑛
𝑦

𝑥
, and 𝑧 = 𝑧. The real numbers 

𝑟, 𝜃, 𝑧 are the “cylindrical coordinates” of the point 𝑃(𝑥, 𝑦, 𝑧) ∈ ℝ3, and we write 𝑃(𝑟, 𝜃, 𝑧) 

with 𝑟 = 𝑘 > 0, 𝜃 ∈ [0,2𝜋], and 𝑧 ∈ ℝ. We use the term “cylindrical coordinates,” because 

the locus of the points 𝑃(𝑟, 𝜃, 𝑧) in ℝ3, for some 𝑟 = 𝑘 > 0, is a cylinder, so that this cylinder 

is defined by the equation 𝑥2+𝑦2 = 𝑘2. Notice that, in cylindrical coordinates, the Jacobian 

of the given transformation is 

 

𝜕(𝑥,𝑦,𝑧)

𝜕(𝑟,𝜃,𝑧)
= |
𝑐𝑜𝑠𝜃 −𝑟𝑠𝑖𝑛𝜃 0
𝑠𝑖𝑛𝜃 𝑟𝑐𝑜𝑠𝜃 0
0 0 1

| = 𝑟.  

 

 
497 Ibid. 
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Figure 2.34. Cylindrical Coordinates. 

Spherical Coordinates498: We can locate a point 𝑃(𝑥, 𝑦, 𝑧) in ℝ3 via the real numbers 

𝑟, 𝜃, 𝜑. As we can see in Figure 2.35, 𝑟 = 𝑂𝑃, 𝜃 is the angle ∠𝐴𝑂𝑃′, and 𝜑 is the angle 

∠𝐶𝑂𝑃. Hence, we have the following transformation:  

𝑥 = 𝑟𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜑, 𝑦 = 𝑟𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜑, and 𝑧 = 𝑟𝑐𝑜𝑠𝜑,  

 

 

Figure 2.35. Spherical Coordinates. 

and these relations imply that 𝑟2 = 𝑥2 + 𝑦2 + 𝑧2, 𝜃 = 𝑎𝑟𝑐𝑡𝑎𝑛
𝑦

𝑥
, and 𝜑 = 𝑎𝑟𝑐𝑐𝑜𝑠

𝑧

√𝑥2+𝑦2+𝑧2
. 

The real numbers 𝑟, 𝜃, 𝜑 are the “spherical coordinates” of 𝑃(𝑥, 𝑦, 𝑧) ∈ ℝ3, and we write 

𝑃(𝑟, 𝜃, 𝜑) with 𝑟 ≥ 0, 𝜃 ∈ [0,2𝜋], and 𝜑 ∈ [0, 𝜋]. We use the term “spherical coordinates,” 

because the locus of the points 𝑃(𝑟, 𝜃, 𝜑) for some 𝑟 = 𝑘 > 0, 𝜃 ∈ [0,2𝜋], and 𝜑 ∈ [0, 𝜋] is a 

sphere defined by the equation 𝑥2+𝑦2+𝑧2 = 𝑘2. Notice that, in spherical coordinates, the 

Jacobian of the given transformation is  

 

 
498 Ibid. 
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𝜕(𝑥,𝑦,𝑧)

𝜕(𝑟,𝜃,𝜑)
= |

𝑠𝑖𝑛𝜑𝑐𝑜𝑠𝜃 −𝑟𝑠𝑖𝑛𝜑𝑠𝑖𝑛𝜃 𝑟𝑐𝑜𝑠𝜑𝑐𝑜𝑠𝜃
𝑠𝑖𝑛𝜑𝑠𝑖𝑛𝜃 𝑟𝑠𝑖𝑛𝜑𝑐𝑜𝑠𝜃 𝑟𝑐𝑜𝑠𝜑𝑠𝑖𝑛𝜃
𝑐𝑜𝑠𝜑 0 −𝑟𝑠𝑖𝑛𝜑

| = −𝑟2𝑠𝑖𝑛𝜑. 

 

 

2.11. INTEGRAL CALCULUS 
 

From a rather elementary perspective, integration can be construed as the inverse of 

differentiation. Let 𝑓: 𝐼 → ℝ be a function, where 𝐼 is an interval; in fact, 𝐼 may have one of 

the following forms: 

 

[𝑎, 𝑏], [𝑎, 𝑏), (𝑎, 𝑏], (𝑎, 𝑏), [𝑎, +∞), (𝑎,+∞), (−∞, 𝑏], (−∞, 𝑏), (−∞,+∞).  

 

If 𝐹: 𝐼 → ℝ is a function such that 𝐹′(𝑥) = 𝑓(𝑥) ∀𝑥 ∈ 𝐼, then 𝐹 is called the 

“antiderivative” of 𝑓 in 𝐼, and it is denoted by  

 

𝐹(𝑥) = ∫𝑓(𝑥)𝑑𝑥, 𝑥 ∈ 𝐼 

 

according to Leibniz’s notation.499 In other words, ∫𝑓(𝑥)𝑑𝑥 = 𝐹(𝑥) + 𝑐 if and only if 

[𝐹(𝑥) + 𝑐]′ = 𝑓(𝑥). The aforementioned definition implies that the “indefinite integral” of a 

given function with respect to 𝑥 is a new function plus a constant if and only if the derivative 

of the new function and of the constant equals the given function. Thus, differentiation can be 

used in order to verify the result of an integral.  

 

Examples: 

 

i. ∫𝑥2 𝑑𝑥 =
𝑥3

3
+ 𝑐, because (

𝑥3

3
+ 𝑐)

′

= 𝑥2;  

ii. ∫ 𝑒𝑥 𝑑𝑥 = 𝑒𝑥 + 𝑐, because (𝑒𝑥 + 𝑐)′ = 𝑒𝑥; 

iii. ∫
𝑑𝑥

𝑥
= 𝑙𝑛|𝑥| + 𝑐, because, ∀𝑥 ∈ ℝ+

∗ , (𝑙𝑛𝑥)′ =
1

𝑥
; and, in general, ∫𝑥𝑛 𝑑𝑥 =

{
𝑥𝑛+1

𝑛+1
+ 𝑐𝑖𝑓𝑛 ≠ −1

𝑙𝑛|𝑥| + 𝑐𝑖𝑓𝑛 = −1
. 

 

Theorem500: Let 𝐹1 and 𝐹2 be two antiderivatives of 𝑓. Then  

 

𝐹2(𝑥) = 𝐹1(𝑥) + 𝑐 ∀𝑥 ∈ 𝐼 (𝑐 is a contant). 

 

 
499 See: Apostol, Calculus; Courant and John, Introduction to Calculus and Analysis; Edwards, A Treatise on the 

Integral Calculus; Fraleigh, Calculus with Analytic Geometry; Gillespie, Integration; Haaser and Sullivan, Real 

Analysis; McLeod, The Generalized Riemann Integral; Nikolski, A Course of Mathematical Analysis; Piskunov, 

Differential and Integral Calculus; Rudin, Principles of Mathematical Analysis; Spivak, Calculus; Taylor, 

General Theory of Functions and Integration. 
500 Ibid. 
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Proof: Let us set 𝐹(𝑥) = 𝐹2(𝑥) − 𝐹1(𝑥) ⇒ 𝐹′(𝑥) = 𝐹2
′(𝑥) − 𝐹1

′(𝑥) = 𝑓(𝑥) − 𝑓(𝑥) =

0 ∀𝑥 ∈ 𝐼. Hence, 𝐹 is constant in 𝐼, that is, 𝐹(𝑥) = 𝑐 or 𝐹2(𝑥) = 𝐹1(𝑥) + 𝑐.■ 

 

Remark: Similarly, we can prove that, if 𝐹1 is an antiderivative of 𝑓 in 𝐼, and if 𝐹2 is 

defined on 𝐼, so that 𝐹2(𝑥) = 𝐹1(𝑥) + 𝑐 for all 𝑥 ∈ 𝐼 and for any 𝑐 ∈ ℝ, then 𝐹2 is an 

antiderivative of 𝑓 in 𝐼.  

 

Theorem501: Let 𝑓: 𝐼 → ℝ and 𝑔: 𝐼 → ℝ be two functions. If their indefinite integrals exist 

in 𝐼, then there is the indefinite integral of 𝑎𝑓 + 𝑏𝑔, too, and  

 

∫[𝑎𝑓(𝑥) + 𝑏𝑔(𝑥)]𝑑𝑥 = 𝑎 ∫𝑓(𝑥)𝑑𝑥 + 𝑏 ∫𝑔(𝑥)𝑑𝑥, 

 

where 𝑎 and 𝑏 are constants. 

 

Proof: Suppose that ∫𝑓(𝑥)𝑑𝑥 = 𝐹1(𝑥) and ∫𝑔(𝑥)𝑑𝑥 = 𝐹2(𝑥). Then 𝐹1
′(𝑥) = 𝑓(𝑥) and 

𝐹2
′(𝑥) = 𝑔(𝑥) for all 𝑥 ∈ 𝐼. Therefore, [𝑎𝐹1(𝑥) + 𝑏𝐹2(𝑥)]

′ = 𝑎𝐹1
′(𝑥) + 𝑏𝐹2

′(𝑥) = 𝑎𝑓(𝑥) +

𝑏𝑔(𝑥).■ 

 

Examples: 

i. ∫
𝑥𝑑𝑥

𝑥2+2
. We observe that (𝑥2 + 2)′ = 2𝑥. Then we transform the numerator of the 

integrand, so that the integral will be reduced to the form ∫
𝑑𝑥

𝑥
. Hence, ∫

𝑥𝑑𝑥

𝑥2+2
=

1

2
∫
2𝑥𝑑𝑥

𝑥2+2
=

1

2
∫
𝑑(𝑥2+2)

𝑥2+2
=

1

2
𝑙𝑛(𝑥2 + 2) + 𝑐. 

ii. ∫ 𝑠𝑖𝑛𝑥 = −𝑐𝑜𝑠𝑥 + 𝑐. 

iii. ∫ 𝑐𝑜𝑠𝑥 = 𝑠𝑖𝑛𝑥 + 𝑐. 

iv. ∫ 𝑡𝑎𝑛𝑥 = ∫
𝑠𝑖𝑛𝑥

𝑐𝑜𝑠𝑥
𝑑𝑥 = −∫

𝑑(𝑐𝑜𝑠𝑥)

𝑐𝑜𝑠𝑥
= −𝑙𝑛|𝑐𝑜𝑠𝑥| + 𝑐. 

v. ∫ 𝑐𝑜𝑡𝑥𝑑𝑥 = ∫
𝑐𝑜𝑠𝑥

𝑠𝑖𝑛𝑥
𝑑𝑥 = ∫

𝑑(𝑠𝑖𝑛𝑥)

𝑠𝑖𝑛𝑥
= 𝑙𝑛|𝑠𝑖𝑛𝑥| + 𝑐. 

vi. ∫ 𝑒−𝑥 𝑑𝑥 = −∫𝑒−𝑥𝑑(−𝑥) = −𝑒−𝑥 + 𝑐. 

vii. ∫
𝑑𝑥

𝑥2+1
. Let us set 𝑥 = 𝑡𝑎𝑛𝑡, so that 

∫
𝑑𝑥

𝑥2+1
= ∫

𝑑(𝑡𝑎𝑛𝑡)

𝑡𝑎𝑛2𝑡+1
= ∫

(𝑡𝑎𝑛𝑡)′𝑑𝑡

𝑠𝑖𝑛2𝑡

𝑐𝑜𝑠2𝑡
+
𝑐𝑜𝑠2𝑡

𝑐𝑜𝑠2𝑡

= ∫

1

𝑐𝑜𝑠2𝑡
𝑑𝑡

𝑠𝑖𝑛2𝑡+𝑐𝑜𝑠2𝑡

𝑐𝑜𝑠2𝑡

= ∫1𝑑𝑡 = 𝑡 + 𝑐, 

that is, 𝑡 is the arc whose tangent is 𝑥, and, therefore, in this case, ∫1𝑑𝑡 = ∫
𝑑𝑥

𝑥2+1
=

𝑎𝑟𝑐𝑡𝑎𝑛𝑥 + 𝑐.  

viii. ∫
𝑑𝑥

𝑥2+𝑘2
, where 𝑘 is a constant. Let us set 𝑥 = 𝑘𝑡 ⇒ 𝑑𝑥 = 𝑑(𝑘𝑡) = (𝑘𝑡)′𝑑𝑡 =

(𝑘′𝑡 + 𝑘𝑡′)𝑑𝑡 = 𝑘𝑑𝑡. Then 

∫
𝑑𝑥

𝑥2+𝑘2
= ∫

𝑘𝑑𝑡

𝑘2𝑡2+𝑘2
= ∫

𝑘𝑑𝑡

𝑘2(𝑡2+1)
= ∫

1𝑑𝑡

𝑘(𝑡2+1)
=

1

𝑘
∫

𝑑𝑡

𝑡2+1
=

1

𝑘
𝑎𝑟𝑐𝑡𝑎𝑛𝑡 + 𝑐 =

1

𝑘
𝑎𝑟𝑐𝑡𝑎𝑛

𝑥

𝑘
+ 𝑐.  

 

Remark: The integral ∫
dx

ax2+bx+c
, where 𝐷 = 𝑏2 − 4𝑎𝑐 < 0, reduces to the form ∫

𝑑𝑢

𝑢2+𝑘2
. 

 
501 Ibid. 
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The “definite integral” is written as  

 

∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎

 

 

and represents the area bounded by the curve 𝑦 = 𝑓(𝑥), the 𝑥-axis, and the ordinates 𝑥 = 𝑎, 

and 𝑥 = 𝑏 if 𝑓(𝑥) ≥ 0. If 𝑓(𝑥) is sometimes positive and sometimes negative, then the 

definite integral represents the algebraic sum of the areas above and below the 𝑥-axis, and, in 

particular, the areas that are above the 𝑥-axis are considered to be positive, whereas the areas 

that are below the 𝑥-axis are considered to be negative.  

 

The Definition of the Integral as the Limit of a Sum502 

As shown in Figure 2.36, the definite integral ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
 can be defined as follows: 

We subdivide the interval [𝑎, 𝑏] into 𝑛 subintervals 

 

[𝑎, 𝑥1], [𝑥1, 𝑥2], … , [𝑥𝑘−1, 𝑥𝑘], … , [𝑥𝑛−1, 𝑏]  (∗) 

 

by means of the points 𝑥1, 𝑥2, … , 𝑥𝑛−1, which have been chosen arbitrarily. Hence, the set of 

points 𝑃 = {𝑎 = 𝑥0, 𝑥1, 𝑥2, … , 𝑥𝑘−1, 𝑥𝑘 , … , 𝑥𝑛−1, 𝑥𝑛 = 𝑏} is a “partition” of [𝑎, 𝑏]. Let 𝛥𝑥𝑘 be 

the length of the 𝑘th subinterval, that is, 𝛥𝑥𝑘 = 𝑥𝑘 − 𝑥𝑘−1. Then the “norm” of partition 𝑃 is 

denoted by ‖𝑃‖, and it is equal to 𝑚𝑎𝑥{𝛥𝑥𝑘|𝑘 = 1,2,… , 𝑛}. 

 

 

Figure 2.36. The Integral as the Limit of a Sum. 

In each of the 𝑛 subintervals mentioned in (∗), we choose points 𝑐1, 𝑐2, … , 𝑐𝑛 in an 

arbitrary way, and we form the sum 

 

𝑆(𝑃, 𝑓, 𝑐𝑘) = 𝑓(𝑐1)𝛥𝑥1 + 𝑓(𝑐2)𝛥𝑥2 +⋯+ 𝑓(𝑐𝑘)𝛥𝑥𝑘 +⋯+ 𝑓(𝑐𝑛)𝛥𝑥𝑛 =
∑ 𝑓(𝑐𝑘)𝛥𝑥𝑘
𝑛
𝑘=1 . 

 

Notice that, as the number of subdivisions 𝑛 increases, ‖𝑃‖ vanishes, that is, ‖𝑃‖ → 0 as 

𝑛 → ∞. Hence, if 𝑙𝑖𝑚‖𝑃‖→0𝑆(𝑃, 𝑓, 𝑐𝑘) exists and is independent of the mode of subdivision of 

[𝑎, 𝑏], then this limit is said to be the integral of 𝑓 on [𝑎, 𝑏], symbolically,  

 

 
502 Ibid. 
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𝑙𝑖𝑚‖𝑃‖→0𝑆(𝑃, 𝑓, 𝑐𝑘) = ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎

 

 

where 𝑓(𝑥)𝑑𝑥 is called the “integrand,” [𝑎, 𝑏] is called the “range of integration,” and 𝑎 and 

𝑏 are, respectively, called the lower and the upper “limit of integration.” Notice that the 

aforementioned limit exists if 𝑓(𝑥) is continuous (or sectionally continuous) on [𝑎, 𝑏]. 

Leibniz symbolized the definite integral of a function 𝑓(𝑥) on [𝑎, 𝑏] as ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
, 

because the sign ∫ is an elongated S standing for the word “sum,” since, as I have already 

explained, Leibniz defined ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
 as the sum of infinitely many rectangles of height 𝑓(𝑥) 

and infinitesimally small width 𝑑𝑥.  

 

The Physical Significance of the Integral 

As I have already explained, the development of infinitesimal calculus by Newton and 

Leibniz is intimately related to the study of celestial mechanics and, generally, physics by 

them. In the aforementioned context, infinitesimal calculus, known also as the differentiation–

integration method, is concerned with the limits of applicability of physical laws. Physical 

laws are not absolute, and the validity of a law is restricted to the framework of the 

applicability limits (i.e., certain conditions). However, a physical law can be expanded by 

changing its form beyond the limits of applicability by means of infinitesimal calculus. This 

method is based on the following two principles: (i) the principle that a law can be 

represented in differential form, and (ii) the superposition principle, according to which the 

quantities that enter into the law are additive. In particular, the “principle of superposition” 

was first stated by Daniel Bernoulli (1753), and it consists of two properties whose meaning 

will become better understood later in this chapter: (i) the sum of any number of linearly 

independent partial solutions of a differential equation is also a solution of the given 

differential equation; and (ii) any constant multiple of a solution is also a solution. 

Suppose that a physical law has the form 

 

𝑋 = 𝑌𝑍,   (∗) 

 

where 𝑋, 𝑌, and 𝑍 are physical quantities, and, in particular, 𝑌 is a constant representing the 

given law’s limits of applicability. We can generalize the given law to the case where 𝑌 is not 

a constant but a function of 𝑍, namely, 𝑌 = 𝑌(𝑍), as follows: As shown in Figure 2.37, we 

isolate an interval 𝑑𝑍 so small that the variation of 𝑍 over this interval can be ignored. Hence, 

in the interval (“infinitesimal”) 𝑑𝑍, we can approximately assume that 𝑌 is constant, and that 

the law (∗) is valid in this interval. Therefore,  

 

𝑑𝑋 = 𝑌(𝑍)𝑑𝑍,   (∗∗) 

 

where 𝑑𝑋 is the variation of 𝑋 over 𝑑𝑍. Due to the superposition principle, that is, by 

summing the quantities (∗∗) over all the intervals of variation of 𝑍, we obtain an expression 

for 𝑋 in the form 

 

𝑋 = ∫ 𝑌(𝑍)𝑑𝑍
𝑀

𝑚
,   (∗∗∗) 
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where 𝑚 and 𝑀 are the initial and the final values of 𝑍, respectively.  

 

 

Figure 2.37. The Method of Infinitesimal Calculus. 

As a conclusion, the method of infinitesimal calculus consists of two parts: in the first 

part of the method, we find the differential (∗∗) of the quantity under investigation; and, in the 

second part of the method, we sum, or “integrate,” having adequately determined the 

integration variable and the limits of integration (in order to determine the integration 

variable, we must analyze the quantities on which the differential of the investigated quantity 

depends and choose the most important variable; and the limits of integration are the lower 

and the upper values of the integration variable).  

 

Integration of Complex Functions of One Variable503 

The integral of a complex function 𝑓(𝑥) = 𝑔(𝑥) + 𝑖ℎ(𝑥), where 𝑖 = √−1, and 𝑥 is a real 

variable, between the limits 𝑎 and 𝑏, is defined by 

 

∫ 𝑓(𝑥)𝑑𝑥 = ∫ [𝑔(𝑥) + 𝑖ℎ(𝑥)]𝑑𝑥 = ∫ 𝑔(𝑥)𝑑𝑥 + 𝑖 ∫ ℎ(𝑥)𝑑𝑥
𝑏

𝑎

𝑏

𝑎

𝑏

𝑎

𝑏

𝑎
.  

 

Obviously, the properties of such integrals may be deduced from the properties of the real 

integrals. 

 

 

2.12. STANDARD INTEGRATION TECHNIQUES
504 

 

There are two standard integration techniques: integration by substitution and integration 

by parts. 

 

 

Integration by Substitution 

This technique of integration is based on the following theorem: 

 

 
503 Ibid. 
504 Ibid. 
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Theorem505: Let 𝐴 and 𝐵 be two intervals, and let 𝑓: 𝐴 → 𝐵 be a continuous function. 

Moreover, let 𝑔: 𝐵 → ℝ be a differentiable function with 𝑔′(𝑡) ≠ 0 ∀ 𝑡 ∈ 𝐵 and such that 

𝑅𝑔 ⊆ 𝐴 (where 𝑅𝑔denotes the range of 𝑔). Then 

 

∫𝑓(𝑥)𝑑𝑥 = ∫𝑓(𝑔(𝑡))𝑔′ (𝑡)𝑑𝑡. 

 

Proof: Let 𝐹(𝑥) = ∫𝑓(𝑥)𝑑𝑥. Then 𝐹′(𝑥) = 𝑓(𝑥) ∀ 𝑥 ∈ 𝐴. Let 𝐺(𝑡) = 𝐹(𝑔(𝑡)), where 

𝑡 ∈ 𝐵. Therefore, 

 

𝐺′(𝑡) = 𝐹′(𝑔(𝑡))𝑔′(𝑡) = 𝑓(𝑔(𝑡))𝑔′(𝑡), 

 

meaning that 𝐺 has an antiderivative in 𝐵.■ 

 

Case Studies (𝑎 ∈ ℝ∗): 

 

i. Assume that an integral contains the expression √𝑎2 − 𝑥2. We need 𝑎2 − 𝑥2 > 0 ⇒

−𝑥2 > −𝑎2 ⇒ 𝑥2 < 𝑎2 ⇒
𝑥2

𝑎2
< 1 ⇒ |

𝑥

𝑎
| < 1. Hence, we set 𝑥 = 𝑎𝑠𝑖𝑛𝑡 ⇒ 𝑑𝑥 =

𝑎𝑐𝑜𝑠𝑡𝑑𝑡. We can also make the substitution 𝑥 = 𝑎𝑐𝑜𝑠𝑡 ⇒ 𝑑𝑥 = −𝑎𝑠𝑖𝑛𝑡𝑑𝑡. For 

instance, let us compute the integral ∫
𝑥

√4−𝑥2
𝑑𝑥, applying the technique of integration 

by substitution: 4 − 𝑥2 > 0 ⇒ −𝑥2 > −4 ⇒ 𝑥2 < 4 ⇒ (
𝑥

2
)
2
< 1 ⇒ |

𝑥

2
| < 1. Let us 

set 𝑥 = 2𝑠𝑖𝑛𝑡 and 𝑑𝑥 = 2𝑐𝑜𝑠𝑡𝑑𝑡. Hence, 

ii. ∫
𝑥

√4−𝑥2
𝑑𝑥 = ∫

2𝑠𝑖𝑛𝑡

√4−(2𝑠𝑖𝑛𝑡)2
2𝑐𝑜𝑠𝑡𝑑𝑡 = ∫

2𝑠𝑖𝑛𝑡

2𝑐𝑜𝑠𝑡
2𝑐𝑜𝑠𝑡𝑑𝑡 = 2∫ 𝑠𝑖𝑛𝑡𝑑𝑡 = −2𝑐𝑜𝑠𝑡 +

𝑐 = −2√1 − 𝑠𝑖𝑛2𝑡 + 𝑐 = −√4 − 𝑥2 + 𝑐. 

iii. Assume that an integral contains the expression √𝑥2 − 𝑎2. We need 𝑥2 − 𝑎2 > 0 ⇒

𝑥2 > 𝑎2 ⇒
𝑥2

𝑎2
> 1 ⇒

𝑎2

𝑥2
< 1 ⇒ |

𝑎

𝑥
| < 1. Hence, we set 

𝑎

𝑥
= 𝑠𝑖𝑛𝑡 ⇒ 𝑥 =

𝑎

𝑠𝑖𝑛𝑡
 and 

𝑑𝑥 = 𝑎 (
1

𝑠𝑖𝑛𝑡
)
′
= −𝑎(𝑠𝑖𝑛𝑡)−2𝑐𝑜𝑠𝑡𝑑𝑡. We can also make the substitution 𝑥 =

𝑎

𝑐𝑜𝑠𝑡
 

and 𝑑𝑥 = 𝑎
𝑠𝑖𝑛𝑡

𝑐𝑜𝑠2𝑡
𝑑𝑡.  

iv. Assume that an integral contains the expression √𝑎2 + 𝑥2. This expression is defined 

∀𝑥 ∈ ℝ, and, therefore, we set 𝑥 = 𝑎𝑡𝑎𝑛𝑡 and 𝑑𝑥 =
𝑎

𝑐𝑜𝑠2𝑡
𝑑𝑡, since tangent is defined 

in ℝ. 

v. Assume that an integral contains the expression √𝑎𝑥 + 𝑏. Then we set √𝑎𝑥 + 𝑏 = 𝑡. 

For instance, let us compute the integral ∫
𝑠𝑖𝑛√𝑥

√𝑥
𝑑𝑥, applying the technique of 

integration by substitution: Let us set √𝑥 = 𝑡, so that 𝑥 = 𝑡2 and 𝑑𝑥 = 2𝑡𝑑𝑡. Hence, 

∫
𝑠𝑖𝑛√𝑥

√𝑥
𝑑𝑥 = ∫

𝑠𝑖𝑛𝑡

𝑡
2𝑡𝑑𝑡 = 2∫ 𝑠𝑖𝑛𝑡𝑑𝑡 = −2𝑐𝑜𝑠𝑡 + 𝑐 = −2𝑐𝑜𝑠√𝑥 + 𝑐.  

vi. Assume that an integral contains the expression √2𝑎𝑥 − 𝑎𝑥2, where 𝑎 > 0. Then we 

set 𝑥 = 𝑎(1 − 𝑐𝑜𝑠𝑡) and 𝑑𝑥 = 𝑎𝑠𝑖𝑛𝑡𝑑𝑡. 

 
505 Ibid.  
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Integration by Parts 

This technique of integration is based on the following theorem: 

 

Theorem506: If the functions 𝑢 and 𝑣 are differentiable on the interval 𝐼, and if the 

indefinite integral of 𝑢′𝑣 exists in 𝐼, then  

 

∫𝑢𝑑𝑣 = 𝑢𝑣 − ∫𝑣𝑑𝑢. 

 

Proof:(𝑢𝑣)′ = 𝑢′𝑣 + 𝑢𝑣′ ⇒ (𝑢𝑣)′𝑑𝑥 = 𝑣𝑢′𝑑𝑥 + 𝑢𝑣′𝑑𝑥. Then ∫(𝑢𝑣)′𝑑𝑥 =

∫𝑣𝑢′𝑑𝑥 + ∫𝑢𝑣′𝑑𝑥, and ∫𝑑(𝑢𝑣) = ∫𝑣𝑑𝑢 + ∫𝑢𝑑𝑣 ⇒ 𝑢𝑣 =∫𝑣𝑑𝑢 + ∫𝑢𝑑𝑣. Therefore, 

∫𝑢𝑑𝑣 = 𝑢𝑣 − ∫𝑣𝑑𝑢.■ 

 

Case Studies: If we have ∫𝑢𝑣𝑑𝑥, and we must determine which function to put inside the 

differential (i.e., ∫𝑢′ 𝑣𝑑𝑥 or ∫𝑢𝑣′ 𝑑𝑥), we can use the following table that categorizes 

functions in descending order of preference:  

 

1. Exponential Functions, 

2. Trigonometric Functions, 

3. Polynomial Functions, 

4. Logarithmic Functions. 

 

Examples: 

 

i. Let us compute the integral ∫𝑥𝑐𝑜𝑠𝑥𝑑𝑥, applying the technique of integration by 

parts: ∫𝑥𝑐𝑜𝑠𝑥𝑑𝑥 = ∫𝑥𝑑(𝑠𝑖𝑛𝑥) = 𝑥𝑠𝑖𝑛𝑥 − ∫(𝑠𝑖𝑛𝑥)𝑥′𝑑𝑥 = 𝑥𝑠𝑖𝑛𝑥 − (−𝑐𝑜𝑠𝑥) +

𝑐 = 𝑥𝑠𝑖𝑛𝑥 + 𝑐𝑜𝑠𝑥 + 𝑐. 

ii. Let us compute the integral ∫𝑥𝑛𝑙𝑛𝑥𝑑𝑥, 𝑛 ∈ ℕ∗, applying the technique of integration 

by parts: ∫𝑥𝑛𝑙𝑛𝑥𝑑𝑥 = ∫ 𝑙𝑛𝑥 (
𝑥𝑛+1

𝑛+1
)
′

𝑑𝑥 =
𝑥𝑛+1

𝑛+1
𝑙𝑛𝑥 − ∫

𝑥𝑛+1

𝑛+1
(𝑙𝑛𝑥)′𝑑𝑥 =

𝑥𝑛+1

𝑛+1
𝑙𝑛𝑥 −

1

𝑛+1
∫𝑥𝑛+1

1

𝑥
𝑑𝑥 =

𝑥𝑛+1

𝑛+1
𝑙𝑛𝑥 −

1

𝑛+1

𝑥𝑛+1

𝑛+1
+ 𝑐. 

 

 

2.13. REDUCTION FORMULAS
507 

 

The technique of integration by parts helps us to find a reduction formula in order to 

compute integrals of the form ∫𝑓𝑛(𝑥)𝑔(𝑥)𝑑𝑥, where 𝑛 ∈ ℕ, such as ∫ 𝑠𝑖𝑛𝑛 𝑥𝑑𝑥, ∫
𝑑𝑥

(𝑥2+1)𝑛
, 

etc. 

 

Examples: 

 

 
506 Ibid. 
507 Ibid. 
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i. 𝐼𝑛 = ∫𝑠𝑖𝑛
𝑛 𝑥𝑑𝑥 = 

∫ 𝑠𝑖𝑛𝑛−1 𝑥𝑠𝑖𝑛𝑥𝑑𝑥 = −∫𝑠𝑖𝑛𝑛−1 𝑥𝑑(𝑐𝑜𝑠𝑥) = −∫ 𝑠𝑖𝑛𝑛−1𝑥(𝑐𝑜𝑠𝑥)′𝑑𝑥 =

−𝑠𝑖𝑛𝑛−1𝑥𝑐𝑜𝑠𝑥 + ∫ 𝑐𝑜𝑠𝑥(𝑠𝑖𝑛𝑛−1𝑥)′𝑑𝑥 = −𝑠𝑖𝑛𝑛−1𝑥𝑐𝑜𝑠𝑥 + ∫(𝑐𝑜𝑠𝑥)(𝑛 −

1)𝑠𝑖𝑛𝑛−2𝑥 (𝑠𝑖𝑛𝑥)′𝑑𝑥 = −𝑠𝑖𝑛𝑛−1𝑥𝑐𝑜𝑠𝑥 + (𝑛 − 1)∫ 𝑐𝑜𝑠2 𝑥𝑠𝑖𝑛𝑛−2𝑥𝑑𝑥 =

−𝑠𝑖𝑛𝑛−1𝑥𝑐𝑜𝑠𝑥 + (𝑛 − 1)∫(1 − 𝑠𝑖𝑛2𝑥)𝑠𝑖𝑛𝑛−2𝑥𝑑𝑥 = −𝑠𝑖𝑛𝑛−1𝑥𝑐𝑜𝑠𝑥 +

(𝑛 − 1) ∫ 𝑠𝑖𝑛𝑛−2𝑥𝑑𝑥 − (𝑛 − 1) ∫ 𝑠𝑖𝑛𝑛𝑥𝑑𝑥. Hence,  

𝐼𝑛 = −𝑠𝑖𝑛
𝑛−1𝑥𝑐𝑜𝑠𝑥 + (𝑛 − 1)𝐼𝑛−2 − (𝑛 − 1)𝐼𝑛 ⇔ 𝐼𝑛 = −

𝑠𝑖𝑛𝑛−1𝑥𝑐𝑜𝑠𝑥

𝑛
+
𝑛−1

𝑛
𝐼𝑛−2, 

where 𝑛 = 2,3,… If 𝑛 = 1, then 𝐼𝑛 = 𝐼1 ⇒ 𝐼1 = ∫𝑠𝑖𝑛𝑥𝑑𝑥 = −𝑐𝑜𝑠𝑥 + 𝑐.  

ii. 𝐽𝑛 = ∫𝑐𝑜𝑠
𝑛 𝑥𝑑𝑥 = 

∫ 𝑐𝑜𝑠𝑛−1𝑥𝑐𝑜𝑠𝑥𝑑𝑥 = ∫𝑐𝑜𝑠𝑛−1𝑥𝑑(𝑠𝑖𝑛𝑥) = ∫ 𝑐𝑜𝑠𝑛−1𝑥(𝑠𝑖𝑛𝑥)′ 𝑑𝑥 = 𝑐𝑜𝑠𝑛−1𝑥𝑠𝑖𝑛𝑥 −

∫ 𝑠𝑖𝑛𝑥(𝑐𝑜𝑠𝑛−1𝑥)′ 𝑑𝑥 = 𝑐𝑜𝑠𝑛−1𝑥𝑠𝑖𝑛𝑥 − ∫(𝑛 − 1)𝑐𝑜𝑠𝑛−2 𝑥(𝑐𝑜𝑠𝑥)′𝑠𝑖𝑛𝑥𝑑𝑥 =

𝑐𝑜𝑠𝑛−1𝑥𝑠𝑖𝑛𝑥 + (𝑛 − 1)∫ 𝑐𝑜𝑠𝑛−2𝑥𝑠𝑖𝑛2𝑥𝑑𝑥 = 𝑐𝑜𝑠𝑛−1𝑥𝑠𝑖𝑛𝑥 + (𝑛 −

1)∫ 𝑐𝑜𝑠𝑛−2𝑥(1 − 𝑐𝑜𝑠2𝑥)𝑑𝑥 =𝑐𝑜𝑠𝑛−1𝑥𝑠𝑖𝑛𝑥 + (𝑛 − 1)∫ 𝑐𝑜𝑠𝑛−2𝑥𝑑𝑥 − (𝑛 −

1)∫ 𝑐𝑜𝑠𝑛−2𝑥𝑐𝑜𝑠2𝑥𝑑𝑥 = 𝑐𝑜𝑠𝑛−1𝑥𝑠𝑖𝑛𝑥 + (𝑛 − 1)∫ 𝑐𝑜𝑠𝑛−2𝑥𝑑𝑥 − (𝑛 −

1)∫ 𝑐𝑜𝑠𝑛𝑥𝑑𝑥 ⇔∫𝑐𝑜𝑠𝑛 𝑥𝑑𝑥 + (𝑛 − 1)∫ 𝑐𝑜𝑠𝑛𝑥𝑑𝑥 = 𝑐𝑜𝑠𝑛−1𝑥𝑠𝑖𝑛𝑥 + (𝑛 −

1)∫ 𝑐𝑜𝑠𝑛−2𝑥𝑑𝑥 ⇔ 𝑛∫𝑐𝑜𝑠𝑛 𝑥𝑑𝑥 = 𝑐𝑜𝑠𝑛−1𝑥𝑠𝑖𝑛𝑥 + (𝑛 − 1) ∫ 𝑐𝑜𝑠𝑛−2𝑥𝑑𝑥 ⇔ 𝐽𝑛 =
𝑐𝑜𝑠𝑛−1𝑥𝑠𝑖𝑛𝑥

𝑛
+
𝑛−1

𝑛
𝐽𝑛−2, where 𝑛 = 2,3,… If 𝑛 = 1, then 𝐽𝑛 = 𝐽1 ⇒ 𝐽1 =

∫𝑐𝑜𝑠𝑥𝑑𝑥 = 𝑠𝑖𝑛𝑥 + 𝑐. 

iii. 𝑄𝑛 = ∫ 𝑡𝑎𝑛
𝑛𝑥𝑑𝑥 = ∫ 𝑡𝑎𝑛𝑛−2 𝑥𝑡𝑎𝑛2𝑥𝑑𝑥 = ∫ 𝑡𝑎𝑛𝑛−2𝑥

𝑠𝑖𝑛2𝑥

𝑐𝑜𝑠2𝑥
𝑑𝑥 =

∫ 𝑡𝑎𝑛𝑛−2𝑥
1−𝑐𝑜𝑠2𝑥

𝑐𝑜𝑠2𝑥
𝑑𝑥 = ∫ 𝑡𝑎𝑛𝑛−2𝑥

𝑑𝑥

𝑐𝑜𝑠2𝑥
− ∫ 𝑡𝑎𝑛𝑛−2𝑥

𝑐𝑜𝑠2𝑥

𝑐𝑜𝑠2𝑥
𝑑𝑥 =

∫ 𝑡𝑎𝑛𝑛−2𝑥𝑑(𝑡𝑎𝑛𝑥) − 𝑄𝑛−2 ⇒ 𝑄𝑛 =
𝑡𝑎𝑛𝑛−1𝑥

𝑛−1
− 𝑄𝑛−2.  

iv. 𝑅𝑛 = ∫
𝑑𝑥

(𝑎2+𝑥2)𝑛
=

1

𝑎2
∫
𝑎2+𝑥2−𝑥2

(𝑎2+𝑥2)𝑛
𝑑𝑥 =

1

𝑎2
∫

𝑑𝑥

(𝑎2+𝑥2)𝑛−1
−

1

𝑎2
∫

𝑥2

(𝑎2+𝑥2)𝑛
𝑑𝑥 =

1

𝑎2
𝑅𝑛−1 −

1

𝑎2
∫𝑥

𝑥

(𝑎2+𝑥2)𝑛
𝑑𝑥 =

1

𝑎2
𝑅𝑛−1 −

1

2

1

𝑎2
∫𝑥

𝑑(𝑎2+𝑥2)

(𝑎2+𝑥2)𝑛
=

1

𝑎2
𝑅𝑛−1 −

1

2𝑎2
∫𝑥𝑑

(𝑎2+𝑥2)1−𝑛

1−𝑛
=

1

𝑎2
𝑅𝑛−1 −

1

2𝑎2
𝑥

(1−𝑛)(𝑎2+𝑥2)𝑛−1
+

1

2𝑎2
1

1−𝑛
∫

𝑑𝑥

(𝑎2+𝑥2)𝑛−1
⇔ 𝑅𝑛 =

1

2(𝑛−1)𝑎2
𝑥

(𝑎2+𝑥2)𝑛−1
+

2𝑛−3

2(𝑛−1)

1

𝑎2
𝑅𝑛−1, where 𝑛 = 2,3,… 

Similarly, we can show that 

𝑇𝑛 = ∫
𝑑𝑥

(𝑎2−𝑥2)𝑛
⇔ 𝑇𝑛 =

1

𝑎2
2𝑛−3

2𝑛−2
𝑇𝑛−1 +

1

𝑎2
1

2𝑛−2

𝑥

(𝑎2−𝑥2)𝑛−1
, where 𝑛 = 2,3,… 

v. 𝐿𝑛 = ∫(𝑙𝑛𝑥)
𝑛 𝑑𝑥 = ∫(𝑙𝑛𝑥)𝑛𝑥′ 𝑑𝑥 = 𝑥(𝑙𝑛𝑥)𝑛 − ∫𝑥[(𝑙𝑛𝑥)𝑛]′ 𝑑𝑥 = 𝑥(𝑙𝑛𝑥)𝑛 −

∫𝑥𝑛(𝑙𝑛𝑥)𝑛−1 (𝑙𝑛𝑥)′𝑑𝑥 =  𝑥(𝑙𝑛𝑥)𝑛 − 𝑛∫(𝑙𝑛𝑥)𝑛−1 𝑑𝑥 = 𝑥(𝑙𝑛𝑥)𝑛 − 𝑛𝐿𝑛−1. 

vi. For 𝑛 ∈ ℚ, 𝐾𝑛 = ∫(𝑎
2 − 𝑥2)𝑛 𝑑𝑥 = 𝑥(𝑎2 − 𝑥2)𝑛 − ∫𝑥𝑛(𝑎2 − 𝑥2)𝑛−1 (−2𝑥)𝑑𝑥 =

1

2𝑛+1
𝑥(𝑎2 − 𝑥2)𝑛 +

2𝑛𝑎2

2𝑛+1
𝐾𝑛−1. 

 

 

2.14. INTEGRATION OF RATIONAL FUNCTIONS
508 

 

 
508 Ibid. 
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In order to integrate a rational function, namely, a function of the form ∫
𝑃(𝑥)

𝑄(𝑥)
𝑑𝑥, where 

𝑃(𝑥) and 𝑄(𝑥) are polynomials, we must apply the theory of partial fractions. When we split 
𝑃(𝑥)

𝑄(𝑥)
 in partial fractions, each non-repeated linear factor 𝑎𝑥 + 𝑏 of 𝑄(𝑥) produces a term of 

the form 
𝐴

𝑎𝑥+𝑏
. Thus, the term (𝑎𝑥 + 𝑏)𝑛 of 𝑄(𝑥) produces a sum of 𝑛 terms of the form 

 
𝐴1

𝑎𝑥+𝑏
+

𝐴2

(𝑎𝑥+𝑏)2
+⋯+

𝐴𝑛

(𝑎𝑥+𝑏)𝑛
. 

 

Similarly, each irreducible and non-repeated quadratic factor 𝑎𝑥2 + 𝑏𝑥 + 𝑐 of 𝑄(𝑥) 

produces a term of the form 
𝐴𝑥+𝐵

𝑎𝑥2+𝑏𝑥+𝑐
. Thus, the term (𝑎𝑥2 + 𝑏𝑥 + 𝑐)𝑛 produces a sum of 𝑛 

terms of the form 

 
𝐴1𝑥+𝐵1

𝑎𝑥2+𝑏𝑥+𝑐
+

𝐴2𝑥+𝐵2

(𝑎𝑥2+𝑏𝑥+𝑐)2
+⋯+

𝐴𝑛𝑥+𝐵𝑛

(𝑎𝑥2+𝑏𝑥+𝑐)𝑛
. 

 

Case Studies: 

 

i. ∫
𝐴

(𝑥−𝑟)𝑛
𝑑𝑥 = {

𝐴𝑙𝑛|𝑥 − 𝑟|, 𝑥 > 𝑟𝑜𝑟𝑥 < 𝑟𝑎𝑛𝑑𝑛 = 1
𝐴

1−𝑛
∙

1

(𝑥−𝑟)𝑛−1
, 𝑥 ≠ 𝑟𝑎𝑛𝑑𝑛 > 1

. 

ii. ∫
𝑑𝑥

𝑎𝑥2+𝑏𝑥+𝑐
: 

If 𝑟1 and 𝑟2 are the roots of the quadratic polynomial 𝑎𝑥2 + 𝑏𝑥 + 𝑐, then 

𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 𝑎(𝑥 − 𝑟1)(𝑥 − 𝑟2). 

If 𝐷 = 𝑏2 − 4𝑎𝑐 > 0, then 𝑟1, 𝑟2 ∈ ℝ and 𝑟1 ≠ 𝑟2. 

If 𝐷 = 𝑏2 − 4𝑎𝑐 < 0, then 𝑟1, 𝑟2 ∈ ℂ and 𝑟1 ≠ 𝑟2. 

If 𝐷 = 𝑏2 − 4𝑎𝑐 = 0, then 𝑟1 = 𝑟2 = 𝑟 ∈ ℝ.  

In case 𝐷 = 0, we work as follows: ∫
𝑑𝑥

𝑎𝑥2+𝑏𝑥+𝑐
= ∫

𝑑𝑥

𝑎(𝑥−𝑟)2
=

1

𝑎
∫

𝑑𝑥

(𝑥−𝑟)2
=

1

𝑎
∫
𝑑(𝑥−𝑟)

(𝑥−𝑟)2
=

1

𝑎
∙
(𝑥−𝑟)−1

−1
+ 𝑐 = −

1

𝑎(𝑥−𝑟)
+ 𝑐. 

In case 𝐷 > 0, we work as follows: ∫
𝑑𝑥

𝑎𝑥2+𝑏𝑥+𝑐
= ∫

𝑑𝑥

𝑎(𝑥−𝑟1)(𝑥−𝑟2)
= 𝐼 =

1

𝑎
∫

𝑑𝑥

(𝑥−𝑟1)(𝑥−𝑟2)
. Notice that 

1

(𝑥−𝑟1)(𝑥−𝑟2)
=

𝐴

𝑥−𝑟1
+

𝐵

𝑥−𝑟2
=

𝐴(𝑥−𝑟2)+𝐵(𝑥−𝑟1)

(𝑥−𝑟1)(𝑥−𝑟2)
⇒ 𝐴(𝑥 − 𝑟2) + 𝐵(𝑥 − 𝑟1) = 1 ∀𝑥 ∈ ℝ. 

Setting 𝑥 = 𝑟2, we obtain (𝑟2 − 𝑟1)𝐵 = 1 ⇒ 𝐵 =
1

𝑟2−𝑟1
. Setting 𝑥 = 𝑟1, we obtain 

(𝑟1 − 𝑟2)𝐴 = 1 ⇒ 𝐴 =
1

𝑟1−𝑟2
. Therefore,  

𝐼 =
1

𝑎
∫(

1

𝑟1−𝑟2

𝑥−𝑟1
+

1

𝑟2−𝑟1

𝑥−𝑟2
)𝑑𝑥 =

1

𝑎(𝑟1−𝑟2)
(∫

𝑑𝑥

𝑥−𝑟1
− ∫

𝑑𝑥

𝑥−𝑟2
) =

1

𝑎(𝑟1−𝑟2)
(𝑙𝑛|𝑥 − 𝑟1| −

𝑙𝑛|𝑥 − 𝑟2|) + 𝑐 =
1

𝑎(𝑟1−𝑟2)
𝑙𝑛 |

𝑥−𝑟1

𝑥−𝑟2
| + 𝑐. 

In case 𝐷 < 0, we work as follows: 𝑎𝑥2 + 𝑏𝑥 + 𝑐 can be expressed as the sum of 

two second powers. Thus, the integral reduces to the following form: 

∫
𝑑𝑢

𝑢2+𝑘2
=

1

𝑘
𝑎𝑟𝑐𝑡𝑎𝑛

𝑢

𝑘
+ 𝑐.  
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2.15. INTEGRATION OF IRRATIONAL FUNCTIONS509 
 

Case Studies: 

 

i. In order to compute integrals of the form ∫𝑓(𝑥, √𝑎𝑥2 + 𝑏𝑥 + 𝑐) 𝑑𝑥, where 𝑎, 𝑏, 𝑐 ∈

ℝ and 𝑎 ≠ 0, we use the Euler substitutions:  

(i) If 𝑎 > 0, then we set √𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 𝑦 + √𝑎𝑥 or 𝑦 − √𝑎𝑥. 

(ii) If 𝑎 < 0, then we set √𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 𝑦|𝑥 − 𝑟1|, where 𝑟1 is a root of 𝑎𝑥2 +
𝑏𝑥 + 𝑐 = 0, given that 𝑏2 − 4𝑎𝑐 > 0.  

(iii) If 𝑎 < 0 and 𝑐 > 0, then we set √𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 𝑦𝑥 + √𝑐 or 𝑦𝑥 − √𝑐.  

ii. Assume that we must compute an integral of the form ∫
𝑃𝑛(𝑥)

√𝑎𝑥2+𝑏𝑥+𝑐
𝑑𝑥, where 𝑃𝑛(𝑥) 

is a polynomial of degree 𝑛 with respect to 𝑥. Then 

∫
𝑃𝑛(𝑥)

√𝑎𝑥2+𝑏𝑥+𝑐
𝑑𝑥 = 𝑄𝑛−1(𝑥)√𝑎𝑥2 + 𝑏𝑥 + 𝑐 + 𝑘 ∫

𝑑𝑥

√𝑎𝑥2+𝑏𝑥+𝑐
, 

where 𝑄𝑛−1(𝑥) is a polynomial of degree 𝑛 − 1 with respect to 𝑥, and 𝑘 is a 

constant. Differentiating both sides of the aforementioned equation and 

multiplying by √𝑎𝑥2 + 𝑏𝑥 + 𝑐, we obtain 

𝑃𝑛(𝑥) = 𝑄𝑛−1
′ (𝑥)(𝑎𝑥2 + 𝑏𝑥 + 𝑐) +

1

2
𝑄𝑛−1(𝑥)(2𝑎𝑥 + 𝑏) + 𝑘.  

From the last equation, we obtain a system of 𝑛 + 1 linear equations, so that we 

can determine the coefficients of the polynomial 𝑄𝑛−1(𝑥) and the constant 𝑘.  

iii. If we have to compute an integral of the form ∫𝑅 (𝑥, √
𝑎𝑥+𝑏

𝑐𝑥+𝑑

𝑛
)𝑑𝑥, where 𝑅 is a 

rational function, 𝑛 is an even natural number, and 𝑎𝑑 ≠ 𝑐𝑏, then we set 
𝑎𝑥+𝑏

𝑐𝑥+𝑑
=

𝑦𝑛 ⇒ 𝑥 =
𝑏−𝑑𝑦𝑛

𝑐𝑦𝑛−𝑎
, and 𝑑𝑥 =

𝑛(𝑎𝑑−𝑏𝑐)𝑦𝑛−1

(𝑎−𝑐𝑦𝑛)2
𝑑𝑦. Of course, if 𝑛 is even, then 

𝑎𝑥+𝑏

𝑐𝑥+𝑑
 must 

be positive. If, however, we have to compute ∫𝑅 (𝑥, √
𝑎𝑥+𝑏

𝑐𝑥+𝑑

𝑚
, √

𝑎𝑥+𝑏

𝑐𝑥+𝑑

𝑛
, … )𝑑𝑥, where 

𝑅 is a rational function, 𝑎𝑑 ≠ 𝑐𝑏, and 𝑚, 𝑛, … ∈ ℕ, then we set 
𝑎𝑥+𝑏

𝑐𝑥+𝑑
= 𝑦𝑡, where 𝑡 is 

the least common multiple of 𝑚, 𝑛, … 

iv. If we have to compute an integral of the form ∫𝑥𝑚 (𝑎 + 𝑏𝑥𝑛)𝑘𝑑𝑥, where 𝑎, 𝑏 ∈ ℝ∗, 

and 𝑚, 𝑛, 𝑘 ∈ ℚ, then we apply Tchebychev’s rule, according to which at least one of 

the numbers 𝑘, 
𝑚+1

𝑛
, and 

𝑚+1

𝑛
+ 𝑘 must be an integer. Hence: 

(i) If 𝑘 ∈ ℤ, then we set 𝑦𝑡 = 𝑥, where 𝑡 is the least common multiple of the 

denominators of 𝑚 and 𝑛. 

(ii) If 
𝑚+1

𝑛
∈ ℤ, then we set 𝑎 + 𝑏𝑥𝑛 = 𝑦𝑑, where 𝑑 is the denominator of 𝑘.  

(iii) If 
𝑚+1

𝑛
+ 𝑘 ∈ ℤ, then we set 𝑎𝑥−𝑛 + 𝑏 = 𝑦𝑑, where 𝑑 is the denominator of 𝑘.  

 

 

 
509 Ibid. 
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2.16. INTEGRATION OF TRIGONOMETRIC FUNCTIONS510 
 

Case Studies: 

 

i. If all the terms inside a trigonometric integral are raised to an even degree power, 

then we make the substitution 𝑡𝑎𝑛𝑥 = 𝑤 ⇒ 𝑑𝑥 =
𝑑𝑤

1+𝑤2, since 𝑡𝑎𝑛𝑥 = 𝑤 ⇒

(𝑡𝑎𝑛𝑥)′ = 𝑑𝑤 ⇒
1

𝑐𝑜𝑠2𝑥
𝑑𝑥 = 𝑑𝑤 ⇒ (1 + 𝑡𝑎𝑛2𝑥)𝑑𝑥 or (1 + 𝑤2)𝑑𝑥 = 𝑑𝑤 ⇒ 𝑑𝑥 =

𝑑𝑤

1+𝑤2. Then, of course, 𝑐𝑜𝑠𝑥 =
1

√1+𝑤2
, since 

1

√1+𝑤2
=

1

√1+𝑡𝑎𝑛2𝑥
=

1

√
1

𝑐𝑜𝑠2𝑥

=
1
1

𝑐𝑜𝑠𝑥

=

𝑐𝑜𝑠𝑥. Moreover, then 𝑠𝑖𝑛𝑥 =
𝑤

√1+𝑤2
, since 

𝑤

√1+𝑤2
=

𝑡𝑎𝑛𝑥

√1+𝑡𝑎𝑛2𝑥
=

𝑠𝑖𝑛𝑥

𝑐𝑜𝑠𝑥
1

𝑐𝑜𝑠𝑥

= 𝑠𝑖𝑛𝑥.  

ii. If at least one of the terms inside the trigonometric integral is raised to an odd degree 

power, then we make the substitution 𝑡𝑎𝑛
𝑥

2
= 𝑤 ⇒ 𝑑𝑥 =

2𝑑𝑤

1+𝑤2. Then 𝑐𝑜𝑠𝑥 =
1−𝑤2

1+𝑤2, 

and 𝑠𝑖𝑛𝑥 =
2𝑤

1+𝑤2. 

iii. Now, let us assume that we have to compute an integral of the form 

∫ 𝑠𝑖𝑛𝑚𝑥𝑐𝑜𝑠𝑛𝑥𝑑𝑥. Then we have to distinguish between the following three sub-

cases: 

(i) If 𝑚, 𝑛 ∈ ℤ+
∗ , then we apply the method of integration by parts: 

𝐼𝑚,𝑛 = ∫𝑠𝑖𝑛
𝑚𝑥𝑐𝑜𝑠𝑛𝑥𝑑𝑥 = ∫ 𝑠𝑖𝑛𝑚𝑥𝑐𝑜𝑠𝑛−1𝑥𝑑(𝑠𝑖𝑛𝑥) =

(𝑠𝑖𝑛𝑚+1𝑥)(𝑐𝑜𝑠𝑛−1𝑥) − ∫(𝑠𝑖𝑛𝑥) [𝑚𝑠𝑖𝑛𝑚−1𝑥𝑐𝑜𝑠𝑛𝑥 − (𝑛 −

1)𝑠𝑖𝑛𝑚+1𝑥𝑐𝑜𝑠𝑛−2𝑥]𝑑𝑥 = 𝑠𝑖𝑛𝑚+1𝑥𝑐𝑜𝑠𝑛−1𝑥 −𝑚𝐼𝑚,𝑛 + (𝑛 − 1)∫ 𝑠𝑖𝑛
𝑚𝑥(1 −

𝑐𝑜𝑠2𝑥) 𝑐𝑜𝑠𝑛−2𝑥𝑑𝑥 = 𝑠𝑖𝑛𝑚+1𝑥𝑐𝑜𝑠𝑛−1𝑥 −𝑚𝐼𝑚,𝑛 + (𝑛 − 1)𝐼𝑚,𝑛−2 −

(𝑛 − 1)𝐼𝑚,𝑛. Thus, 

𝐼𝑚,𝑛 =
𝑠𝑖𝑛𝑚+1𝑥𝑐𝑜𝑠𝑛−1𝑥

𝑚+𝑛
+

𝑛−1

𝑚+𝑛
𝐼𝑚,𝑛−2, where 𝑛 ≥ 2, and 

𝐼𝑚,𝑛 = −
𝑠𝑖𝑛𝑚+1𝑥𝑐𝑜𝑠𝑛+1𝑥

𝑚+𝑛
+

𝑚−1

𝑚+𝑛
𝐼𝑚−2,𝑛, where 𝑚 ≥ 2. 

(ii) If 𝑚, 𝑛 ∈ ℤ, then: 

if 𝑚 is odd and positive, then we set 𝑐𝑜𝑠𝑥 = 𝑤; 

if 𝑛 is odd and positive, then we set 𝑠𝑖𝑛𝑥 = 𝑤; 

if 𝑚 + 𝑛 is even and negative, then we set 𝑡𝑎𝑛𝑥 = 𝑤; 

if 𝑚 and 𝑛 are even and positive, then we apply the trigonometric formulas 

𝑠𝑖𝑛2𝑥 =
1−𝑐𝑜𝑠2𝑥

2
 and 𝑐𝑜𝑠2𝑥 =

1+𝑐𝑜𝑠2𝑥

2
; 

if 𝑚 + 𝑛 = 0, then we obtain ∫ 𝑡𝑎𝑛𝑚𝑥𝑑𝑥 = ∫ 𝑡𝑎𝑛𝑚−2𝑥(1 + 𝑡𝑎𝑛2𝑥 − 1)𝑑𝑥 =

∫ 𝑡𝑎𝑛𝑚−2𝑥𝑑𝑡𝑎𝑛𝑥 − ∫ 𝑡𝑎𝑛𝑚−2𝑥𝑑𝑥 =
𝑡𝑎𝑛𝑚−1𝑥

𝑚−1
− ∫ 𝑡𝑎𝑛𝑚−2𝑥𝑑𝑥. 

(iii) If 𝑚 and 𝑛 are rational numbers, then the given integral reduces to a binomial 

integral, setting 𝑠𝑖𝑛𝑥 = 𝑤; and then the given integral becomes 

∫𝑤𝑚 (1 − 𝑤2)
𝑛−1

2 𝑑𝑤. 

 

 

 
510 Ibid. 
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2.17. INTEGRATION OF HYPERBOLIC FUNCTIONS511 
 

Usually, we integrate hyperbolic functions by setting 𝑡𝑎𝑛ℎ
𝑥

2
= 𝑡, so that 𝑑𝑥 =

2𝑑𝑡

1−𝑡2
, 

𝑠𝑖𝑛ℎ𝑥 =
2𝑡

1−𝑡2
, and 𝑐𝑜𝑠ℎ𝑥 =

1+𝑡2

1−𝑡2
. For instance, setting 𝑡𝑎𝑛ℎ

𝑥

2
= 𝑡, we compute the integral 

∫
𝑑𝑥

𝑠𝑖𝑛ℎ𝑥
= ∫

1
2𝑡

1−𝑡2

∙
2𝑑𝑡

1−𝑡2
= ∫

𝑑𝑡

𝑡
= 𝑙𝑛|𝑡| + 𝑐 = 𝑙𝑛 |𝑡𝑎𝑛ℎ

𝑥

2
| + 𝑐. However, sometimes, the 

substitution 𝑒𝑥 = 𝑡 may prove to be more helpful. For instance, ∫
𝑑𝑥

𝑠𝑖𝑛ℎ𝑥+𝑐𝑜𝑠ℎ𝑥
=

∫
2𝑑𝑥

𝑒𝑥−𝑒−𝑥+𝑒𝑥+𝑒−𝑥
= ∫𝑒−𝑥 𝑑𝑥 = −𝑒−𝑥 + 𝑐. 

 

 

2.18. THE THEORY OF RIEMANN INTEGRATION 
 

Apart from the definition of the integral as the limit of a sum, which was studied in 

section 2.11, there is a more rigorous approach to integration developed by Bernhard 

Riemann. Riemann, one of the towering figures of modern mathematics, was the main 

instigator of setting up the theory of integration as a rigorous subfield of mathematical 

analysis independently of physics. In this section, we shall study the theory of Riemann 

integration, and we shall prove its equivalence to the aforementioned definition of the integral 

as the limit of a sum.  

 

The Riemann Integral512 

Assume that 𝑓 is a bounded function defined on [𝑎, 𝑏], and that 𝑃 = {𝑎 =

𝑥0, 𝑥1, 𝑥2, … , 𝑥𝑘−1, 𝑥𝑘 , … , 𝑥𝑛 = 𝑏} is a partition of [𝑎, 𝑏], so that 

[𝑥0, 𝑥1], [𝑥1, 𝑥2], … , [𝑥𝑘−1, 𝑥𝑘], … , [𝑥𝑛−1, 𝑥𝑛] are the 𝑛 subintervals of [𝑎, 𝑏]. Hence, 𝑓 is 

bounded on each subinterval. Let 𝛥𝑥𝑘 = 𝑥𝑘 − 𝑥𝑘−1 be the length of the 𝑘th subinterval 

(where 𝑘 = 1,2,… , 𝑛), and let 𝑚𝑘 and 𝑀𝑘 be the infimum (greatest lower bound) and the 

supremum (least upper bound) of 𝑓 in [𝑥𝑘−1, 𝑥𝑘], respectively (see Figure 2.36). Then we 

define the sums 𝑈(𝑃, 𝑓) and 𝐿(𝑃, 𝑓) as follows: 

 

𝑈(𝑃, 𝑓) = 𝑀1𝛥𝑥1 +𝑀2𝛥𝑥2 +⋯+𝑀𝑘𝛥𝑥𝑘+. . . +𝑀𝑛𝛥𝑥𝑛 = ∑ 𝑀𝑘𝛥𝑥𝑘
𝑛
𝑘=1 , 

 

and  

 

𝐿(𝑃, 𝑓) = 𝑚1𝛥𝑥1 +𝑚2𝛥𝑥2 +⋯+𝑚𝑘𝛥𝑥𝑘+. . . +𝑚𝑛𝛥𝑥𝑛 = ∑ 𝑚𝑘𝛥𝑥𝑘
𝑛
𝑘=1 . 

 

These sums are called, respectively, the “upper sum” and the “lower sum” of 𝑓 

corresponding to the partition 𝑃 of [𝑎, 𝑏].  

 

If 𝑚 = 𝑖𝑛𝑓([𝑎, 𝑏]) and 𝑀 = 𝑠𝑢𝑝([𝑎, 𝑏]), then, 𝑘 ∈ ℕ, it holds that 

 

 
511 Ibid. 
512 Ibid.  
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𝑚 ≤ 𝑚𝑘 ≤ 𝑀𝑘 ≤ 𝑀. 

 

Because 𝛥𝑥𝑘 ≥ 0,  

 

𝑚𝛥𝑥𝑘 ≤ 𝑚𝑘𝛥𝑥𝑘 ≤ 𝑀𝑘𝛥𝑥𝑘 ≤ 𝑀𝛥𝑥𝑘. 

 

Therefore, for the 𝑛 sums, it holds that 

 

𝑚∑ 𝛥𝑥𝑘
𝑛
𝑘=1 ≤ ∑ 𝑚𝑘𝛥𝑥𝑘

𝑛
𝑘=1 ≤ ∑ 𝑀𝑘𝛥𝑥𝑘 ≤

𝑛
𝑘=1 𝑀∑ 𝛥𝑥𝑘 ⇒ 𝑚(𝑏 − 𝑎) ≤ 𝐿(𝑃, 𝑓) ≤𝑛

𝑘=1

𝑈(𝑃, 𝑓) ≤ 𝑀(𝑏 − 𝑎).(∗)  

 

Notice that a pair of lower and upper sums corresponds to each partition of [𝑎, 𝑏]. Then 

let 𝐴 be the set of all possible upper sums, and let 𝐵 be the set of all possible lower sums, 

namely: 

 

𝐴 = {𝑈(𝑃, 𝑓) ∀𝑃 𝑜𝑓 [𝑎, 𝑏]} and 

𝐵 = {𝐿(𝑃, 𝑓) ∀𝑃 𝑜𝑓 [𝑎, 𝑏]}.  

 

Hence, due to (∗), the sets 𝐴 and 𝐵 are bounded, so that sup (𝐴) = 𝑀(𝑏 − 𝑎), and 

inf (𝐵) = 𝑚(𝑏 − 𝑎).  

Let us set 𝐽 = inf (𝐴) and 𝐼 = sup (𝐵), namely: 

 

𝐽 = inf ({𝑈(𝑃, 𝑓) ∀𝑃 𝑜𝑓 [𝑎, 𝑏]} and 

𝐼 = sup ({𝐿(𝑃, 𝑓) ∀𝑃 𝑜𝑓 [𝑎, 𝑏]}. 

 

Then 𝐽 and 𝐼 are called, respectively, the “upper integral” and the “lower integral” of 𝑓 on 

[𝑎, 𝑏], and they are denoted as follows: 

 

𝐽 = ∫ 𝑓(𝑥)𝑑𝑥
𝑏̅

𝑎

 

 

and 

 

𝐼 = ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎̅

 

(given the aforementioned notation). If 𝐽 = 𝐼, that is, if ∫ 𝑓(𝑥)𝑑𝑥
𝑏̅

𝑎
= ∫ 𝑓(𝑥)𝑑𝑥

𝑏

𝑎̅
, then 𝑓 is 

said to be “Riemann integrable,” or simply “integrable,” on (or over) [𝑎, 𝑏], and the common 

value of its upper and lower integrals is denoted by 

 

∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎

 

 

and is called the “integral” of the function 𝑓 on (or over) [𝑎, 𝑏].  
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Notice that the existence of the integral ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
 implies that the function 𝑓 is bounded 

and integrable on [𝑎, 𝑏]. However, the converse is not necessarily true, in the sense that a 

bounded function may not be Riemann integrable. For instance, the function 𝑓: [𝑎, 𝑏] → ℝ 

defined by 

 

𝑓(𝑥) = {
0, 𝑥 ∈ [𝑎, 𝑏] 𝑎𝑛𝑑 𝑥 𝑖𝑠 𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙

1, 𝑥 ∈ [𝑎, 𝑏] 𝑎𝑛𝑑 𝑥 𝑖𝑠 𝑖𝑟𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙
 

 

is not Riemann integrable, because: in any subinterval [𝑥𝑘−1, 𝑥𝑘] of [𝑎, 𝑏], 𝑚𝑘 = 0 and 𝑀𝑘 =

1, so that 𝑈(𝑃, 𝑓) = ∑ 𝑀𝑘𝛥𝑥𝑘
𝑛
𝑘=1 = (𝑏 − 𝑎) and 𝐿(𝑃, 𝑓) = ∑ 𝑚𝑘𝛥𝑥𝑘

𝑛
𝑘=1 = 0, and, therefore, 

𝐽 = (𝑏 − 𝑎) and 𝐼 = 0, that is, 𝐽 ≠ 𝐼.  

If 𝑓(𝑥) = 𝑘 ∀𝑥 ∈ [𝑎, 𝑏] is an arbitrary constant function, then it is Riemann integrable, 

because, for any partition 𝑃 of [𝑎, 𝑏], 𝑈(𝑃, 𝑓) = 𝑘(𝑏 − 𝑎) and 𝐿(𝑃, 𝑓) = 𝑘(𝑏 − 𝑎), so that 

𝐽 = 𝑘(𝑏 − 𝑎) = 𝐼.  

Obviously, the manner in which we have just defined a Riemann integrable function 

implies that the corresponding function must be bounded, and that neither of the limits of 

integration is infinite. However, as I shall explain later, these constraints can be removed, so 

that Riemann’s theory of integration can be generalized to apply to unbounded functions with 

one limit of integration or both the limits of integration being equal to infinity. 

If 𝑃′ and 𝑃 are two partitions of [𝑎, 𝑏] such that 𝑃 ⊂ 𝑃′, then 𝑃′ is said to be a 

“refinement” of 𝑃, or 𝑃′ is said to be “finer” than 𝑃. If 𝑃′ = 𝑃1 ∪ 𝑃2, then 𝑃′ is a refinement 

of both 𝑃1 and 𝑃2, and, in particular, it is called a “common refinement” of 𝑃1 and 𝑃2.  

 

Theorem513: If we increase the number of points in a partition 𝑃, then: 

 

i. the new upper sum 𝑈(𝑃1, 𝑓) will not exceed 𝑈(𝑃, 𝑓), that is, 𝑈(𝑃, 𝑓) ≥ 𝑈(𝑃1, 𝑓), and 

ii. the new lower sum 𝐿(𝑃1, 𝑓) will not recede 𝐿(𝑃, 𝑓), that is, 𝐿(𝑃, 𝑓) ≤ 𝐿(𝑃1, 𝑓).  

 

Proof: (i) Let 𝑃 = {𝑎 = 𝑥0, 𝑥1, … , 𝑥𝑘−1, 𝑥𝑘 , … , 𝑥𝑛 = 𝑏} be a partition of [𝑎, 𝑏], and let 𝑃′ 

be another partition of [𝑎, 𝑏] such that 𝑃′ has one more point 𝑥′ than 𝑃, and 𝑥𝑘−1 ≤ 𝑥
′ ≤ 𝑥𝑘. 

If 

 

𝑀𝑘 = sup (𝑓(𝑥)) in [𝑥𝑘−1, 𝑥𝑘], 

𝑀𝑘
′ = sup (𝑓(𝑥)) in [𝑥𝑘−1, 𝑥

′], 

𝑀𝑘
′′ = sup (𝑓(𝑥)) in [𝑥′, 𝑥𝑘], 

 

then 𝑀𝑘 ≥ 𝑀𝑘
′  and 𝑀𝑘 ≥ 𝑀𝑘

′′, so that  

 

(𝑀𝑘 −𝑀𝑘
′ ) ≥ 0 and (𝑀𝑘 −𝑀𝑘

′′) ≥ 0.   (∗) 

 

Notice that 𝑈(𝑃, 𝑓) − 𝑈(𝑃′, 𝑓) = 𝑀𝑘(𝑥𝑘 − 𝑥𝑘−1) − [𝑀𝑘
′ (𝑥′ − 𝑥𝑘−1) +𝑀𝑘

′′(𝑥𝑘 − 𝑥
′)]. 

Adding and subtracting 𝑀𝑘𝑥
′ in the right-hand side, we obtain 𝑈(𝑃, 𝑓) − 𝑈(𝑃′, 𝑓) =

(𝑀𝑘 −𝑀𝑘
′ )(𝑥′ − 𝑥𝑘−1) + (𝑀𝑘 −𝑀𝑘

′′)(𝑥𝑘 − 𝑥
′) ≥ 0, and, therefore, due to equation 

 
513 Ibid.  
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(∗), 𝑈(𝑃, 𝑓) ≥ 𝑈(𝑃′, 𝑓). Repeating the same process, we can prove the theorem when 𝑃′ has 

𝑛 more points than 𝑃, where 𝑛 is any non-zero natural number. (ii) The proof of this part of 

the theorem is analogous to the proof of part (i); and, in this case, we use 𝑚𝑘
′ ≥ 𝑚𝑘 and 

𝑚𝑘
′′ ≥ 𝑚𝑘.■ 

 

Theorem514: If 𝑃1 and 𝑃2 are two arbitrary partitions of [𝑎, 𝑏], then no lower sum can 

exceed any upper sum, symbolically:  

 

i. 𝑈(𝑃1, 𝑓) ≥ 𝐿(𝑃2, 𝑓) and 

ii. 𝑈(𝑃2, 𝑓) ≥ 𝐿(𝑃1, 𝑓). 

 

Proof: Let 𝑃′ = 𝑃1 ∪ 𝑃2, so that 𝑃′ ⊃ 𝑃1 and 𝑃′ ⊃ 𝑃2. Then, due to the previous theorem 

on partitions, applied on 𝑃′ and 𝑃1 as well as on 𝑃′ and 𝑃2, we obtain 

 

𝑈(𝑃1, 𝑓) ≥ 𝑈(𝑃
′, 𝑓),   (∗)  

 

𝐿(𝑃1, 𝑓) ≤ 𝐿(𝑃
′, 𝑓),   (∗∗) 

 

𝑈(𝑃2, 𝑓) ≥ 𝑈(𝑃
′, 𝑓),   (∗∗∗) 

 

𝐿(𝑃2, 𝑓) ≤ 𝐿(𝑃
′, 𝑓).   (∗∗∗∗) 

 

Moreover, by the definition of a partition,  

 

𝑈(𝑃′, 𝑓) ≥ 𝐿(𝑃′, 𝑓),   (∗∗∗∗∗) 

 

so that, due to (∗),(∗∗∗∗), and (∗∗∗∗∗),  

 

𝑈(𝑃1, 𝑓) ≥ 𝑈(𝑃
′, 𝑓) ≥ 𝐿(𝑃′, 𝑓) ≥ 𝐿(𝑃2, 𝑓) ⇒ 𝑈(𝑃1, 𝑓) ≥ 𝐿(𝑃2, 𝑓), 

 

and, due to (∗∗), (∗∗∗), and (∗∗∗∗∗),  

 

𝑈(𝑃2, 𝑓) ≥ 𝑈(𝑃
′, 𝑓) ≥ 𝐿(𝑃′, 𝑓) ≥ 𝐿(𝑃1, 𝑓) ⇒ 𝑈(𝑃2, 𝑓) ≥ 𝐿(𝑃1, 𝑓).■ 

 

Corollary: The lower integral can never exceed the upper integral, symbolically: 

 

∫ 𝑓(𝑥)𝑑𝑥 ≥ ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎̅

𝑏̅

𝑎
. 

 

Proof: For the sake of contradiction, suppose that  

 

∫ 𝑓(𝑥)𝑑𝑥 < ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎̅

𝑏̅

𝑎
, 

 

and that 𝑐 is a value such that 

 
514 Ibid.  
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∫ 𝑓(𝑥)𝑑𝑥 < 𝑐 < ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎̅

𝑏̅

𝑎
. 

 

Then the assumption that ∫ 𝑓(𝑥)𝑑𝑥 < 𝑐
𝑏̅

𝑎
 implies that there is a partition 𝑃1 of [𝑎, 𝑏] such 

that 𝑈(𝑃1, 𝑓) < 𝑐, and the assumption that 𝑐 < ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎̅
 implies that there is a partition 𝑃2 

of [𝑎, 𝑏] such that 𝐿(𝑃2, 𝑓) > 𝑐. But then 𝑈(𝑃1, 𝑓) < 𝐿(𝑃2, 𝑓), which is a contradiction. 

Therefore, ∫ 𝑓(𝑥)𝑑𝑥 ≥ ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎̅

𝑏̅

𝑎
.■ 

For instance, we can show that the function 𝑓: [0,1] → ℝ such that 𝑓(𝑥) = 𝑥 is Riemann 

integrable (and compute its integral) on [0,1] as follows: We divide the interval [0,1] into 𝑛 

equal subintervals, obtaining the partition 𝑃 = {0,
1

𝑛
,
2

𝑛
, … ,

𝑛−1

𝑛
,
𝑛

𝑛
= 1}, and, in each 

subinterval [
𝑘−1

𝑛
,
𝑘

𝑛
], 𝑚𝑘 =

𝑘−1

𝑛
 and 𝑀𝑘 =

𝑘

𝑛
. Moreover, 𝛥𝑥𝑘 = 𝑥𝑘 − 𝑥𝑘−1 =

1

𝑛
, 𝑘 = 1,2,… , 𝑛. 

Hence, 

 

𝐿(𝑃, 𝑓) = ∑ 𝑚𝑘(𝑥𝑘 − 𝑥𝑘−1)
𝑛
𝑘=1 = ∑

𝑘−1

𝑛
∙𝑛

𝑘=1
1

𝑛
=

1

𝑛2
(0 + 1 +⋯+ (𝑛 − 1)) =

(𝑛−1)𝑛

2𝑛2
=

1

2
(1 −

1

𝑛
), and 

 

𝑈(𝑃, 𝑓) = ∑ 𝑀𝑘(𝑥𝑘 − 𝑥𝑘−1)
𝑛
𝑘=1 = ∑

𝑘

𝑛
∙𝑛

𝑘=1
1

𝑛
=

1

𝑛2
(1 + 2 +⋯+ 𝑛) =

𝑛(𝑛+1)

2𝑛2
=

1

2
(1 +

1

𝑛
). 

 

By definition,  

 

∫ 𝑓(𝑥)𝑑𝑥 = sup ({𝐿(𝑃, 𝑓), ∀𝑃 𝑜𝑓 [0,1]})
1

0̅
= 𝑙𝑖𝑚𝑛→∞

1

2
(1 −

1

𝑛
) =

1

2
, and 

∫ 𝑓(𝑥)𝑑𝑥 = inf ({𝑈(𝑃, 𝑓), ∀𝑃 𝑜𝑓 [0,1]}
1̅

0
) = 𝑙𝑖𝑚𝑛→∞

1

2
(1 +

1

𝑛
) =

1

2
. 

 

Because ∫ 𝑓(𝑥)𝑑𝑥 = ∫ 𝑓(𝑥)𝑑𝑥 =
1̅

0

1

0̅

1

2
, it follows that ∫ 𝑓(𝑥) =

1

2

1

0
.  

 

The Construction of a Riemann Integral by Darboux 

For every partition 𝑃 of an interval [𝑎, 𝑏], the length of the greatest subinterval is called 

the “norm of the partition,” and it is denoted by ‖𝑃‖, namely, 

 

‖𝑃‖ = 𝑚𝑎𝑥{𝑥1 − 𝑥0, 𝑥2 − 𝑥1, … , 𝑥𝑛 − 𝑥𝑛−1} = 𝑚𝑎𝑥{(𝑥𝑘 − 𝑥𝑘−1), 𝑘 = 1,2,… , 𝑛}. 

 

The French mathematician Jean-Gaston Darboux (1842–1917)studied integration by 

considering upper and lower integrals, which exist for any bounded real-valued function 𝑓 on 

the interval [𝑎, 𝑏]. Then the “Darboux integral” exists if and only if the upper and the lower 

integrals are equal, and, obviously, the definition of the “Darboux integral” is equivalent to 

the definition of the “Riemann integral” (i.e., a function is “Riemann integrable” if and only if 

it is “Darboux integrable”). In fact, Darboux obtained “lower bounds” for the area under the 

curve 𝑦 = 𝑓(𝑥) via inscribed rectangles, and “upper bounds” for the area under the curve 𝑦 =
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𝑓(𝑥) via rectangles that circumscribed the curve (see Figure 2.36): the sum of the areas of the 

inscribed rectangles (which underestimates the area under the curve) is said to be a lower 

sum, and the sum of the area of the circumscribed rectangles (which overestimates the area 

under the curve) is said to be an “upper sum.” We can consider the aforementioned inscribed 

rectangles as being the largest rectangles that can be inscribed underneath the curve 𝑦 = 𝑓(𝑥) 

using an arbitrary partition 𝑃, and, by analogy, we can consider the aforementioned 

circumscribed rectangles as being the largest rectangles that can be circumscribed above the 

curve using an arbitrary partition 𝑄. The area of an inscribed rectangle whose base is 

[𝑥𝑘−1, 𝑥𝑘] and whose height is 𝑚𝑘 is 𝑚𝑘(𝑥𝑘 − 𝑥𝑘−1), and the sum of the areas of the 𝑛 

inscribed rectangles is 𝑠(𝑃, 𝑓) = ∑ 𝑚𝑘(𝑥𝑘 − 𝑥𝑘−1)
𝑛
𝑘=1 . By analogy, the area of a 

circumscribed rectangle whose base is [𝑥𝑘−1, 𝑥𝑘] and whose height is 𝑀𝑘 is 𝑀𝑘(𝑥𝑘 − 𝑥𝑘−1), 

and the sum of the areas of the 𝑛 circumscribed rectangles is 𝑆(𝑄, 𝑓) = ∑ 𝑀𝑘(𝑥𝑘 − 𝑥𝑘−1)
𝑛
𝑘=1 . 

Then it logically follows that  

 

𝑠(𝑃, 𝑓) ≤ 𝑎𝑟𝑒𝑎 𝑢𝑛𝑑𝑒𝑟 𝑡ℎ𝑒 𝑐𝑢𝑟𝑣𝑒 ≤ 𝑆(𝑄, 𝑓).   (∗) 

 

Given that (∗) holds for any choice of partition, it also holds if we take the supremums 

(least upper bounds) of the lower sums over all partitions 𝑃 and the infimums (greatest lower 

bounds) of the upper sums over all partitions 𝑄, symbolically:  

 

supP𝑠(𝑃, 𝑓) ≤ 𝑎𝑟𝑒𝑎 𝑢𝑛𝑑𝑒𝑟 𝑡ℎ𝑒 𝑐𝑢𝑟𝑣𝑒 ≤ infQ𝑆(𝑄, 𝑓). 

 

If supP𝑠(𝑃, 𝑓) = infQ𝑆(𝑄, 𝑓), then the area 𝐴(𝑓, [𝑎, 𝑏]) under the curve 𝑦 = 𝑓(𝑥) over 

the interval [𝑎, 𝑏] is defined as follows: 

 

𝐴(𝑓, [𝑎, 𝑏]) = supP𝑠(𝑃, 𝑓) = infQ𝑆(𝑄, 𝑓); 

 

and then 𝐴(𝑓, [𝑎, 𝑏]) is called the integral of 𝑓(𝑥) over the interval from 𝑎 to 𝑏.  

The aforementioned remarks were proved by Darboux in a rigorous way as follows:  

 

Theorem515: Assume that |𝑓(𝑥)| ≤ 𝑐 ∀𝑥 ∈ [𝑎, 𝑏], 𝛿 > 0,𝑃1 and 𝑃2 are two partitions of 

[𝑎, 𝑏] such that ‖𝑃1‖ ≤ 𝛿, and 𝑃2 consists of 𝑃1 and at most 𝑝 additional points. Then 

 

𝑈(𝑃1, 𝑓) − 𝑈(𝑃2, 𝑓) ≤ 2𝑐𝛿𝑝. 

 

Proof: Let 𝑝 = 1, so that 𝑃2 contains one more point than 𝑃1, and let 𝑥′ ∈ (𝑥𝑘−1, 𝑥𝑘) be 

the additional point of 𝑃2, so that 

 

𝑃2 = {𝑎 = 𝑥0, 𝑥1, … , 𝑥𝑘−1, 𝑥
′, 𝑥𝑘 , … , 𝑥𝑛 = 𝑏}. 

 

Moreover, let 𝑀𝑘, 𝑀𝑘
′ , and 𝑀𝑘

′′ be the supremums of 𝑓 in [𝑥𝑘−1, 𝑥𝑘], [𝑥𝑘−1, 𝑥
′], and 

[𝑥′, 𝑥𝑘], respectively. Then  

 

 
515 Ibid. 
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𝑈(𝑃1, 𝑓) − 𝑈(𝑃2, 𝑓) = 𝑀𝑘(𝑥𝑘 − 𝑥𝑘−1) − [𝑀𝑘
′ (𝑥′ − 𝑥𝑘−1) + 𝑀𝑘

′′(𝑥𝑘 − 𝑥
′)] 

= (𝑀𝑘 −𝑀𝑘
′ )(𝑥′ − 𝑥𝑘−1) + (𝑀𝑘 −𝑀𝑘

′′)(𝑥𝑘 − 𝑥
′). (∗)  

 

Notice that |𝑓(𝑥)| ≤ 𝑐 ⇒ −𝑐 ≤ 𝑀𝑘
′ ≤ 𝑀𝑘 ≤ 𝑐 ⇒ 𝑀𝑘 −𝑀𝑘

′ ≤ 2𝑐, and that 𝑀𝑘 −𝑀𝑘
′ ≥

0. Hence, 0 ≤ 𝑀𝑘 −𝑀𝑘
′ ≤ 2𝑐. Similarly, 0 ≤ 𝑀𝑘 −𝑀𝑘

′′ ≤ 2𝑐. Therefore, due to 

(∗), 𝑈(𝑃1, 𝑓) − 𝑈(𝑃2, 𝑓) ≤ 2𝑐(𝑥
′ − 𝑥𝑘−1) + 2𝑐(𝑥𝑘 − 𝑥

′) ≤ 2𝑐(𝑥𝑘 − 𝑥𝑘−1) ≤ 2𝑐𝛿. 

Consequently, 𝑈(𝑃1, 𝑓) − 𝑈(𝑃2, 𝑓) ≤ 2𝑐𝛿, and, if 𝑃2 contains 𝑝 more points than 𝑃1, then 

𝑈(𝑃1, 𝑓) − 𝑈(𝑃2, 𝑓) ≤ 2𝑐𝛿𝑝.■ 

 

Darboux’s Theorem516: Assume that 𝑓 is a bounded function on [𝑎, 𝑏]. Then, for every 

𝜀 > 0, there exists a 𝛿 > 0 such that: 

 

i. 𝑈(𝑃, 𝑓) < ∫ 𝑓(𝑥)𝑑𝑥 + 𝜀
𝑏̅

𝑎
 and 

ii. 𝐿(𝑃, 𝑓) > ∫ 𝑓(𝑥)𝑑𝑥 − 𝜀
𝑏

𝑎̅
 

 

for all partitions 𝑃 of [𝑎, 𝑏] with ‖𝑃‖ ≤ 𝛿. In other words,  

 

𝑙𝑖𝑚‖𝑃‖→0𝑈(𝑃, 𝑓) = ∫ 𝑓(𝑥)𝑑𝑥
𝑏̅

𝑎
 and 

𝑙𝑖𝑚‖𝑃‖→0𝐿(𝑃, 𝑓) = ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎̅
. 

 

Proof: (i) Let 𝑃 be a partition of [𝑎, 𝑏] such that ‖𝑃‖ ≤ 𝛿. By hypothesis, 𝑓 is a bounded 

function on [𝑎, 𝑏], that is, |𝑓(𝑥)| ≤ 𝑐 ∀𝑥 ∈ [𝑎, 𝑏]. Moreover, by definition, 𝐽 = ∫ 𝑓(𝑥)𝑑𝑥
𝑏̅

𝑎
 is 

the infimum of the set of all possible upper sums, and, therefore, there exists a partition 𝑃1 =

{𝑎 = 𝑥0, 𝑥1, 𝑥2, … , 𝑥𝑝−1, 𝑥𝑝 = 𝑏} of [𝑎, 𝑏] such that 

 

𝑈(𝑃1, 𝑓) < 𝐽 +
𝜀

2
, 

 

where 𝜀 > 0. Assume that 𝑃2 is another partition of [𝑎, 𝑏] such that 𝑃2 = 𝑃1 ∪ 𝑃; and 𝑃2 is 

finer than 𝑃, and it contains at most (𝑝 − 1) more points than 𝑃. Therefore (according to the 

immediately preceding theorem),  

 

𝑈(𝑃, 𝑓) − 𝑈(𝑃2, 𝑓) ≤ 2𝑐𝛿(𝑝 − 1).  

 

Because 𝑃2 ⊃ 𝑃1 ⇒ 𝑈(𝑃2, 𝑓) ≤ 𝑈(𝑃1, 𝑓), it holds that 𝑈(𝑃, 𝑓) − 2𝑐𝛿(𝑝 − 1) ≤

𝑈(𝑃2, 𝑓) ≤ 𝑈(𝑃1, 𝑓) ⇒ 𝑈(𝑃, 𝑓) ≤ 2𝑐𝛿(𝑝 − 1) + 𝑈(𝑃1, 𝑓).  

If we set 2𝑐𝛿(𝑝 − 1) =
𝜀

2
, then 𝑈(𝑃, 𝑓) <

𝜀

2
+ (𝐽 +

𝜀

2
) ⇒ 𝑈(𝑃, 𝑓) < 𝐽 + 𝜀 ⇒ 𝑈(𝑃, 𝑓) <

∫ 𝑓(𝑥)𝑑𝑥 + 𝜀
𝑏̅

𝑎
. (ii) The proof of (ii) is analogous to the proof of (i).■ 

 

 

 
516 Ibid.  
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Criteria of Integrability and Methods of Integration 

 

Theorem (Riemann Condition)517: Let 𝑓 be a function bounded on [𝑎, 𝑏]. Then 𝑓 is 

Riemann integrable on [𝑎, 𝑏] if and only if, ∀𝜀 > 0, there is a partition 𝑃 of [𝑎, 𝑏] such that 

𝑈(𝑃, 𝑓) − 𝐿(𝑃, 𝑓) < 𝜀. 

 

Proof: Let us assume that 𝑓 is Riemann integrable on[𝑎, 𝑏]. Then  

 

𝐼 = ∫ 𝑓(𝑥)𝑑𝑥 = 𝐽 = ∫ 𝑓(𝑥)𝑑𝑥
𝑏̅

𝑎

𝑏

𝑎̅
.  

 

Because 𝐽 = ∫ 𝑓(𝑥)𝑑𝑥
𝑏̅

𝑎
= inf ({𝑈(𝑃, 𝑓) ∀𝑃 𝑜𝑓 [𝑎, 𝑏]}), there is a partition, say 𝑃1, of 

[𝑎, 𝑏] such that 𝑈(𝑃1, 𝑓) < 𝐽 +
𝜀

2
 where 𝜀 > 0. Moreover, because 𝐼 = ∫ 𝑓(𝑥)𝑑𝑥

𝑏

𝑎̅
=

sup ({𝐿(𝑃, 𝑓) ∀𝑃 𝑜𝑓 [𝑎, 𝑏]}), there is a partition, say 𝑃2, of [𝑎, 𝑏] such that 𝐿(𝑃2, 𝑓) > 𝐼 −
𝜀

2
. 

Let 𝑃 = 𝑃1 ∪ 𝑃2, so that 𝑃 ⊇ 𝑃1 and 𝑃 ⊇ 𝑃2. Therefore,   

 

𝑈(𝑃, 𝑓) ≤ 𝑈(𝑃1, 𝑓) < 𝐽 +
𝜀

2
⇒ 𝑈(𝑃, 𝑓) < 𝐽 +

𝜀

2
,   (∗) 

 

𝐿(𝑃, 𝑓) ≥ 𝐿(𝑃2, 𝑓)) > 𝐼 −
𝜀

2
⇒ 𝐿(𝑃, 𝑓) > 𝐼 −

𝜀

2
⇒ −𝐿(𝑃, 𝑓) < −𝐼 +

𝜀

2
,   (∗∗) 

 

and, by adding (∗) and (∗∗), we obtain  

𝑈(𝑃, 𝑓) − 𝐿(𝑃, 𝑓) < 𝜀, that is, 𝐼 = 𝐽. 

 

Now, we shall prove the converse. Suppose that, ∀𝜀 > 0, there is a partition, say 𝑃, of 

[𝑎, 𝑏] such that 𝑈(𝑃, 𝑓) − 𝐿(𝑃, 𝑓) < 𝜀. Because 𝐽 = inf ({𝑈(𝑃, 𝑓) ∀𝑃 𝑜𝑓 [𝑎, 𝑏]}) ≤ 𝑈(𝑃, 𝑓) 

and 𝐼 = sup ({𝐿(𝑃, 𝑓) ∀𝑃 𝑜𝑓 [𝑎, 𝑏]}) ≥ 𝐿(𝑃, 𝑓), it follows that 𝐽 − 𝐼 ≤ 𝑈(𝑃, 𝑓) − 𝐿(𝑃, 𝑓) <

𝜀 ⇒ 𝐽 < 𝐼 + 𝜀. Since 𝜀 is arbitrary, 𝐽 ≤ 𝐼. Moreover, it is known that 𝐼 ≤ 𝐽. Therefore, 𝐼 = 𝐽, 

which proves that 𝑓(𝑥) is Riemann integrable.■ 

 

Theorem518: If 𝑓: [𝑎, 𝑏] → ℝ is continuous on [𝑎, 𝑏], then 𝑓 is Riemann integrable on 

[𝑎, 𝑏]. 

 

Proof: Because 𝑓 is continuous on a closed interval, it is also uniformly continuous on 

that interval, and, therefore,  

 

∀𝜀 > 0, ∃𝛿 > 0|∀𝑥, 𝑦 ∈ [𝑎, 𝑏], |𝑥 − 𝑦| < 𝛿 ⇒ |𝑓(𝑥) − 𝑓(𝑦)| <
𝜀

𝑏−𝑎
.   (∗) 

 

Moreover, because 𝑓 is continuous on the closed interval[𝑎, 𝑏], it attains maximum and 

minimum values in every subinterval of [𝑎, 𝑏]. If 𝑃 is a partition of [𝑎, 𝑏] with ‖𝑃‖ < 𝛿 

(where ‖𝑃‖ is the norm of the partition, namely, the length of the greatest subinterval, i.e., 

‖𝑃‖ = |𝑥1 − 𝑥2| ∀𝑥1, 𝑥2 ∈ [𝑥𝑘−1, 𝑥𝑘]), then there exist 𝑥𝑘
′  and 𝑥𝑘

′′ in [𝑥𝑘−1, 𝑥𝑘], where 𝑘 =

 
517 Ibid. 
518 Ibid. 
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1,2, . . , 𝑛, such that 𝑓(𝑥𝑘
′ ) = 𝑀𝑘 and 𝑓(𝑥𝑘

′′) = 𝑚𝑘, where 𝑀𝑘 and 𝑚𝑘 are the supremum and 

the infimum of 𝑓 in [𝑥𝑘−1, 𝑥𝑘], respectively. Moreover, because |𝑥𝑘
′ − 𝑥𝑘

′′| < 𝛿, the condition 

(∗) implies that |𝑓(𝑥𝑘
′ ) − 𝑓(𝑥𝑘

′′)| <
𝜀

𝑏−𝑎
. Consequently:  

 

𝑈(𝑃, 𝑓) − 𝐿(𝑃, 𝑓) = ∑ 𝑀𝑘(𝑥𝑘 − 𝑥𝑘−1) − ∑ 𝑚𝑘(𝑥𝑘 − 𝑥𝑘−1) = ∑ (𝑀𝑘 −
𝑛
𝑘=1

𝑛
𝑘=1

𝑛
𝑘=1

𝑚𝑘)(𝑥𝑘 − 𝑥𝑘−1) = ∑ [𝑓(𝑥𝑘
′ ) − 𝑓(𝑥𝑘

′′)]𝑛
𝑘=1 (𝑥𝑘 − 𝑥𝑘−1) <

𝜀

𝑏−𝑎
∑ (𝑥𝑘 − 𝑥𝑘−1) =
𝑛
𝑘=1

𝜀

𝑏−𝑎
(𝑏 − 𝑎) = 𝜀, meaning that 𝑓 is Riemann integrable on [𝑎, 𝑏], according to the 

aforementioned Riemann Condition.■ 

 

Using Riemann’s definition of an integral, we can apply the following two methods of 

integration: 

 

First Method: We divide the interval [𝑎, 𝑏] into 𝑛 equal subintervals, and we apply the 

equality ∫ 𝑓(𝑥)𝑑𝑥 = 𝑙𝑖𝑚𝑛→∞∑ 𝑓(𝑐𝑘
𝑛
𝑘=1

𝑏

𝑎
)𝛥𝑥𝑘, where 𝑥𝑘−1 ≤ 𝑐𝑘 ≤ 𝑥𝑘, and 𝛥𝑥𝑘 = 𝑥𝑘 −

𝑥𝑘−1. Usually, we choose the point 𝑐𝑘 to be the right-hand or the left-hand endpoint of each 

subinterval. However, often, it is preferable to make an arithmetic or a geometric partition, 

that is, to choose 𝑥0, 𝑥1, 𝑥2, … , 𝑥𝑛 in such a way that they are successive terms of an 

arithmetic progression whose common difference is 𝑑 =
𝑏−𝑎

𝑛
 or successive terms of a 

geometric progression whose common ratio is 𝑟 = √
𝑏

𝑎

𝑛
 where 

𝑏

𝑎
> 0. Arithmetic partition is 

preferable when we deal with functions of the following forms: 𝑓(𝑥) = 𝑎𝑥, 𝑓(𝑥) = 𝑠𝑖𝑛𝑥, 

𝑓(𝑥) = 𝑐𝑜𝑠𝑥, 𝑓(𝑥) = 𝑡𝑎𝑛𝑥, and 𝑓(𝑥) = 𝑎𝑥. Geometric partition is preferable when we deal 

with functions of the following forms: 𝑓(𝑥) = 𝑙𝑜𝑔𝑎𝑥, 𝑓(𝑥) = 𝑎𝑥𝑘 with 𝑘 ∈ ℝ − {1}, and 

𝑓(𝑥) =
𝑝(𝑥)

𝑞(𝑥)
 where 𝑝(𝑥) and 𝑞(𝑥) are polynomials. 

 

Example: We can compute ∫ 𝑠𝑖𝑛𝑥𝑑𝑥
𝑏

𝑎
, 𝑎 < 𝑏, as follows: Consider the points 𝑥0 =

𝑎, 𝑥1 = 𝑎 + 𝑑, 𝑥2 = 𝑎 + 2𝑑,… , 𝑥𝑛 = 𝑎 + 𝑛𝑑 = 𝑏, where 𝑑 =
𝑏−𝑎

𝑛
. We choose the points 𝑐𝑘 

to be the left-hand endpoints of the subintervals [𝑥0, 𝑥1], [𝑥1, 𝑥2], … , [𝑥𝑛−1, 𝑥𝑛], so that 𝑐𝑘 =

𝑎 + (𝑘 − 1)𝑑. Hence,  

 

∫ 𝑓(𝑥)𝑑𝑥 = 𝑙𝑖𝑚𝑛→∞∑ 𝑓(𝑐𝑘)
𝑛
𝑘=1 𝛥𝑥𝑘 ⇒ ∫ 𝑠𝑖𝑛𝑥𝑑𝑥

𝑏

𝑎
=

𝑏

𝑎
𝑙𝑖𝑚𝑛→∞∑ (𝑠𝑖𝑛[𝑎 +𝑛

𝑘=1

(𝑘 − 1)𝑑])[(𝑎 + 𝑘𝑑) − (𝑎 + (𝑘 − 1)𝑑)] = 𝑙𝑖𝑚𝑛→∞∑ (𝑠𝑖𝑛[𝑎 + (𝑘 − 1)𝑑])𝑛
𝑘=1 𝑑 =

𝑙𝑖𝑚𝑛→∞𝑑[𝑠𝑖𝑛𝑎 + 𝑠𝑖𝑛(𝑎 + 𝑑) + 𝑠𝑖𝑛(𝑎 + 2𝑑) +⋯+ 𝑠𝑖𝑛(𝑎 + (𝑛 − 1)𝑑)]. 

 

Setting  

 

𝑆 = 𝑠𝑖𝑛𝑎 + 𝑠𝑖𝑛(𝑎 + 𝑑) + 𝑠𝑖𝑛(𝑎 + 2𝑑) +⋯+ 𝑠𝑖𝑛(𝑎 + (𝑛 − 1)𝑑), 

 

and multiplying by 𝑠𝑖𝑛
𝑑

2
, we obtain 

 

𝑆𝑠𝑖𝑛
𝑑

2
= 𝑠𝑖𝑛𝑎𝑠𝑖𝑛

𝑑

2
+ 𝑠𝑖𝑛(𝑎 + 𝑑)𝑠𝑖𝑛

𝑑

2
+⋯+ 𝑠𝑖𝑛(𝑎 + (𝑛 − 1)𝑑)𝑠𝑖𝑛

𝑑

2
. 
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But, because 𝑠𝑖𝑛𝑎𝑠𝑖𝑛𝑏 =
𝑐𝑜𝑠(𝑎−𝑏)

2
−
𝑐𝑜𝑠(𝑎+𝑏)

2
, we have: 

 

𝑠𝑖𝑛𝑎𝑠𝑖𝑛
𝑑

2
=

1

2
[𝑐𝑜𝑠 (𝑎 −

𝑑

2
) − 𝑐𝑜𝑠 (𝑎 +

𝑑

2
)], 

𝑠𝑖𝑛(𝑎 + 𝑑)𝑠𝑖𝑛
𝑑

2
=

1

2
[𝑐𝑜𝑠 (𝑎 +

𝑑

2
) − 𝑐𝑜𝑠 (𝑎 +

3𝑑

2
)], 

⋮ 

𝑠𝑖𝑛(𝑎 + (𝑛 − 1)𝑑)𝑠𝑖𝑛
𝑑

2
=

1

2
[𝑐𝑜𝑠 (𝑎 + (𝑛 − 1)𝑑 −

𝑑

2
) − 𝑐𝑜𝑠 (𝑎 + (𝑛 − 1)𝑑 +

𝑑

2
)]. 

 

Adding the above equations by parts, we obtain 

 

𝑠𝑖𝑛𝑎𝑠𝑖𝑛
𝑑

2
+⋯+ 𝑠𝑖𝑛(𝑎 + (𝑛 − 1)𝑑)𝑠𝑖𝑛

𝑑

2
=

1

2
[𝑐𝑜𝑠 (𝑎 −

𝑑

2
) − 𝑐𝑜𝑠 (𝑎 + (𝑛 − 1)𝑑 +

𝑑

2
)]. 

 

Because 𝑥𝑛 = 𝑎 + 𝑛𝑑 = 𝑏, we have 

 

𝑠𝑖𝑛𝑎𝑠𝑖𝑛
𝑑

2
+⋯+ 𝑠𝑖𝑛(𝑎 + (𝑛 − 1)𝑑)𝑠𝑖𝑛

𝑑

2
=

1

2
[𝑐𝑜𝑠 (𝑎 −

𝑑

2
) − 𝑐𝑜𝑠 (𝑏 −

𝑑

2
)]. 

 

Therefore,  

 

𝑆𝑠𝑖𝑛
𝑑

2
= 𝑠𝑖𝑛𝑎𝑠𝑖𝑛

𝑑

2
+ 𝑠𝑖𝑛(𝑎 + 𝑑)𝑠𝑖𝑛

𝑑

2
+⋯+ 𝑠𝑖𝑛(𝑎 + (𝑛 − 1)𝑑)𝑠𝑖𝑛

𝑑

2
⇒ 2𝑆𝑠𝑖𝑛

𝑑

2
=

𝑐𝑜𝑠 (𝑎 −
𝑑

2
) − 𝑐𝑜𝑠 (𝑏 −

𝑑

2
) ⇒ 𝑆 =

𝑐𝑜𝑠(𝑎−
𝑑

2
)−𝑐𝑜𝑠(𝑏−

𝑑

2
)

2𝑠𝑖𝑛
𝑑

2

. 

 

Consequently, we obtain 

 

∫ 𝑠𝑖𝑛𝑥𝑑𝑥
𝑏

𝑎
= 𝑙𝑖𝑚𝑛→∞𝑑

𝑐𝑜𝑠(𝑎−
𝑑

2
)−𝑐𝑜𝑠(𝑏−

𝑑

2
)

2𝑠𝑖𝑛
𝑑

2

= 𝑙𝑖𝑚𝑛→∞

𝑐𝑜𝑠(𝑎−
𝑑

2
)

𝑠𝑖𝑛
𝑑
2

𝑑
2

− 𝑙𝑖𝑚𝑛→∞

𝑐𝑜𝑠(𝑏−
𝑑

2
)

𝑠𝑖𝑛
𝑑
2

𝑑
2

=

𝑐𝑜𝑠𝑎

1
−
𝑐𝑜𝑠𝑏

1
= 𝑐𝑜𝑠𝑎 − 𝑐𝑜𝑠𝑏, since we have 𝑙𝑖𝑚𝑛→∞

𝑑

2
= 𝑙𝑖𝑚𝑛→∞

𝑏−𝑎

2𝑛
= 0, and 

𝑙𝑖𝑚𝑑

2
→0

𝑠𝑖𝑛(𝑑/2)

𝑑/2
= 1 (since, in general, 𝑙𝑖𝑚𝑥→0

𝑠𝑖𝑛𝑥

𝑥
= 1). 

 

Second method: We divide the interval [𝑎, 𝑏] into 𝑛 equal subintervals of length 
𝑏−𝑎

𝑛
. For 

the right-hand endpoint of [𝑥𝑘−1, 𝑥𝑘], it holds that 𝑥𝑘 = 𝑎 + 𝑘
𝑏−𝑎

𝑛
, where 𝑘 = 1,2,… , 𝑛. In 

the equation ∫ 𝑓(𝑥)𝑑𝑥 = 𝑙𝑖𝑚𝑛→∞∑ 𝑓(𝑐𝑘
𝑛
𝑘=1

𝑏

𝑎
)𝛥𝑥𝑘, we set 𝛥𝑥𝑘 =

𝑏−𝑎

𝑛
 and 𝑐𝑘 = 𝑥𝑘 = 𝑎 +

𝑘
𝑏−𝑎

𝑛
, and, thus, we obtain  

 

∫ 𝑓(𝑥)𝑑𝑥 = 𝑙𝑖𝑚𝑛→∞∑ 𝑓 (𝑎 + 𝑘
𝑏−𝑎

𝑛
)
𝑏−𝑎

𝑛
⇒ ∫ 𝑓(𝑥)𝑑𝑥 = 𝑙𝑖𝑚𝑛→∞

𝑏−𝑎

𝑛

𝑏

𝑎
𝑛
𝑘=1

𝑏

𝑎
∑ 𝑓 (𝑎 +𝑛
𝑘=1

𝑘
𝑏−𝑎

𝑛
). 
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Example: We can compute ∫ 𝑥2
5

1
𝑑𝑥 as follows: We divide the interval [𝑎, 𝑏] into 𝑛 equal 

subintervals of length 
5−1

𝑛
=

4

𝑛
, so that we obtain 

 

∑ 𝑓 (1 + 𝑘
4

𝑛
)𝑛

𝑘=1 = ∑ (1 + 𝑘
4

𝑛
)
2

𝑛
𝑘=1 = (1 +

4

𝑛
)
2
+ (1 + 2

4

𝑛
)
2
+ (1 + 3

4

𝑛
)
2
+⋯+

(1 + 𝑛
4

𝑛
)
2
= (1 + 2

4

𝑛
+

42

𝑛2
) + (1 + 4

4

𝑛
+ 22

42

𝑛2
) + (1 + 6

4

𝑛
+ 32

42

𝑛2
) + ⋯+

(1 + 2𝑛
4

𝑛
+ 𝑛2

42

𝑛2
) = 𝑛 + 2

4

𝑛
(1 + 2 + 3 +⋯+ 𝑛) +

42

𝑛2
(1 + 22 + 32 +⋯+ 𝑛2) =

𝑛 + 2
4

𝑛

𝑛(𝑛+1)

2
+

42

𝑛2
𝑛(𝑛+1)(2𝑛+1)

6
=

62𝑛3+72𝑛2+16𝑛

6𝑛2
. 

 

Therefore, the fact that ∫ 𝑓(𝑥)𝑑𝑥 = 𝑙𝑖𝑚𝑛→∞
𝑏−𝑎

𝑛

𝑏

𝑎
∑ 𝑓 (𝑎 + 𝑘

𝑏−𝑎

𝑛
)𝑛

𝑘=1  implies that 

 

∫ 𝑥2
5

1
𝑑𝑥 = 𝑙𝑖𝑚𝑛→∞

4

𝑛
(
62𝑛3+72𝑛2+16𝑛

6𝑛2
) =

124

3
. 

 

 

Properties of Riemann Integrable Functions 

 

Theorem519: If a function 𝑓 is integrable on [𝑎, 𝑏] and [𝑐, 𝑑] ⊂ [𝑎, 𝑏], then: (i) 𝑓 is 

integrable on [𝑐, 𝑑], and (ii) ∫ 𝑓(𝑥)𝑑𝑥 = ∫ 𝑓(𝑥)𝑑𝑥 + ∫ 𝑓(𝑥)𝑑𝑥 + ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑑

𝑑

𝑐

𝑐

𝑎

𝑏

𝑎
. 

 

Proof: Because 𝑓 is integrable on [𝑎, 𝑏], there is a partition 𝑃 of [𝑎, 𝑏] such that 

𝑈(𝑃, 𝑓) − 𝐿(𝑃, 𝑓) < 𝜀 for 𝜀 > 0. Let 

 

𝑃′ = 𝑃 ∪ {𝑐, 𝑑}, 

𝑃1 = 𝑃
′ ∩ [𝑎, 𝑐], 

𝑃2 = 𝑃
′ ∩ [𝑐, 𝑑], and 

𝑃3 = 𝑃
′ ∩ [, 𝑏]. 

 

Then 𝑈(𝑃2, 𝑓) − 𝐿(𝑃2, 𝑓) ≤ 𝑈(𝑃, 𝑓) − 𝐿(𝑃, 𝑓) < 𝜀, which implies that 𝑓 is integrable on 

[𝑐, 𝑑]. Similarly, 𝑓 is integrable on [𝑎, 𝑐] and on [𝑑, 𝑏]. Moreover,  

 

𝑈(𝑃, 𝑓) = 𝑈(𝑃1, 𝑓) + 𝑈(𝑃2, 𝑓) + 𝑈(𝑃3, 𝑓), 

 

and, therefore, (ii) holds.■ 

 

Theorem520: If 𝑓: [𝑎, 𝑏] → ℝ is integrable and 𝑐 ∈ ℝ, then 𝑐𝑓 is also integrable on [𝑎, 𝑏], 

and ∫ 𝑐𝑓(𝑥)𝑑𝑥 = 𝑐 ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎

𝑏

𝑎
. 

 

Proof: Suppose that 𝑐 ≥ 0. Then, for any set 𝐴 ⊂ [𝑎, 𝑏],  

 

 
519 Ibid. 
520 Ibid. 
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supA (𝑐𝑓) = 𝑐supA (𝑓) and infA (𝑐𝑓) = 𝑐infA (𝑓), so that 

 

𝑈(𝑃, 𝑐𝑓) = 𝑐𝑈(𝑃, 𝑓) for every partition 𝑃 of 𝐴. Computing the infimum over the set 𝑃∗ 

of all partitions of [𝑎, 𝑏], we obtain  

 

𝑈(𝑐𝑓) = infP∈𝑃∗𝑈(𝑃, 𝑐𝑓) = infP∈𝑃∗𝑐𝑈(𝑃, 𝑓) = 𝑐infP∈𝑃∗𝑈(𝑃, 𝑓) = 𝑐𝑈(𝑓). 

 

Similarly, 𝐿(𝑃, 𝑐𝑓) = 𝑐𝐿(𝑃, 𝑓) and 𝐿(𝑐𝑓) = 𝑐𝐿(𝑓). If 𝑓 is integrable, then  

 

𝑈(𝑐𝑓) = 𝑐𝑈(𝑓) = 𝑐𝐿(𝑓) = 𝐿(𝑐𝑓), 

which implies that 𝑐𝑓 is integrable and ∫ 𝑐𝑓(𝑥)𝑑𝑥 = 𝑐 ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎

𝑏

𝑎
. 

 

Now, let us consider the case of – 𝑓. Because 

 

supA (−𝑓) = −infA (𝑓) and infA (−𝑓) = −supA (𝑓), we have 

𝑈(𝑃,−𝑓) = −𝐿(𝑃, 𝑓) and 𝐿(𝑃,−𝑓) = −𝑈(𝑃, 𝑓). Hence, 

𝑈(−𝑓) = infP∈𝑃∗  𝑈(𝑃, −𝑓) = infP∈𝑃∗[−𝐿(𝑃, 𝑓)] = − supP∈𝑃∗𝐿(𝑃, 𝑓) = −𝐿(𝑓) and 

𝐿(−𝑓) = supP∈𝑃∗  𝐿(𝑃,−𝑓) = supP∈𝑃∗[−𝑈(𝑃, 𝑓)] = − infP∈𝑃∗𝑈(𝑃, 𝑓) = −𝑈(𝑓). 

 

Therefore, – 𝑓 if is integrable if 𝑓 is integrable, and 

 

∫ [−𝑓(𝑥)]
𝑏

𝑎
𝑑𝑥 = −∫ 𝑓(𝑥)𝑑𝑥

𝑏

𝑎
. 

 

Finally, if 𝑐 < 0, then 𝑐 = −|𝑐|, and, by successively applying the aforementioned 

results, we can show that the theorem holds.■ 

 

Theorem521: If 𝑓, 𝑔: [𝑎, 𝑏] → ℝ are integrable functions, then: (i) 𝑓 + 𝑔 is also integrable 

on [𝑎, 𝑏], and ∫ (𝑓 + 𝑔)(𝑥)𝑑𝑥 = ∫ 𝑓(𝑥)𝑑𝑥 + ∫ 𝑔(𝑥)𝑑𝑥
𝑏

𝑎

𝑏

𝑎

𝑏

𝑎
; (ii) 𝑓 − 𝑔 is also integrable on 

[𝑎, 𝑏], and ∫ (𝑓 − 𝑔)(𝑥)𝑑𝑥 = ∫ 𝑓(𝑥)𝑑𝑥 − ∫ 𝑔(𝑥)𝑑𝑥
𝑏

𝑎

𝑏

𝑎

𝑏

𝑎
. 

 

Proof: (i) Let ℎ(𝑥) = 𝑓(𝑥) + 𝑔(𝑥) ∀𝑥 ∈ [𝑎, 𝑏]. If we assume that 

 

𝑀𝑘 and 𝑚𝑘 are, respectively, the supremum and the infimum of 𝑓 in [𝑥𝑘−1, 𝑥𝑘], 

𝑀𝑘
′  and 𝑚𝑘

′  are, respectively, the supremum and the infimum of 𝑔 in [𝑥𝑘−1, 𝑥𝑘], and 

𝑀𝑘
′′ and 𝑚𝑘

′′ are, respectively, the supremum and the infimum of ℎ in [𝑥𝑘−1, 𝑥𝑘], then 

𝑚𝑘 +𝑚𝑘
′ ≤ 𝑚𝑘

′′ ≤ 𝑀𝑘
′′ ≤ 𝑀𝑘 +𝑀𝑘

′  

⇒ ∑ (𝑚𝑘 +𝑚𝑘
′ )𝑛

𝑘=1 𝛥𝑥𝑘 ≤ ∑ 𝑚𝑘
′′𝑛

𝑘=1 𝛥𝑥𝑘 ≤ ∑ 𝑀𝑘
′′𝑛

𝑘=1 𝛥𝑥𝑘 ≤ ∑ (𝑀𝑘 +𝑀𝑘
′ )𝑛

𝑘=1 𝛥𝑥𝑘, 

 

so that 𝐿(𝑃, 𝑓) + 𝐿(𝑃, 𝑔) ≤ 𝐿(𝑃, ℎ) ≤ 𝑈(𝑃, ℎ) ≤ 𝑈(𝑃, 𝑓) + 𝑈(𝑃, 𝑔).  

 

Therefore,  

 

 
521 Ibid. 
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𝑈(𝑃, ℎ) ≤ 𝑈(𝑃, 𝑓) + 𝑈(𝑃, 𝑔) and (∗)  

𝐿(𝑃, ℎ) ≥ 𝐿(𝑃, 𝑓) + 𝐿(𝑃, 𝑔) ⇔ −𝐿(𝑃, ℎ) ≤ −𝐿(𝑃, 𝑓) − 𝐿(𝑃, 𝑔). (∗∗)  

 

By (∗) and (∗∗), 

𝑈(𝑃, ℎ) − 𝐿(𝑃, ℎ) ≤ [𝑈(𝑃, 𝑓) − 𝐿(𝑃, 𝑓)] + [𝑈(𝑃, 𝑔) − 𝐿(𝑃, 𝑔)] <
𝜀

2
+
𝜀

2
= 𝜀, 

 

since 𝑓 and 𝑔 are integrable. Consequently, ℎ is integrable on [𝑎, 𝑏]. 

Notice that 

 

𝑈(𝑃, 𝑓) + 𝑈(𝑃, 𝑔) ≥ 𝑈(𝑃, ℎ) ≥ ∫ ℎ(𝑥)𝑑𝑥 ≥
𝑏

𝑎
𝐿(𝑃, ℎ) ≥ 𝐿(𝑃, 𝑓) + 𝐿(𝑃, 𝑔) and 

𝑈(𝑃, 𝑓) + 𝑈(𝑃, 𝑔) ≥ ∫ 𝑓(𝑥)𝑑𝑥 + ∫ 𝑔(𝑥)𝑑𝑥
𝑏

𝑎

𝑏

𝑎
≥ 𝐿(𝑃, 𝑓) + 𝐿(𝑃, 𝑔) imply that 

|∫ 𝑓(𝑥)𝑑𝑥 + ∫ 𝑔(𝑥)𝑑𝑥
𝑏

𝑎

𝑏

𝑎
− ∫ ℎ(𝑥)𝑑𝑥

𝑏

𝑎
| ≤ [𝑈(𝑃, 𝑓) + 𝑈(𝑃, 𝑔)] − [𝐿(𝑃, 𝑓) + 𝐿(𝑃, 𝑔)] =

[𝑈(𝑃, 𝑓) − 𝐿(𝑃, 𝑓)] + [𝑈(𝑃, 𝑔) − 𝐿(𝑃, 𝑔)]. Consequently, 

∫ ℎ(𝑥)𝑑𝑥 = ∫ 𝑓(𝑥)𝑑𝑥 + ∫ 𝑔(𝑥)𝑑𝑥
𝑏

𝑎

𝑏

𝑎

𝑏

𝑎
.  

 

(ii) The proof of (ii) is analogous to the proof of (i).■ 

 

Theorem522: If 𝑓: [𝑎, 𝑏] → ℝ is integrable on [𝑎, 𝑏], then |𝑓| is also integrable on [𝑎, 𝑏], 

and |∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
| ≤ ∫ |𝑓(𝑥)|

𝑏

𝑎
𝑑𝑥. 

 

Proof: Let us set 

 

𝐹1 =
|𝑓|+𝑓

2
 and 𝐹2 =

|𝑓|−𝑓

2
, 

 

so that, ∀𝑥 ∈ [𝑎, 𝑏], 𝐹1(𝑥) ≥ 0 and 𝐹2(𝑥) ≥ 0, and 

 

𝑓 = 𝐹1 − 𝐹2 and |𝑓| = 𝐹1 + 𝐹2. 

 

Given that 𝑓 is integrable on [𝑎, 𝑏], so are 𝐹1and 𝐹2, and, therefore, so is |𝑓|. 

Moreover,  

 

|∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
| = |∫ 𝐹1(𝑥)𝑑𝑥 − ∫ 𝐹2(𝑥)𝑑𝑥

𝑏

𝑎

𝑏

𝑎
| ≤ |∫ 𝐹1(𝑥)𝑑𝑥

𝑏

𝑎
| + |∫ 𝐹2(𝑥)𝑑𝑥

𝑏

𝑎
| ≤

∫ 𝐹1(𝑥)𝑑𝑥
𝑏

𝑎
+ ∫ 𝐹2(𝑥)𝑑𝑥

𝑏

𝑎
≤ ∫ |𝑓(𝑥)|

𝑏

𝑎
𝑑𝑥.■ 

 

Remark: The converse may not hold. In other words, if |𝑓(𝑥)| is integrable on [𝑎, 𝑏], then 

it does not necessarily hold that 𝑓 is integrable on [𝑎, 𝑏]. For instance, the function 𝑓: [𝑎, 𝑏] →

ℝ defined by  

 

𝑓(𝑥) = {
1 𝑖𝑓 𝑥 𝑖𝑠 𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙

−1 𝑖𝑓 𝑥 𝑖𝑠 𝑖𝑟𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙
 

 
522 Ibid. 
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is not integrable, since, for a partition 𝑃 of [𝑎, 𝑏], 

 

𝑈(𝑃, 𝑓) = ∑ 𝑀𝑘
𝑛
𝑘=1 𝛥𝑥𝑘 = (𝑏 − 𝑎) ≠ 𝐿(𝑃, 𝑓) = ∑ 𝑚𝑘

𝑛
𝑘=1 𝛥𝑥𝑘 = −(𝑏 − 𝑎). 

 

Nevertheless, |𝑓(𝑥)| is integrable on [𝑎, 𝑏], since |𝑓(𝑥)| = 1 ∀𝑥 ∈ [𝑎, 𝑏], and, therefore, 

𝑈(𝑃, 𝑓) = 𝐿(𝑃, 𝑓) = 𝑏 − 𝑎. 

 

Theorem523: (i) If 𝑓, 𝑔: [𝑎, 𝑏] → ℝ are integrable functions, then 𝑓𝑔: [𝑎, 𝑏] → ℝ is also 

integrable on [𝑎, 𝑏]. (ii) If, in addition, 𝑔 ≠ 0 and 1/𝑔 is bounded, then 𝑓/𝑔: [𝑎, 𝑏] → ℝ is 

also integrable on [𝑎, 𝑏]. 

 

Proof: (i) First, we shall prove that the square of an integrable function is an integrable 

function. Assume that 𝑓: [𝑎, 𝑏] → ℝ is integrable. If  

 

𝑚𝑘 and 𝑀𝑘 are, respectively, the infimum and the supremum of 𝑓 in [𝑥𝑘−1, 𝑥𝑘], 

𝑚𝑘
′  and 𝑀𝑘

′  are, respectively, the infimum and the supremum of |𝑓| in [𝑥𝑘−1, 𝑥𝑘], and 

𝑚𝑘
′′ and 𝑀𝑘

′′ are, respectively, the infimum and the supremum of 𝑓2 in [𝑥𝑘−1, 𝑥𝑘], then 

𝑀𝑘
′′ −𝑚𝑘

′′ = (𝑀𝑘
′ )2 − (𝑚𝑘

′ )2 = (𝑀𝑘
′ −𝑚𝑘

′ )(𝑀𝑘
′ +𝑚𝑘

′ ), 

 

so that 𝑀𝑘
′′ −𝑚𝑘

′′ ≤ 2𝑀(𝑀𝑘
′ −𝑚𝑘

′ ) where 𝑀 = sup (|𝑓|) in [𝑎, 𝑏].  

Consequently, 𝑈(𝑃, 𝑓2) − 𝐿(𝑃, 𝑓2) ≤ 2𝑀[𝑈(𝑃, |𝑓|) − 𝐿(𝑃, |𝑓|)].  

Because |𝑓| is integrable on [𝑎, 𝑏], 𝑓2 is also integrable on [𝑎, 𝑏]. Moreover, because 

𝑓, 𝑔: [𝑎, 𝑏] → ℝ are integrable on [𝑎, 𝑏], it holds that 𝑓 + 𝑔, 𝑓2, 𝑔2, and (𝑓 + 𝑔)2 are also 

integrable on [𝑎, 𝑏], and, therefore, 
(𝑓+𝑔)2−𝑓2−𝑔2

2
 is integrable on [𝑎, 𝑏].  

In a similar way, we can prove that, if 𝑔 ≠ 0 and 1/𝑔 is bounded, then 𝑓/𝑔: [𝑎, 𝑏] → ℝ is 

also integrable on [𝑎, 𝑏].■ 

 

Theorem524: The Cauchy–Schwarz–Buniakowski Inequality states that 

 

∑ 𝑎𝑘
2𝑛

𝑘=1 ∑ 𝑏𝑘
2𝑛

𝑘=1 ≥ (∑ 𝑎𝑘𝑏𝑘
𝑛
𝑘=1 )2, 

 

where 𝑎𝑘 , 𝑏𝑘 ∈ ℝ, 𝑘 = 1,2,… , 𝑛. For functions, this inequality can be reformulated as 

follows: 

 

∫ [𝑓(𝑥)]2
𝑏

𝑎
𝑑𝑥 ∫ [𝑔(𝑥)]2

𝑏

𝑎
𝑑𝑥 ≥ [∫ 𝑓(𝑥)𝑔(𝑥)

𝑏

𝑎
]
2
, 

 

where 𝑓, 𝑔: [𝑎, 𝑏] → ℝ are integrable functions. 

 

Proof: For any 𝜆 ∈ ℝ,  

 

 
523 Ibid. 
524 Ibid.  
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0 ≤ [𝜆𝑓(𝑥) + 𝑔(𝑥)]2 ⇒ 0 ≤ ∫ [𝜆𝑓(𝑥) + 𝑔(𝑥)]2𝑑𝑥 = 𝜆2
𝑏

𝑎
∫ [𝑓(𝑥)]2𝑑𝑥 +
𝑏

𝑎

2𝜆 ∫ 𝑓(𝑥)𝑔(𝑥)𝑑𝑥 + ∫ [𝑔(𝑥)]2𝑑𝑥
𝑏

𝑎

𝑏

𝑎
, 

 

so that we obtain the following polynomial with respect to 𝜆: 

 

𝐴𝜆2 + 2𝐵𝜆 + 𝐶 where 

𝐴 = ∫ [𝑓(𝑥)]2𝑑𝑥
𝑏

𝑎
, 

𝐵 = ∫ 𝑓(𝑥)𝑔(𝑥)𝑑𝑥
𝑏

𝑎
, and 

𝐶 = ∫ [𝑔(𝑥)]2𝑑𝑥
𝑏

𝑎
. 

 

Hence, 𝐴𝜆2 + 2𝐵𝜆 + 𝐶 ≥ 0 holds ∀𝜆 ∈ ℝ. Because the polynomial 𝐴𝜆2 + 2𝐵𝜆 + 𝐶 is 

non-negative for any 𝜆 ∈ ℝ, and 𝐴 > 0, the discriminant (2𝐵)2 − 4𝐴𝐶 of this polynomial 

must be non-positive, and, therefore, 𝐵2 ≤ 𝐴𝐶, which proves the theorem.■ 

 

 

The Equivalence of the Definitions of the Integral of a Function 

 

As I explained in section 2.11, the definite integral of a function can be defined as the 

limit of a sum, namely,𝑙𝑖𝑚‖𝑃‖→0𝑆(𝑃, 𝑓, 𝑐𝑘) = ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
, and, in fact, this is the way in 

which Newton and Leibniz studied integral calculus in the seventeenth century. However, as I 

have already explained, Riemann’s definition of an integral is based on the concept of 

boundedness rather than on the concept of a limit, so that, if 𝐽 and 𝐼 are, respectively, the 

upper and the lower integrals of 𝑓 on [𝑎, 𝑏], that is, if 𝐽 = ∫ 𝑓(𝑥)𝑑𝑥
𝑏̅

𝑎
 and 𝐼 = ∫ 𝑓(𝑥)𝑑𝑥

𝑏

𝑎̅
, 

then 𝑓 is said to be Riemann integrable on[𝑎, 𝑏] if 𝐽 = 𝐼.  

 

Theorem525: The two aforementioned definitions of integration (namely, Riemann’s 

definition of an integral and the definition of an integral as the limit of a sum) are equivalent 

to each other, symbolically (according to the aforementioned notation): 

 

𝐽 = 𝐼 = 𝑙 ⇔ 𝑙𝑖𝑚‖𝑃‖→0𝑆(𝑃, 𝑓, 𝑐𝑘) = 𝑙. 

 

Proof: First, we shall assume that 𝐽 = 𝐼 = 𝑙, and we shall prove that then 

𝑙𝑖𝑚‖𝑃‖→0𝑆(𝑃, 𝑓, 𝑐𝑘) = 𝑙. Hence, let  

 

∫ 𝑓(𝑥)𝑑𝑥
𝑏̅

𝑎
= ∫ 𝑓(𝑥)𝑑𝑥

𝑏

𝑎̅
= 𝑙, 

 

which implies that 𝑓 is bounded on [𝑎, 𝑏]. Due to Darboux’s Theorem, for any 𝜀 > 0, there 

exists a 𝛿 > 0 such that 

 

|𝑈(𝑃, 𝑓) − 𝑙| < 𝜀 and |𝐿(𝑃, 𝑓) − 𝑙| < 𝜀  (1) 

 
525 Ibid. 
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for all partitions 𝑃 of [𝑎, 𝑏] for which ‖𝑃‖ < 𝛿. 

By definition, 𝑆(𝑃, 𝑓, 𝑐𝑘) = ∑ 𝑓(𝑐𝑘)𝛥𝑥𝑘
𝑛
𝑘=1 , where 𝑐𝑘 ∈ [𝑥𝑘−1, 𝑥𝑘], and, thus,  

 

𝑈(𝑃, 𝑓) ≥ 𝑆(𝑃, 𝑓, 𝑐𝑘) ≥ 𝐿(𝑃, 𝑓), 

 

which, due to (1), implies that  

 

𝑙 + 𝜀 > 𝑆(𝑃, 𝑓, 𝑐𝑘) > 𝑙 − 𝜀 ∀‖𝑃‖ < 𝛿, 

 

so that 𝑙𝑖𝑚‖𝑃‖→0𝑆(𝑃, 𝑓, 𝑐𝑘) = 𝑙. 

 

Now, we shall assume that  

 

𝑙𝑖𝑚‖𝑃‖→0𝑆(𝑃, 𝑓, 𝑐𝑘) = 𝑙,   (2) 

 

and we shall prove that then 𝐽 = 𝐼 = 𝑙. Hence, let  

𝑙𝑖𝑚‖𝑃‖→0∑ 𝑓(𝑐𝑘)𝛥𝑥𝑘
𝑛
𝑘=1 = 𝑙, so that, by (2), for any 𝜀 > 0, there exists a 𝛿 > 0 such 

that 

 

𝑙 −
𝜀

4
< 𝑆(𝑃, 𝑓, 𝑐𝑘) < 𝑙 +

𝜀

4
 .   (3) 

 

We shall prove that, given (2), 𝑓 is bounded on [𝑎, 𝑏] by applying the method of reductio 

ad absurdum. Thus, for the sake of contradiction, assume that 𝑓 is not bounded on [𝑎, 𝑏], so 

that 𝑓 is not bounded on [𝑥𝑘−1, 𝑥𝑘] for at least one value of 𝑘, say for 𝑘 = 𝑤. Then let 

 

|∑ 𝑓(𝑐𝑘)𝛥𝑥𝑘𝑘≠𝑤 | = 𝑙1.   (4) 

 

Because 𝑓 is not bounded on [𝑥𝑘−1, 𝑥𝑘], we can choose a 𝑐𝑤 ∈ [𝑥𝑤−1, 𝑥𝑤] such that 

 

|𝑓(𝑐𝑤)𝛥𝑥𝑤| > |𝑙| + 𝑙1 + 𝜀,   (5) 

 

so that |∑ 𝑓(𝑐𝑘)𝛥𝑥𝑘𝑘 | ≥ |𝑓(𝑐𝑤)𝛥𝑥𝑤| − |∑ 𝑓(𝑐𝑘)𝛥𝑥𝑘𝑘≠𝑤 |. Because of (4) and (5), 

 

|∑ 𝑓( 𝑘)𝛥𝑥𝑘𝑘 | > |𝑙| + 𝜀 ⇒ 𝑙𝑖𝑚‖𝑃‖→0𝑆(𝑃, 𝑓, 𝑐𝑘) ≠ 𝑙, 

 

which contradicts the assumption that 𝑙𝑖𝑚‖𝑃‖→0𝑆(𝑃, 𝑓, 𝑐𝑘) = 𝑙. This contradiction implies 

that the assumption that 𝑓 is not bounded on [𝑎, 𝑏] is wrong. In other words, 𝑓 is bounded on 

[𝑎, 𝑏].  

If 𝑚𝑘 and 𝑀𝑘 are, respectively, the infimum and the supremum of 𝑓 in [𝑥𝑘−1, 𝑥𝑘], then 

there exist points 𝑝𝑘 and 𝑞𝑘 in [𝑥𝑘−1, 𝑥𝑘] such that 

 

𝑓(𝑝𝑘) > 𝑀𝑘 −
𝜀

4(𝑏−𝑎)
 and 𝑓(𝑞𝑘) < 𝑚𝑘 +

𝜀

4(𝑏−𝑎)
, so that 

𝑓(𝑝𝑘)𝛥𝑥𝑘 > 𝑀𝑘𝛥𝑥𝑘 −
𝜀

4(𝑏−𝑎)
𝛥𝑥𝑘 ⇒ ∑ 𝑓(𝑝𝑘)𝛥𝑥𝑘 >𝑘 𝑈(𝑃, 𝑓) −

𝜀

4
,   (6) 
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and ∑ 𝑓(𝑞𝑘)𝛥𝑥𝑘 <𝑘 𝐿(𝑃, 𝑓) +
𝜀

4
.   (7) 

 

If 𝑝𝑘 = 𝑐𝑘, then (6) becomes 

 

∑ 𝑓(𝑐𝑘)𝛥𝑥𝑘 >𝑘 𝑈(𝑃, 𝑓) −
𝜀

4
, 

 

implying, by (3), that 𝑈(𝑃, 𝑓) −
𝜀

4
< ∑ 𝑓(𝑐𝑘)𝛥𝑥𝑘 < 𝑙 +

𝜀

4𝑘 , which implies that 

 

𝑈(𝑃, 𝑓) < 𝑙 +
𝜀

2
.   (8) 

 

Similarly, if 𝑞𝑘 = 𝑐𝑘, then (7) becomes 

 

𝐿(𝑃, 𝑓) > 𝑙 −
𝜀

2
.   (9) 

 

The inequalities (8) and (9) imply that  

 

𝑙 −
𝜀

2
< 𝐿(𝑃, 𝑓) ≤ 𝑈(𝑃, 𝑓) < 𝑙 +

𝜀

2
, 

 

which implies that 𝐽 = 𝐼 = 𝑙.■ 

 

Monotonicity 

 

Theorem526: If 𝑓 is monotonic on [𝑎, 𝑏], then 𝑓 is integrable on [𝑎, 𝑏]. 

 

Proof: Notice that, by definition, monotonic functions on [𝑎, 𝑏] are bounded functions. 

First, let us assume that 𝑓 is increasing on [𝑎, 𝑏], that is, 𝑓(𝑏) ≥ 𝑓(𝑎) whenever 𝑏 > 𝑎. Let 𝑃 

be a partition of [𝑎, 𝑏] such that 

 

‖𝑃‖ <
𝜀

𝑓(𝑏)−𝑓(𝑎)+1
, where 𝜀 > 0. 

 

Then 𝑈(𝑃, 𝑓) − 𝐿(𝑃, 𝑓) = ∑ (𝑀𝑘 −𝑚𝑘)
𝑛
𝑘=1 𝛥𝑥𝑘 

= ∑ [𝑓(𝑥𝑘) − 𝑓(𝑥𝑘−1)]
𝑛
𝑘=1 𝛥𝑥𝑘 <

𝜀

𝑓(𝑏)−𝑓(𝑎)+1
∑ [𝑓(𝑥𝑘) − 𝑓(𝑥𝑘−1)]
𝑛
𝑘=1 <

𝜀

𝑓(𝑏)−𝑓(𝑎)+1
[𝑓(𝑏) − 𝑓(𝑎)] < 𝜀, 

 

and, therefore, 𝑓 is integrable on [𝑎, 𝑏], that is, the theorem holds in case 𝑓 is increasing on 

[𝑎, 𝑏]. By analogy, we can prove the theorem in case 𝑓 is decreasing on [𝑎, 𝑏].■ 

 

 

 

 
526 Ibid. 
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Generalized Integrals 

A “generalized integral” (also known as an “improper integral”) is an integral with one or 

more infinite limits of integration and/or discontinuous integrands.  

 

First Case:𝑓 is discontinuous at some points or at one point in the closed interval of 

integration [𝑎, 𝑏] ⊂ ℝ.  

 

i. If 𝑓(𝑥) is discontinuous at 𝑥 = 𝑥0, that is, if 𝑓(𝑥0) → ∞, and 𝑎 < 𝑥0 < 𝑏, then  

∫ 𝑓(𝑥) = 𝑙𝑖𝑚𝜀→0 ∫ 𝑓(𝑥)𝑑𝑥 + 𝑙𝑖𝑚𝜀→0 ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑥0+𝜀

𝑥0−𝜀

𝑎

𝑏

𝑎
. 

ii. If 𝑓(𝑥) is discontinuous at 𝑥 = 𝑥0 = 𝑏, that is, if 𝑓(𝑏) → ∞, then 

∫ 𝑓(𝑥) = 𝑙𝑖𝑚𝜀→0 ∫ 𝑓(𝑥)𝑑𝑥
𝑏−𝜀

𝑎

𝑏

𝑎
, or, equivalently, 

∫ 𝑓(𝑥) = 𝑙𝑖𝑚𝑘→𝑏− ∫ 𝑓(𝑥)𝑑𝑥
𝑘

𝑎

𝑏

𝑎
. 

iii. If 𝑓(𝑥) is discontinuous at 𝑥 = 𝑥0 = 𝑎, that is, if 𝑓(𝑎) → ∞, then 

∫ 𝑓(𝑥) = 𝑙𝑖𝑚𝜀→0 ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎+𝜀

𝑏

𝑎
, or, equivalently, 

∫ 𝑓(𝑥) = 𝑙𝑖𝑚𝑘→𝑎+ ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑘

𝑏

𝑎
. 

For instance, in ∫
𝑑𝑥

√𝑛2−𝑥2

𝑛

0
, the integrand is discontinuous at 𝑥 = 𝑛, and, therefore, 

∫
𝑑𝑥

√𝑛2−𝑥2

𝑛

0
= 𝑙𝑖𝑚𝜀→0 ∫

𝑑𝑥

√𝑛2−𝑥2
= 𝑙𝑖𝑚𝜀→0𝑎𝑟𝑐𝑠𝑖𝑛

𝑥

𝑛

𝑛−𝜀

0
|0
𝑛−𝜀 = 𝑙𝑖𝑚𝜀→0 (𝑎𝑟𝑐𝑠𝑖𝑛

𝑛−𝜀

𝑛
−

𝑎𝑟𝑐𝑠𝑖𝑛
0

𝑛
) = 𝑙𝑖𝑚𝜀→0𝑎𝑟𝑐𝑠𝑖𝑛1 = 𝑎𝑟𝑐𝑠𝑖𝑛1 =

𝜋

2
. 

Second Case: the interval of integration is infinite, that is, (−∞, 𝑏], [𝑎,+∞), or 

(−∞,−∞).  

 

i. If 𝑓(𝑥) is continuous on (𝑎, 𝑏) where 𝑏 = +∞, then 

∫ 𝑓(𝑥)𝑑𝑥 = 𝑙𝑖𝑚𝑘→∞
∞

𝑎
∫ 𝑓(𝑥)𝑑𝑥
𝑘

𝑎
. 

ii. If 𝑓(𝑥) is continuous on (𝑎, 𝑏) where 𝑎 = −∞, then 

∫ 𝑓(𝑥)𝑑𝑥 = 𝑙𝑖𝑚𝑘→−∞
𝑏

−∞
∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑘
. 

iii. If 𝑓(𝑥) is continuous on (𝑎, 𝑏) where 𝑎 = −∞ and 𝑏 = +∞, then 

∫ 𝑓(𝑥)𝑑𝑥 = 𝑙𝑖𝑚𝑘1→−∞
∞

−∞
∫ 𝑓(𝑥)𝑑𝑥
𝑙

𝑘1
+ 𝑙𝑖𝑚𝑘2→∞ ∫ 𝑓(𝑥)𝑑𝑥

𝑘2
𝑙

. 

 

For instance, ∫
𝑑𝑥

𝑒𝑥
∞

0
= 𝑙𝑖𝑚𝑘→∞ ∫

𝑑𝑥

𝑒𝑥
𝑘

0
= 𝑙𝑖𝑚𝑘→∞(−𝑒

−𝑥)|0
𝑘 = 1. 

 

 

Riemann Integrability and Sets of Measure Zero 

 

Theorem527: If 𝑓 is bounded on [𝑎, 𝑏] and continuous except at finitely many points, say 

𝑐1, 𝑐2, … , 𝑐𝑛, in [𝑎, 𝑏], then 𝑓 is Riemann integrable. 

 

Proof: Let 𝑚 and 𝑀 be, respectively, the infimum and the supremum of 𝑓 on [𝑎, 𝑏], and 

let 𝑓 be discontinuous at a finite number of points, say 𝑐1, 𝑐2, … , 𝑐𝑛, in [𝑎, 𝑏]. Then we 

 
527 Ibid. 
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enclose these 𝑛 points in 𝑛 non-overlapping intervals [𝑎1, 𝑏1], [𝑎2, 𝑏2], … , [𝑎𝑛, 𝑏𝑛] such that 

the sum of their length is less than 
𝜀

2(𝑀−𝑚)
, symbolically, 

 

∑ (𝑏𝑖 − 𝑎𝑖)
𝑛
𝑖=1 <

𝜀

2(𝑀−𝑚)
. 

 

Hence, 𝑓 is continuous on  

 

[𝑎, 𝑎1], [𝑏1, 𝑎2], [𝑏2, 𝑎3], … , [𝑏𝑛, 𝑏]. 

 

Let 𝑃′ = [𝑎1, 𝑏1] ∪ [𝑎2, 𝑏2] ∪ …∪ [𝑎𝑛, 𝑏𝑛].  

 

Because ∑ (𝑏𝑖 − 𝑎𝑖)
𝑛
𝑖=1 <

𝜀

2(𝑀−𝑚)
 and ∑ (𝑀𝑖 −𝑚𝑖)

𝑛
𝑖=1 < 𝑀 −𝑚, 

 

it holds that  

 

𝑈(𝑃′, 𝑓) − 𝐿(𝑃′, 𝑓) <
𝜀

2(𝑀−𝑚)
(𝑀 −𝑚) =

𝜀

2
. 

 

Notice that 𝑓 is continuous on each of the (𝑛 + 1) intervals 

 

[𝑎, 𝑎1], [𝑏1, 𝑎2], [𝑏2, 𝑎3], … , [𝑏𝑛, 𝑏], 

 

and, therefore, 𝑓 is integrable on each of these intervals. Assume that 𝑃1 is a partition of 

[𝑎, 𝑎1], so that 

 

𝑈(𝑃1, 𝑓) − 𝐿(𝑃1, 𝑓) <
𝜀

2(𝑛+1)
. 

 

Similarly, assume that 𝑃2 is a partition of [𝑏1, 𝑎2], so that 

 

𝑈(𝑃2, 𝑓) − 𝐿(𝑃2, 𝑓) <
𝜀

2(𝑛+1)
. 

 

We repeat the same process on each of the (𝑛 + 1) intervals, until we obtain partition 

𝑃𝑛+1, which is a partition of [𝑏𝑛, 𝑏], so that  

 

𝑈(𝑃𝑛+1, 𝑓) − 𝐿(𝑃𝑛+1, 𝑓) <
𝜀

2(𝑛+1)
. 

 

Let 𝑃 = 𝑃′ ∪ 𝑃1 ∪ 𝑃2 ∪ …∪ 𝑃𝑛+1. Then 𝑃 is as partition of [𝑎, 𝑏], and 

 

𝑈(𝑃, 𝑓) − 𝐿(𝑃, 𝑓) = 𝑈(𝑃′, 𝑓) − 𝐿(𝑃′, 𝑓) + ∑ [𝑈(𝑃𝑘, 𝑓) − 𝐿(𝑃𝑘, 𝑓)]
𝑛+1
𝑘=1 <

𝜀

2
+

𝜀

2(𝑛+1)
(𝑛 + 1) = 𝜀, meaning that 𝑓 is integrable on [𝑎, 𝑏].■ 
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Theorem528: Assume that 𝑓 is bounded on [𝑎, 𝑏] and discontinuous at infinitely many 

points of [𝑎, 𝑏]. Then 𝑓 is Riemann integrable if the set of its points of discontinuity has a 

finite number of accumulation points. 

 

Proof: The proof of this theorem is similar to the proof of the immediately preceding 

theorem: Let {𝑐1, 𝑐2, … , 𝑐𝑛} be the finite set of the accumulation points of the set of 

discontinuous points of 𝑓 in [𝑎, 𝑏]. Then we enclose the points 𝑐1, 𝑐2, … , 𝑐𝑛 in 𝑛 non-

overlapping intervals [𝑎1, 𝑏1], [𝑎2, 𝑏2], … , [𝑎𝑛, 𝑏𝑛], and, therefore, as in the immediately 

preceding theorem,  

 

𝑈(𝑃′, 𝑓) − 𝐿(𝑃′, 𝑓) <
𝜀

2
, 

 

where 𝑃′ = [𝑎1, 𝑏1] ∪ [𝑎2, 𝑏2] ∪ …∪ [𝑎𝑛, 𝑏𝑛].  

Notice that only a finite number of points of discontinuity of 𝑓 can lie in each of the 

(𝑛 + 1) intervals [𝑎, 𝑎1], [𝑏1, 𝑎2], [𝑏2, 𝑎3], … , [𝑏𝑛, 𝑏], and the aforementioned method of proof 

can be applied in each of these subintervals in order to prove the theorem.■ 

The last two theorems help us to understand the mathematical concept of a measure. 

“Measure” is a rigorous generalization of the intuitive notion of size (e.g., of length, area, and 

volume).529 In particular, the “Lebesgue measure” is a function that assigns real values 

(measures), including ∞, to subsets of an 𝑛-dimensional Euclidean space; and, for 𝑛 =

1,2, 𝑜𝑟3, the Lebesgue measure coincides with the standard measure of a length, an area, or a 

volume, respectively. In ℝ, the measure of an interval [𝑎, 𝑏] is its length, and it is denoted by 

𝜇([𝑎, 𝑏]), that is, 𝜇([𝑎, 𝑏]) = 𝑏 − 𝑎. In ℝ2, the measure of a rectangle 𝑋 whose dimensions 

are 𝑎 and 𝑏 is 𝜇(𝐵) = 𝑎𝑏 (i.e., its area), the measure of a circle 𝐶 with radius 𝑟 is 𝜇(𝐶) =

𝜋𝑟2 (i.e., its area), etc. The measure of the empty set is zero, symbolically, 𝜇(∅) = 0. The 

measure of a single point 𝑥 ∈ ℝ is zero, symbolically, 𝜇({𝑥}) = 0. Moreover, 𝜇(𝐴 ∪ 𝐵) =

𝜇(𝐴) + 𝜇(𝐵), provided that 𝐴 ∩ 𝐵 ≠ ∅; and 𝐴 ⊆ 𝐵 ⇒ 𝜇(𝐴) ≤ 𝜇(𝐵). The aforementioned 

principles determine the concept of a measure.  

If we think of the integral of a positive continuous function as a measure of the area 

between the axis of abscissas and the graph of the function, then it is easy to understand the 

connection between the measure of planar sets and the integrals of real functions of one real 

variable.  

A set 𝑆 ⊂ ℝ is said to be of “measure zero” if, for any 𝜀 > 0, there exists a countable 

family of intervals 𝐼 = {[𝑎𝑛, 𝑏𝑛]}𝑛∈ℕ such that 𝑆 is contained in the union of these intervals 

(i.e., 𝐼 covers 𝑆), and the total length of this family of intervals is less than 𝜀, symbolically, 

∑ (𝑏𝑛 − 𝑎𝑛)𝑛 < 𝜀. In other words, a set 𝑆 in ℝ is said to have measure zero if the sum of the 

lengths of the intervals enclosing the entire 𝑆 can be made arbitrarily small. Obviously, any 

set of finitely many points is a set of measure zero; the set ℤ of all integers is an infinite set of 

measure zero in ℝ; and the set ℚ of all rational numbers is another example of an infinite set 

of measure zero. Moreover, any subset of a set of measure zero has measure zero. Therefore, 

the French mathematician Henri Lebesgue (1875–1941) has reformulated the last two 

theorems in the following equivalent way, using the concept of a set of measure zero: 

 
528 Ibid 
529 Ibid. 
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Lebesgue’s Theorem530: Assume that 𝑓 is bounded on the interval [𝑎, 𝑏]. Then 𝑓 is 

Riemann integrable on [𝑎, 𝑏] if and only if the set of points of [𝑎, 𝑏] at which 𝑓 is 

discontinuous has measure zero; symbolically: if 𝑓: [𝑎, 𝑏] → ℝ is continuous outside a set 

𝐴 ⊂ [𝑎, 𝑏], then 

 

𝑓 𝑖𝑠 𝑅𝑖𝑒𝑚𝑎𝑛𝑛 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑏𝑙𝑒 ⇔ 𝜇(𝐴) = 0. 

 

For instance, we can calculate ∫ 𝑥[𝑥]
2

0
𝑑𝑥, where [𝑥] denotes the greatest integer not 

greater than 𝑥, as follows: Because [𝑥] is discontinuous for every integral value of 𝑥, the 

given function is discontinuous at 𝑥 = 1 and 𝑥 = 2 in [0,2], and, hence, it has finitely many 

points of discontinuity. Then  

 

∫ 𝑥[𝑥]
2

0
𝑑𝑥 = 𝑙𝑖𝑚𝑥0→0 (∫ 𝑥[𝑥]

1−𝑥0
0

𝑑𝑥 + ∫ 𝑥[𝑥]
2−𝑥0
1+𝑥0

𝑑𝑥) = 𝑙𝑖𝑚𝑥0→0 (∫ 𝑥 ∙ 0
1−𝑥0
0

𝑑𝑥 +

∫ 𝑥 ∙ 1
2−𝑥0
1+𝑥0

𝑑𝑥) = 𝑙𝑖𝑚𝑥0→0 (
𝑥2

2
) |1+𝑥0
2−𝑥0 =

3

2
. 

 

 

The Mean Value Theorems of Integral Calculus and the Fundamental Theorem of 

Infinitesimal Calculus 

 

The First Mean Value Theorem of Integral Calculus531: If 𝑓 is Riemann integrable on the 

interval [𝑎, 𝑏], and if 𝑚 and 𝑀 are, respectively, the infimum and the supremum of 𝑓 on 

[𝑎, 𝑏], then  

 

𝑚(𝑏 − 𝑎) ≤ ∫ 𝑓(𝑥)𝑑𝑥 ≤ 𝑀(𝑏 − 𝑎)
𝑏

𝑎
. 

 

Proof: If 𝑓 is Riemann integrable on [𝑎, 𝑏], and if 𝑓(𝑥) ≥ 0, then (using the previous 

notation), ∀𝑃 of [𝑎, 𝑏], 
 

𝑈(𝑃, 𝑓) ≥ 0 ⇒ 𝐽 ≥ 0,  

 

and, therefore, ∫ 𝑓(𝑥)𝑑𝑥 ≥ 0
𝑏

𝑎
. Similarly, if 𝑓 is Riemann integrable on [𝑎, 𝑏], and if 𝑓(𝑥) ≤

0, then ∫ 𝑓(𝑥)𝑑𝑥 ≤ 0
𝑏

𝑎
. Moreover, ∀𝑥 ∈ [𝑎, 𝑏], 

 

𝑚 ≤ 𝑓(𝑥) ≤ 𝑀 ⇒ [𝑚 − 𝑓(𝑥) ≤ 0 & 𝑓(𝑥) − 𝑀 ≤ 0] 

⇒[∫ (𝑚 − 𝑓(𝑥))
𝑏

𝑎
𝑑𝑥 ≤ 0 &∫ (𝑓(𝑥) − 𝑀)𝑑𝑥 ≤ 0

𝑏

𝑎
] 

⇒ [𝑚(𝑏 − 𝑎) − ∫ 𝑓(𝑥)𝑑𝑥 ≤ 0 &∫ 𝑓(𝑥)𝑑𝑥 −𝑀(𝑏 − 𝑎) ≤ 0
𝑏

𝑎

𝑏

𝑎
]. 

 

Therefore, 𝑚(𝑏 − 𝑎) ≤ ∫ 𝑓(𝑥)𝑑𝑥 ≤ 𝑀(𝑏 − 𝑎)
𝑏

𝑎
.■ 

 

 
530 Ibid. 
531 Ibid. 
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Remarks: (i) If 𝑘 is a number between 𝑚 and 𝑀, then ∫ 𝑓(𝑥)𝑑𝑥 = 𝑘(𝑏 − 𝑎)
𝑏

𝑎
. (ii) If, in 

addition, 𝑓 is continuous on [𝑎, 𝑏], then there exists a point 𝑡 ∈ [𝑎, 𝑏] such that ∫ 𝑓(𝑥)𝑑𝑥 =
𝑏

𝑎

(𝑏 − 𝑎)𝑓(𝑡). 

 

Generalized First Mean Value Theorem of Integral Calculus532: If 𝑓(𝑥) and 𝑔(𝑥) are two 

functions such that 𝑓 ∙ 𝑔 and 𝑔 are Riemann integrable on [𝑎, 𝑏]; if 𝑚 ≤ 𝑓(𝑥) ≤ 𝑀 ∀𝑥 ∈
[𝑎, 𝑏]; and if 𝑔(𝑥) does not change sign in [𝑎, 𝑏], namely, either 𝑔(𝑥) ≥ 0 or 𝑔(𝑥) ≤ 0 

whenever 𝑥 ∈ [𝑎, 𝑏], then: 

 

there exists a 𝑢 ∈ [𝑚,𝑀] such that  

 

∫ 𝑓(𝑥)𝑔(𝑥)
𝑏

𝑎
𝑑𝑥 = 𝑢 ∫ 𝑔(𝑥)𝑑𝑥

𝑏

𝑎
;   (1) 

 

and, if, in addition, 𝑓 is continuous over [𝑎, 𝑏], then there exists an 𝑥0 ∈ [𝑎, 𝑏] such that  

 

∫ 𝑓(𝑥)𝑔(𝑥)
𝑏

𝑎
𝑑𝑥 = 𝑓(𝑥0) ∫ 𝑔(𝑥)𝑑𝑥

𝑏

𝑎
.   (2) 

Proof: Let us consider the case in which 𝑔(𝑥) ≤ 0 ∀𝑥 ∈ [𝑎, 𝑏], since we can work 

similarly in case 𝑔(𝑥) ≥ 0 ∀𝑥 ∈ [𝑎, 𝑏]. The fact that 𝑚 ≤ 𝑓(𝑥) ≤ 𝑀 ∀𝑥 ∈ [𝑎, 𝑏] implies that 

𝑀𝑔(𝑥) ≤ 𝑓(𝑥)𝑔(𝑥) ≤ 𝑚𝑔(𝑥) ⇒ 

 

𝑀∫ 𝑔(𝑥)
𝑏

𝑎
𝑑𝑥 ≤ ∫ 𝑓(𝑥)𝑔(𝑥)𝑑𝑥 ≤ 𝑚

𝑏

𝑎
∫ 𝑔(𝑥)
𝑏

𝑎
𝑑𝑥.   (∗) 

 

If ∫ 𝑔(𝑥)
𝑏

𝑎
𝑑𝑥 = 0, then (∗) implies that ∫ 𝑓(𝑥)𝑔(𝑥)𝑑𝑥 = 0

𝑏

𝑎
, which proves (1). If 

∫ 𝑔(𝑥)
𝑏

𝑎
𝑑𝑥 < 0, then (∗) implies that𝑚 ≤

∫ 𝑓(𝑥)𝑔(𝑥)𝑑𝑥
𝑏

𝑎

∫ 𝑔(𝑥)
𝑏

𝑎 𝑑𝑥
< 𝑀, and, thus, setting 

∫ 𝑓(𝑥)𝑔(𝑥)𝑑𝑥
𝑏

𝑎

∫ 𝑔(𝑥)
𝑏

𝑎 𝑑𝑥
=

𝑢, we obtain (1). 

If 𝑓(𝑥) is continuous on [𝑎, 𝑏], then, setting 𝑚 = 𝑚𝑖𝑛(𝑓) and 𝑀 = 𝑚𝑎𝑥(𝑓), 𝑓 takes on 

any given value in the interval [𝑚𝑖𝑛(𝑓),𝑚𝑎𝑥(𝑓)], and, in particular, it takes on the value 𝑢, 

meaning that ∃𝑥0 ∈ [𝑎, 𝑏]|𝑓(𝑥0) = 𝑢, so that 

 

∫ 𝑓(𝑥)𝑔(𝑥)
𝑏

𝑎
𝑑𝑥 = 𝑓(𝑥0) ∫ 𝑔(𝑥)𝑑𝑥

𝑏

𝑎
, 

 

proving (2).■ 

 

Remark: In the aforementioned theorem, the number 𝑢 is called the “average value” of 

function 𝑓 over the given interval.  

 

Corollary: If 𝑓: [𝑎, 𝑏] → ℝ is integrable and 𝑚 ≤ 𝑓(𝑥) ≤ 𝑀 ∀𝑥 ∈ [𝑎, 𝑏], then there 

exists a 𝑢 ∈ [𝑚,𝑀] such that ∫ 𝑓(𝑥)
𝑏

𝑎
𝑑𝑥 = 𝑢(𝑏 − 𝑎); and, if, in addition, 𝑓 is continuous 

over [𝑎, 𝑏], then there exists an 𝑥0 ∈ [𝑎, 𝑏] such that ∫ 𝑓(𝑥)
𝑏

𝑎
𝑑𝑥 = 𝑓(𝑥0)(𝑏 − 𝑎). 

 
532 Ibid. 
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Equivalently, we can say that, if 𝑓(𝑥) is continuous over [𝑎, 𝑏], then there exists at least one 

point 𝑥0 ∈ [𝑎, 𝑏] such that 𝑓(𝑥0) =
1

𝑏−𝑎
∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
, where 

1

𝑏−𝑎
∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
 is the average value 

of 𝑓(𝑥) over [𝑎, 𝑏]. 

The Mean Value Theorem for integrals means that, for every definite integral, there 

exists a rectangle with the same area and width, and that, if we superimpose this rectangle on 

the definite integral, the top of the rectangle intersects the function under consideration. This 

rectangle is said to be the “mean rectangle” for the corresponding definite integral. Moreover, 

the existence of this rectangle allows us to calculate the “average value” of the definite 

integral. For instance, let us draw a rectangle such that one of its sides has length ℎ, and the 

other side has length 𝑏. Let us draw the 𝑦-axis through side ℎ, and let us draw the 𝑥-axis 

through side 𝑏. Then the average height of the rectangle is ℎ. The same result can be obtained 

using calculus: we can write the function for the height of the rectangle at any point 𝑥, 

namely, 𝑓(𝑥) = ℎ, and then we can apply the Mean Value Theorem in order to find the 

average value of 𝑓(𝑥) from 0 to 𝑏, namely, 
1

𝑏
∫ 𝑓(𝑥)
𝑏

0
𝑑𝑥 =

1

𝑏
∫ ℎ𝑑𝑥 =

1

𝑏

𝑏

0
(ℎ ∙ 𝑏 − ℎ ∙ 0) = ℎ.  

In general, the average value of 𝑓 in [𝑎, 𝑏] corresponds to the “average height” of 𝑓 

across [𝑎, 𝑏], the integral ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
 corresponds to the area under the curve of 𝑓 from 𝑎 to 𝑏, 

and the factor 𝑏 − 𝑎 corresponds to the width of the given interval, so that 

 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑉𝑎𝑙𝑢𝑒 ≡ 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐻𝑒𝑖𝑔ℎ𝑡 =
𝐴𝑟𝑒𝑎

𝑊𝑖𝑑𝑡ℎ
=

∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎

𝑏−𝑎
. 

 

Example: The average value of the function 𝑓(𝑥) = 8 − 2𝑥 over the interval [0,4] is 
1

4−0
∫ (8 − 2𝑥)𝑑𝑥 =
4

0
4. The point 𝑥0 at which 𝑓(𝑥0) is equal to the average value of 𝑓 over 

[0,4] can be found as follows: 8 − 2𝑥0 = 4 ⇒ 𝑥0 = 2. 

Assume that 𝑓: 𝐼 = [𝑎, 𝑏] → ℝ is an integrable function. Then, ∀𝑥 ∈ [𝑎, 𝑏], the restriction 

of 𝑓 in the interval [𝑎, 𝑥] is an integrable function, given that, as we have already shown, this 

is one of the properties of integrable functions (if a function 𝑓 is integrable on [𝑎, 𝑏] and 

[𝑐, 𝑑] ⊆ [𝑎, 𝑏], then 𝑓 is integrable on [𝑐, 𝑑]). Hence, we can define a function 𝑔: 𝐼 → ℝ such 

that 

 

𝑔(𝑥) = ∫ 𝑓(𝑡)𝑑𝑡
𝑥

𝑎

 

(notice that 𝑔(𝑎) = 0): this integral function 𝑔 is the formal definition of the “indefinite 

integral” of 𝑓, and, according to the following theorem, 𝑔(𝑥) is always continuous on 𝐼. 

 

Theorem533: If 𝑓: 𝐼 = [𝑎, 𝑏] → ℝ is Riemann integrable on 𝐼, then the function 𝑔: 𝐼 → ℝ 

defined by 𝑔(𝑥) = ∫ 𝑓(𝑡)𝑑𝑡
𝑥

𝑎
 is continuous on 𝐼. 

 

Proof: Let 𝑥, 𝑦 ∈ 𝐼 with 𝑥 < 𝑦. Then  

𝑔(𝑦) − 𝑔(𝑥) = ∫ 𝑓(𝑡)𝑑𝑡 − ∫ 𝑓(𝑡)𝑑𝑡 = ∫ 𝑓(𝑡)𝑑𝑡 +
𝑦

𝑎

𝑥

𝑎

𝑦

𝑎
∫ 𝑓(𝑡)𝑑𝑡 = ∫ 𝑓(𝑡)

𝑦

𝑥

𝑎

𝑥
𝑑𝑡. 

 

 
533 Ibid. 
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Therefore,  

 

𝑙𝑖𝑚𝑦→𝑥|𝑔(𝑦) − 𝑔(𝑥)| = 0 ⇒ 𝑙𝑖𝑚𝑦→𝑥𝑔(𝑦) = 𝑔(𝑥), 

 

meaning that 𝑓 is continuous on 𝐼.■ 

 

Theorem534: Let 𝑓: 𝐼 = [𝑎, 𝑏] → ℝ be Riemann integrable on 𝐼, and let 𝑔: 𝐼 → ℝ be a 

function defined by 𝑔(𝑥) = ∫ 𝑓(𝑡)𝑑𝑡
𝑥

𝑎
. Then 𝑔 is differentiable at any point 𝑥0 at which 𝑓 is 

continuous, and, in particular, 𝑔′(𝑥0) = 𝑓(𝑥0). 

 

Proof: We suppose that 𝑓 is continuous at 𝑥0 ∈ 𝐼. Then, ∀𝜀 > 0, there exists a 𝛿 > 0 

such that |𝑓(𝑥0 + ℎ) − 𝑓(𝑥0)| < 𝜀 whenever |ℎ| < 𝛿 and 𝑥0 + ℎ ∈ 𝐼. For any such ℎ, given 

that 
1

ℎ
∫ 1 ∙ 𝑑𝑥 = 1
𝑥0+ℎ

𝑥0
, we obtain: 

 

|
𝑔(𝑥0+ℎ)−𝑔(𝑥0)

ℎ
− 𝑓(𝑥0)| = |

1

ℎ
∫ 𝑓(𝑥)𝑑𝑥 − 𝑓(𝑥0)

1

ℎ
∫ 1𝑑𝑡
𝑥0+ℎ

𝑥0

𝑥0+ℎ

𝑥0
| =

1

|ℎ|
|∫ (𝑓(𝑥) −
𝑥0+ℎ

𝑥0

𝑓(𝑥0))𝑑𝑥| ≤
1

|ℎ|
|∫ |𝑓(𝑥) − 𝑓(𝑥0)|𝑑𝑥
𝑥0+ℎ

𝑥0
| ≤

1

|ℎ|
∙ 𝜀|ℎ| = 𝜀, 

 

meaning that  

 

𝑔′(𝑥0) = 𝑙𝑖𝑚ℎ→0
𝑔(𝑥0+ℎ)−𝑔(𝑥0)

ℎ
= 𝑓(𝑥0).■ 

 

Corollary: If 𝑓: 𝐼 = [𝑎, 𝑏] → ℝ is continuous on 𝐼, and if 𝑔: 𝐼 → ℝ is defined by 𝑔(𝑥) =

∫ 𝑓(𝑡)𝑑𝑡
𝑥

𝑎
, then 𝑔′(𝑥) exists, and, in particular, 𝑔′(𝑥) = 𝑓(𝑥) ∀𝑥 ∈ 𝐼.  

As I have already mentioned, if there exists a differentiable function 𝑔(𝑥) such that its 

derivative 𝑔′(𝑥) = 𝑓(𝑥), then the function 𝑔(𝑥) is said to be an “antiderivative,” or a 

“primitive,” of 𝑓(𝑥). Hence, the last theorem provides a sufficient condition for the existence 

of a primitive of a function, namely, the condition of continuity. As a conclusion, every 

continuous function has at least one primitive, and, in particular, the integral function 𝑔(𝑥) =

∫ 𝑓(𝑡)𝑑𝑡
𝑥

𝑎
 is a primitive of 𝑓. The fact that the continuity of a function is not a necessary 

condition for the existence of a primitive can be realized by considering the following 

example: given the function 𝑓: [0,1] → ℝ defined by 

 

𝑓(𝑥) = {
2𝑥𝑠𝑖𝑛

1

𝑥
− 𝑐𝑜𝑠

1

𝑥
 𝑖𝑓𝑥 ≠ 0

0 𝑖𝑓𝑥 = 0
, 

 

its primitive is 𝑔: [0,1] → ℝ defined by 

 

𝑔(𝑥) = {
𝑥2𝑠𝑖𝑛

1

𝑥
 𝑖𝑓𝑥 ≠ 0

0 𝑖𝑓𝑥 = 0
, 

 

 
534 Ibid. 
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since 𝑔′(𝑥) = 𝑓(𝑥) ∀𝑥 ∈ [0,1], but 𝑓(𝑥) is not continuous at 0. 

 

The Fundamental Theorem of Infinitesimal Calculus535: Let 𝑓 be a continuous function 

on the interval 𝐼 = [𝑎, 𝑏]. Then a function 𝑔: 𝐼 → ℝ satisfies the relation 

 

∫ 𝑓(𝑡)𝑑𝑡 = 𝑔(𝑥) − 𝑔(𝑎)
𝑥

𝑎
 (∗) 

 

if and only if 𝑔′(𝑥) = 𝑓(𝑥) ∀𝑥 ∈ 𝐼. 

 

Proof: Suppose that (∗) holds. Then, setting ℎ(𝑥) = ∫ 𝑓(𝑡)𝑑𝑡
𝑥

𝑎
, we obtain ℎ(𝑥) = 𝑔(𝑥) −

𝑔(𝑎) ∀𝑥 ∈ 𝐼. Then, by the corollary of the immediately preceding theorem, the fact that 𝑓 is 

continuous implies that 

 

ℎ′(𝑥) = 𝑓(𝑥) = 𝑔′(𝑥) ∀𝑥 ∈ 𝐼. 

 

Conversely, if 𝑔: 𝐼 → ℝ is such that 𝑔′(𝑥) = 𝑓(𝑥) ∀𝑥 ∈ 𝐼, then it holds that 𝑔′(𝑥) =

ℎ′(𝑥) ∀𝑥 ∈ 𝐼. Hence, given that two functions having equal derivatives differ from each other 

by a constant, there exists a number 𝑐 such that 

𝑔(𝑥) = ℎ() + 𝑐. 

 

Because ℎ(𝑎) = 0, it holds that 𝑐 = 𝑔(𝑎), and, therefore, 

 

𝑔(𝑥) − 𝑔(𝑎) = ℎ(𝑥) = ∫ 𝑓(𝑡)𝑑𝑡
𝑥

𝑎
.■ 

 

Corollary: If 𝑓: 𝐼 → ℝ is continuous on 𝐼 = [𝑎, 𝑏], and if 𝑔′(𝑥) = 𝑓(𝑥) ∀𝑥 ∈ 𝐼, then 

 

∫ 𝑓(𝑥)𝑑𝑥 = 𝑔(𝑏) − 𝑔(𝑎)
𝑏

𝑎
. 

 

Remarks: (i) Integration and differentiation are inverse operations. (ii) The indefinite 

integral of a function is a function, whereas the definite integral of a function is a number.  

 

Weierstrass’s Second Mean Value Theorem (Generalized Second Mean Value Theorem 

of Integral Calculus)536: If 𝑓(𝑥) and 𝑔(𝑥) are two functions such that 𝑓(𝑥) is monotonic over 

[𝑎, 𝑏], and 𝑔(𝑥) is integrable on [𝑎, 𝑏] and does not change sign in [𝑎, 𝑏], then there exists an 

𝑥0 ∈ [𝑎, 𝑏] such that 

 

∫ 𝑓(𝑥)𝑔(𝑥)𝑑𝑥 = 𝑓(𝑎) ∫ 𝑔(𝑥)𝑑𝑥 + 𝑓(𝑏) ∫ 𝑔(𝑥)𝑑𝑥
𝑏

𝑥0

𝑥0
𝑎

𝑏

𝑎
. 

 

Proof: Let 𝐹: [𝑎, 𝑏] → ℝ be defined by 

 

𝐹(𝑡) = ∫ 𝑓(𝑥)𝑔(𝑥)𝑑𝑥 − 𝑓(𝑎)∫ 𝑔(𝑥)𝑑𝑥 − 𝑓(𝑏) ∫ 𝑔(𝑥)𝑑𝑥
𝑏

𝑡

𝑡

𝑎

𝑏

𝑎
. (∗) 

 
535 Ibid. 
536 Ibid. 
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Given that 𝑔(𝑥) is integrable, the functions ∫ 𝑔(𝑥)𝑑𝑥
𝑡

𝑎
 and ∫ 𝑔(𝑥)𝑑𝑥

𝑏

𝑡
 are continuous (we 

have already proved that, if 𝑓: 𝐼 = [𝑎, 𝑏] → ℝ is Riemann integrable on 𝐼, then the function 

𝑔: 𝐼 → ℝ defined by 𝑔(𝑥) = ∫ 𝑓(𝑡)𝑑𝑡
𝑥

𝑎
 is continuous on 𝐼).  

Let us consider the case in which 𝑓 is increasing on [𝑎, 𝑏] and 𝑔(𝑥) ≥ 0 ∀𝑥 ∈ [𝑎, 𝑏]. 

Then 

 

𝑓(𝑎) ≤ 𝑓(𝑥) ≤ 𝑓(𝑏) ∀𝑥 ∈ [𝑎, 𝑏],  

 

and  

 

𝑓(𝑎)𝑔(𝑥) ≤ 𝑓(𝑥)𝑔(𝑥) ≤ 𝑓(𝑏)𝑔(𝑥) ⇒ 

𝑓(𝑎) ∫ 𝑔(𝑥)𝑑𝑥 ≤ ∫ 𝑓(𝑥)𝑔(𝑥)𝑑𝑥 ≤ 𝑓(𝑏) ∫ 𝑔(𝑥)𝑑𝑥
𝑏

𝑎

𝑏

𝑎

𝑏

𝑎
.   (∗∗) 

 

Hence, due to (∗∗), (∗) implies that 

 

𝐹(𝑎) = ∫ 𝑓(𝑥)𝑔(𝑥)𝑑𝑥 − 𝑓(𝑏) ∫ 𝑔(𝑥)𝑑𝑥
𝑏

𝑎
≤ 0

𝑏

𝑎
, and 

𝐹(𝑏) = ∫ 𝑓(𝑥)𝑔(𝑥)𝑑𝑥 − 𝑓(𝑎) ∫ 𝑔(𝑥)𝑑𝑥
𝑏

𝑎
≥ 0

𝑏

𝑎
. 

 

Consequently, 𝐹(𝑎) ∙ 𝐹(𝑏) ≤ 0, so that:  

 

𝐹(𝑎) = 0 ⇒ 𝑥0 = 𝑎,  

𝐹(𝑏) = 0 ⇒ 𝑥0 = 𝑏, and  

𝐹(𝑎) ∙ 𝐹(𝑏) < 0 ⇒ [∃𝑥0 ∈ (𝑎, 𝑏)|𝐹(𝑥0) = 0], due to Bolzano’s Theorem.■ 

 

The French mathematician Pierre Ossian Bonnet (1819–1892) has formulated and proved 

the following version of the Mean Value Theorem of Integral Calculus, which is, in fact, a 

corollary of Weierstrass’s version of the Mean Value Theorem of Integral Calculus: 

 

Bonnet’s Form of the Second Mean Value Theorem537: Assume that a function 

𝑔: [𝑎, 𝑏] → ℝ is integrable on [𝑎, 𝑏], and that it does not change sign in [𝑎, 𝑏]. Then: 

 

if 𝑓 is decreasing and positive, then there exists an 𝑥0 ∈ [𝑎, 𝑏] such that 

∫ 𝑓(𝑥)𝑔(𝑥)𝑑𝑥 = 𝑓(𝑎) ∫ 𝑔(𝑥)𝑑𝑥
𝑥0
𝑎

𝑏

𝑎
; 

if 𝑓 is increasing and positive, then there exists an 𝑥0 ∈ [𝑎, 𝑏] such that 

∫ 𝑓(𝑥)𝑔(𝑥)𝑑𝑥 = 𝑓(𝑏) ∫ 𝑔(𝑥)𝑑𝑥
𝑏

𝑥0

𝑏

𝑎
. 

 

 

 

 

 
537 Ibid. 
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2.19. NUMERICAL INTEGRATION538 
 

When the integrand 𝑓(𝑥) is known only at certain points (e.g., those obtained by 

sampling), or when a formula for the integrand is known, but it is difficult or impossible to 

find an antiderivative that is an elementary function, we may use numerical methods of 

integration, that is, approximate formulas for definite integrals. The simplest approximate 

formula for definite integrals is 

 

∫ 𝑓(𝑥)𝑑𝑥 ≈
1

2

𝑏

𝑎
(𝑏 − 𝑎)[𝑓(𝑎) + 𝑓(𝑏)], 

 

which is exact when 𝑓(𝑥) is linear. However, a much better approximate formula for definite 

integrals is 

 

∫ 𝑓(𝑥)𝑑𝑥 ≈
1

6

𝑏

𝑎
(𝑏 − 𝑎) [𝑓(𝑎) + 4𝑓 (

𝑎+𝑏

2
) + 𝑓(𝑏)],   (∗) 

 

which is known as “Simpson’s Rule” (named after the eighteenth-century British 

mathematician Thomas Simpson, who formulated it, but, before him, Johannes Kepler had 

already used similar formulas, and, for this reason, “Simpson’s Rule” is sometimes called 

“Kepler’s Rule”). Formula (∗) derives from the observation that, if 𝑝(𝑥) = 𝐴𝑥2 + 𝐵𝑥 + 𝐶, 

then ∫ 𝑝(𝑥)
𝑏

𝑎
𝑑𝑥 =

𝑏−𝑎

6
[𝑝(𝑎) + 4𝑝 (

𝑎+𝑏

2
) + 𝑝(𝑏)], and it is used in order to approximate any 

integral ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
, where 𝑓 is an arbitrary function, and not necessarily a quadratic 

polynomial. 

 

 

2.20. APPLICATIONS OF INTEGRATION AND BASIC PRINCIPLES  

OF DIFFERENTIAL EQUATIONS539 
 

In this section, we shall study some of the most important applications of the definite 

integral.  

 

2.20.1. The Calculation of Areas Using Integrals 

 

Let 𝑓 be a non-negative, continuous function defined on the interval [𝑎, 𝑏], and let 𝐴 

denote the set of the points (𝑥, 𝑦) such that  

 

0 ≤ 𝑦 ≤ 𝑓(𝑥) and 𝑎 ≤ 𝑥 ≤ 𝑏, 

 

that is, 𝐴 is the plane region that is bounded by the straight lines 𝑥 = 𝑎 and 𝑥 = 𝑏, the 𝑥-axis 

(𝑦 = 0), and the curve whose equation is 𝑦 = 𝑓(𝑥). As we have already shown in sections 

2.11 and 2.18, the area of 𝐴 is  

 
538 Ibid. 
539 Ibid. 
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𝐴 = ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
. 

 

Moreover, it can be easily verified that, if 𝑦 is a continuous function of 𝑥 on the interval 

[𝑎, 𝑏] where 𝑥 = 𝑔(𝑡) and 𝑦 = 𝑓(𝑡), then the area of the plane region 𝐴 that is determined by 

a function defined in a parametric form is 

 

𝐴 = ∫ 𝑦𝑑𝑥 = ∫ 𝑓(𝑡)𝑔′
𝑡2
𝑡1

𝑏

𝑎
(𝑡)𝑑𝑡, 

 

provided that 𝑔(𝑡1) = 𝑎 and 𝑔(𝑡2) = 𝑏 and that 𝑔′ and 𝑓 are continuous on [𝑡1, 𝑡2]. 
 

 

2.20.2. The Calculation of the Area between two Arbitrary Curves 

 

In the first case, we want to determine the area 𝐴 between the equations 𝑦 = 𝑓(𝑥) and 

𝑦 = 𝑔(𝑥) over the interval [𝑎, 𝑏] under the assumption that 𝑓(𝑥) ≥ 𝑔(𝑥), meaning that the 

graph of 𝑓(𝑥) is above the graph of 𝑔(𝑥). Then 

 

𝐴 = ∫ [(𝑢𝑝𝑝𝑒𝑟 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛) − (𝑙𝑜𝑤𝑒𝑟 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛)]𝑑𝑥 = ∫ [𝑓(𝑥) − 𝑔(𝑥)]
𝑏

𝑎
𝑑𝑥

𝑏

𝑎
, 

 

where 𝑎 ≤ 𝑥 ≤ 𝑏. 

In the second case, we want to determine the area 𝐴 between the equations 𝑥 = 𝑓(𝑦) and 

𝑥 = 𝑔(𝑦) over the interval [𝑐, 𝑑] under the assumption that 𝑓(𝑦) ≥ 𝑔(𝑦), namely, 𝑥 = 𝑓(𝑦) 

is on the right-hand side of 𝑥 = 𝑔(𝑦). Then 

 

𝐴 = ∫ [(𝑟𝑖𝑔ℎ𝑡 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛) − (𝑙𝑒𝑓𝑡 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛)]𝑑𝑦
𝑑

𝑐
= ∫ [𝑓(𝑦) − 𝑔(𝑦)]

𝑑

𝑐
𝑑𝑦, 

 

where 𝑐 ≤ 𝑦 ≤ 𝑑. 

 

Examples: 

 

i. The area of a triangle: A triangle consists of tree lines connecting the three vertices. 

In order to find the area bounded by these three lines, we must find the equations of 

these three lines and integrate their differences. For instance, in order to find the area 

of the triangle with vertices (0,0), (1,1), and (2,0), we notice that it consists of the 

following three lines: 𝑦 = 0, 𝑦 = 𝑥, and 𝑦 = 2 − 𝑥, as shown in Figure 2.38. 

For the left half of the triangle (i.e., between the points 𝑥 = 0 and 𝑥 = 1), we 

need to find the area between 𝑦 = 𝑥 and 𝑦 = 0. For the right half of the triangle (i.e., 

between the points 𝑥 = 1 and 𝑥 = 2), we need to find the area between 𝑦 = 2 − 𝑥 

and 𝑦 = 0. Hence, finally, we compute 

𝐴(𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒) = 𝐴(𝑙𝑒𝑓𝑡 ℎ𝑎𝑙𝑓) + 𝐴(𝑟𝑖𝑔ℎ𝑡 ℎ𝑎𝑙𝑓), namely: 

∫ (𝑥 − 0)
1

0
𝑑𝑥 + ∫ [(2 − 𝑥) − 0]

2

1
𝑑𝑥 = 1 𝑠𝑞𝑢𝑎𝑟𝑒 𝑢𝑛𝑖𝑡. 

ii. The area of a square: If 𝑎 is the length of the side of the square, then the area of the 

square is given by 𝐴(𝑠𝑞𝑢𝑎𝑟𝑒) = ∫ 𝑎𝑑𝑥 = 𝑎𝑥|0
𝑎𝑎

0
= 𝑎2. 
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Figure 2.38. The Area of a Triangle. 

iii. The area of a circle: The equation of a circle centered at the origin (0,0) with radius 

𝑟 is 𝑥2 + 𝑦2 = 𝑟2. Hence, 𝑦 = √𝑟2 − 𝑥2, which is the equation of the upper half of 

the circle, and, therefore, we must multiply it by 2, and then integrate it to obtain 

𝐴 = 2∫ √𝑟2 − 𝑥2𝑑𝑥
𝑟

−𝑟
. 

If we factor out an 𝑟2from the square root, then we obtain 

𝐴 = 2𝑟 ∫ √1 −
𝑥2

𝑟2
𝑟

−𝑟
𝑑𝑥. 

Let us set 
𝑥

𝑟
= 𝑠𝑖𝑛𝑢 (which is plausible, because, inside the circle, 𝑥 ≤ 𝑟 ⇔

𝑥

𝑟
≤

1), so that 
1

𝑟
𝑑𝑥 = 𝑐𝑜𝑠𝑢𝑑𝑢 and 𝑑𝑥 = 𝑟𝑐𝑜𝑠𝑢𝑑𝑢. Then 

𝐴 = 2𝑟 ∫ (√1 − 𝑠𝑖𝑛2𝑢)(𝑟𝑐𝑜𝑠𝑢)
𝑥=𝑟

𝑥=−𝑟
𝑑𝑢 = 2𝑟2 ∫ (√𝑐𝑜𝑠2𝑢)(𝑐𝑜𝑠𝑢)

𝑥=𝑟

𝑥=−𝑟
𝑑𝑢 =

2𝑟2 ∫ 𝑐𝑜𝑠2𝑢
𝑥=𝑟

𝑥=−𝑟
𝑑𝑢. 

When 𝑥 = −𝑟, it holds that 
𝑥

𝑟
= −1 = 𝑠𝑖𝑛𝑢 ⇒ 𝑢 = −

𝜋

2
. 

When 𝑥 = 𝑟, it holds that 
𝑥

𝑟
= 1 = 𝑠𝑖𝑛𝑢 ⇒ 𝑢 =

𝜋

2
. 

Hence, 𝐴 = 2𝑟2 ∫ 𝑐𝑜𝑠2𝑢𝑑𝑢 =
𝜋

2

−
𝜋

2

2𝑟2 (
𝑢

2
+
𝑠𝑖𝑛2𝑢

4
) |
−
𝜋

2

𝜋

2 = 2𝑟2 [(
𝜋

4
+ 𝑠𝑖𝑛

𝜋

4
) −

(−
𝜋

4
+
𝑠𝑖𝑛3𝜋

4
)]. Because 𝑠𝑖𝑛𝜋 = 0 = 𝑠𝑖𝑛3𝜋, we obtain the area of the circle: 𝐴 =

2𝑟2 (
𝜋

2
) = 𝜋𝑟2.  

 

2.20.3. The Calculation of the Volume of a Solid of Revolution 

 

In order to obtain a solid of revolution, we start out with a curve 𝑦 = 𝑓(𝑥)on an interval 

[𝑎, 𝑏], as shown, for instance, in Figure 2.39, and then we rotate this curve (360ο) about a 

given axis, so that a volume is generated, as shown, for instance, in Figure 2.40.  

In order to determine the volume of a solid of revolution on the interval [𝑎, 𝑏], we work 

as follows: We divide the interval [𝑎, 𝑏] into 𝑛 subintervals, each of which has width 𝛥𝑥 =
𝑏−𝑎

𝑛
, and then we choose a point 𝑥𝑘

∗ (where 𝑘 = 1,2,… , 𝑛) from each subinterval. When we 

want to determine the area between two curves, we approximate the area by using rectangles 

on each subinterval, but, understandably, when we want to compute the volume of a solid of 

revolution, we use disks on each subinterval to approximate the area. The area of the face of 

each disk is given by 𝐴(𝑥𝑘
∗), and the volume of each disk is given by 𝑉𝑘 = 𝐴(𝑥𝑘

∗)𝛥𝑥. Hence, 
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the volume of the corresponding solid of revolution on the interval [𝑎, 𝑏] can be approximated 

by 𝑉 ≈ ∑ 𝐴(𝑥𝑘
∗)𝛥𝑥𝑛

𝑘=1 , and, then, its exact volume is  

 

 

Figure 2.39. A Curve. 

 

Figure 2.40. A Solid of Revolution. 

𝑉 = 𝑙𝑖𝑚𝑛→∞∑ 𝐴(𝑥𝑘
∗)𝛥𝑥 = ∫ 𝐴(𝑥)𝑑𝑥

𝑏

𝑎
𝑛
𝑘=1 , 

 

where 𝑎 ≤ 𝑥 ≤ 𝑏. In other words, in this case, the volume is the integral of the cross-sectional 

area 𝐴(𝑥) at any 𝑥, and 𝑥 ∈ [𝑎, 𝑏]. Given that 𝐴 = 𝜋𝑟2, 𝑟 = 𝑓(𝑥), and 𝑓(𝑥) is a non-negative 

continuous function from [𝑎, 𝑏] to ℝ, the volume of the solid generated by a region under 𝑦 =

𝑓(𝑥) bounded by the 𝑥-axis and the vertical lines 𝑥 = 𝑎 and 𝑥 = 𝑏 via revolution about the 𝑥-

axis is   

 

𝑉 = 𝜋 ∫ [𝑓(𝑥)]2
𝑏

𝑎
𝑑𝑥; 

 

we take disks with respect to 𝑥, and 𝑟 = 𝑦 = 𝑓(𝑥); 𝑑𝑥 indicates that the area is rotated about 

the 𝑥-axis. 

If we rotate a curve about the 𝑦-axis, thus obtaining a cross-sectional area that is a 

function of 𝑦 instead of 𝑥, then the aforementioned formula becomes 
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𝑉 = ∫ 𝐴(𝑦)𝑑𝑦
𝑑

𝑐
, 

 

where 𝑐 ≤ 𝑦 ≤ 𝑑. Given that, in this case, 𝐴 = 𝜋𝑟2, and 𝑟 = 𝑓(𝑦), the volume of the solid 

generated by a region under 𝑥 = 𝑓(𝑦) bounded by the 𝑦-axis and the horizontal lines 𝑦 = 𝑐 

and 𝑦 = 𝑑, via revolution about the 𝑦-axis is 

 

𝑉 = 𝜋 ∫ [𝑓(𝑦)]2
𝑑

𝑐
𝑑𝑦; 

 

we take disks with respect to 𝑦, and 𝑟 = 𝑥 = 𝑓(𝑦); 𝑑𝑦 indicates that the area is rotated about 

the 𝑦-axis. 

If we have two curves 𝑦1 and 𝑦2 that enclose some area, and we rotate that area about the 

𝑥-axis, then the volume of the solid formed is given by 

 

𝑉 = 𝜋 ∫ [(𝑦2)
2 − (𝑦1)

2]
𝑏

𝑎
𝑑𝑥. 

 

Examples: 

 

i. The volume of a sphere: A sphere of radius 𝑟 centered at the origin (0,0,0) can be 

generated by revolving the upper semicircular disk enclosed between the 𝑥-axis and 

𝑥2 + 𝑦2 = 𝑟2 about the 𝑥-axis. Given that the upper half of this circle is the graph of 

𝑦 = 𝑓(𝑥) = √𝑟2 − 𝑥2, the volume of the corresponding sphere is 𝑉 =

𝜋∫ [𝑓(𝑥)]2
𝑏

𝑎
𝑑𝑥 = 𝜋∫ (𝑟2 − 𝑥2)𝑑𝑥 = 𝜋 (𝑟2𝑥 −

𝑥3

3
)

𝑟

−𝑟
|−𝑟
𝑟 =

4

3
𝜋𝑟3. 

ii. The volume of a cone: A cone with base radius 𝑟 and height ℎ can be formed by 

rotating a straight line through the origin (0,0,0) about the 𝑥-axis. The slope of the 

straight line is 𝑡𝑎𝑛𝜃 =
𝑟

ℎ
, so that the equation of the line is 𝑦 =

𝑟

ℎ
𝑥, and the limits of 

integration are 𝑥 = 0 and 𝑥 = ℎ. Therefore,  

𝑉 = 𝜋 ∫ (
𝑟

ℎ
𝑥)

2
𝑑𝑥 =

𝜋𝑟2

ℎ2
ℎ

0
(
𝑥3

3
) |0
ℎ =

1

3
𝜋𝑟2ℎ. 

iii. The volume of a cylinder with base radius 𝑟 and height ℎ (assuming that the plane 

𝑥𝑂𝑦 is the cylinder’s base plane) is 𝑉 = 𝜋 ∫ 𝑟2𝑑𝑥 =
ℎ

0
𝜋𝑟2ℎ. 

 

 

2.20.4. The Arc Length of a Curve540 

 

Let us consider a curve 𝛾 defined by the parametric equations  

 

𝑥 = 𝑔(𝑡) and 𝑦 = 𝑓(𝑡), where 𝑡 ∈ [𝑎, 𝑏], 

 

as shown, for instance, in Figure 2.41, and let 𝑃 = {𝑡0, 𝑡1, … , 𝑡𝑛} be a partition of [𝑎, 𝑏].  

 

 
540 Ibid. 
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Figure 2.41. The Arc Length of a Curve. 

Let 𝐴𝑘 = [𝑔(𝑡𝑘), 𝑓(𝑡𝑘)], where 𝑘 = 1,2,… , 𝑛, be the corresponding points of 𝛾, as 

shown in Figure 2.41. Then these points define a polygonal line. The sum  

 

𝐿𝑃 =∑√[𝑔(𝑡𝑖) − 𝑔(𝑡𝑖−1)]2 + [𝑓(𝑡𝑖) − 𝑓(𝑡𝑖−1)]2
𝑛

𝑖=1

 

 

is the length of the polygonal line that is defined by the points 𝐴𝑘 (corresponding to a 

partition 𝑃); and the finer the partition 𝑃, the more the corresponding polygonal line tends to 

be identified with the curve 𝛾. Now, let us consider the set 𝐿 of all numbers 𝐿𝑃, which 

correspond to all possible partitions 𝑃 of [𝑎, 𝑏], symbolically, 𝐿 =
{𝐿𝑃|𝑃 𝑖𝑠 𝑎 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 𝑜𝑓 [𝑎, 𝑏]}. If this set 𝐿 is bounded, then the curve is said to be 

“alignable,” and the supremum 𝑆 = 𝐿(𝛾) of this set is said to be the length of the curve 𝛾. 

Moreover, we write 𝑆 = 𝐿𝑎
𝑏 (𝛾) in order to denote the length of the arc of the curve that is 

defined on the interval [𝑎, 𝑏].  

Notice that, if 𝛾 is an alignable curve on [𝑎, 𝑏], and if 𝑎 < 𝑐 < 𝑏, then 

 

𝐿𝑎
𝑏 (𝛾) = 𝐿𝑎

𝑐 (𝛾) + 𝐿𝑐
𝑏(𝛾). 

 

If the derivatives 𝑔′ and 𝑓′ are continuous on [𝑎, 𝑏], then the curve 𝛾 is alignable on 

[𝑎, 𝑏], and its length is given by 

 

𝑆 = 𝐿(𝛾) = ∫ √[𝑔′(𝑡)]2 + [𝑓′(𝑡)]2
𝑏

𝑎
𝑑𝑡, 

 

where 𝑡 ∈ [𝑎, 𝑏]. If 𝛾 is defined by 𝑦 = 𝑓(𝑥), where 𝑥 ∈ [𝑎, 𝑏], and if the derivative 𝑓′(𝑥) 

exists and is continuous on [𝑎, 𝑏], then, setting 𝑥 = 𝑡 and 𝑦 = 𝑓(𝑡) in the aforementioned 

equation, we obtain the following formula: 

 

𝑆 = ∫ √1 + [𝑓′(𝑥)]2𝑑𝑥
𝑏

𝑎
, 

 

where 𝑥 ∈ [𝑎, 𝑏]. If 𝛾 is defined in polar coordinates, that is, by 𝑟 = 𝑟(𝜃), then  

 

𝑆 = ∫ √𝑟2(𝜃) + [𝑟′(𝜃)]2
𝜃2
𝜃1

𝑑𝜃, 
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where 𝜃 ∈ [𝜃1, 𝜃2]. 

 

Examples: 

 

i. Let us calculate the length of a curve 𝛾 whose parametric equations are 𝑥 = 𝑎𝑐𝑜𝑠𝜔𝑡, 

𝑦 = 𝑎𝑠𝑖𝑛𝜔𝑡, and 𝑧 = 𝑏𝑡, where 𝑎 > 0, on the interval [0,2𝜋]. Notice that this curve 

is known as the circular helix (i.e., one with constant radius), and it represents the 

orbit of a particle that performs a uniform circular motion with an angular speed 𝜔 

and radius 𝑎, while the circle performs a uniform linear motion with a speed 𝑏. Then 

𝑆 = 𝐿(𝛾) = ∫ √(
𝑑𝑥

𝑑𝑡
)
2
+ (

𝑑𝑦

𝑑𝑡
)
2
+ (

𝑑𝑧

𝑑𝑡
)
2
𝑑𝑡

2𝜋

0
=

∫ √[𝑎𝜔(−𝑠𝑖𝑛𝜔𝑡)]2 + (𝑎𝜔𝑐𝑜𝑠𝜔𝑡)2 + 𝑏2
2𝜋

0
𝑑𝑡 = ∫ √𝑎2𝜔2 + 𝑏2

2𝜋

0
𝑑𝑡 =

√𝑎2𝜔2 + 𝑏2 ∫ 𝑑𝑡 = 2𝜋
2𝜋

0
√𝑎2𝜔2 + 𝑏2. 

ii. We can calculate the length of a circle 𝑐 defined by 𝑥2 + 𝑦2 = 𝑎2, where 𝑎 > 0 is 

the radius, using the formula 𝐿(𝑐) = ∫ √(
𝑑𝑋

𝑑𝜃
)
2
+ (

𝑑𝑌

𝑑𝜃
)
22𝜋

0
𝑑𝜃, where 𝑋 = 𝑎𝑐𝑜𝑠𝜃 and 

𝑌 = 𝑎𝑠𝑖𝑛𝜃, so that 
𝑑𝑋

𝑑𝜃
= −𝑎𝑠𝑖𝑛𝜃, and 

𝑑𝑌

𝑑𝜃
= 𝑎𝑐𝑜𝑠𝜃. Hence, 𝐿(𝑐) =

∫ √𝑎2𝑐𝑜𝑠2𝜃 + 𝑎2𝑠𝑖𝑛2𝜃
2𝜋

0
𝑑𝜃, and, because 𝑐𝑜𝑠2𝜃 + 𝑠𝑖𝑛2𝜃 = 1, we obtain 𝐿(𝑐) =

∫ 𝑎𝑑𝜃 = 𝑎𝜃|0
2𝜋 = 2𝜋𝑎

2𝜋

0
. 

 

 

2.20.5. Work 

 

The work that a constant force, 𝐹, does when moving an object over a distance equal to 

𝛥𝑥 along a straight line is 𝑊 = 𝐹𝛥𝑥. However, the force may vary in both magnitude and 

direction. In case of a variable force, 𝐹(𝑥), in the direction of motion, the formula of work is 

𝑊 = ∫ 𝐹(𝑥)𝑑𝑥
𝑏

𝑎
 (assuming a displacement from point 𝑎 to point 𝑏), and, in case of a variable 

force in a variable direction, the formula of work is = ∫ 𝐹(𝑥)𝑐𝑜𝑠𝜃𝑑𝑥
𝑏

𝑎
.  

 

 

2.20.6. Some Basic Applications of Integral Calculus to Economics541 

 

In economics, “marginal revenue” (𝑀𝑅) is the additional revenue gained by producing 

one more unit of an economic good or a service. Therefore, it can de defined as the derivative 

of “total revenue” (𝑇𝑅) with respect to the quantity of sales (𝑄), symbolically, 𝑀𝑅 =
𝑑𝑇𝑅

𝑑𝑄
. 

Hence, given a marginal revenue function 𝑀𝑅(𝑄), the total revenue is given by 𝑇𝑅(𝑄) =

∫𝑀𝑅(𝑄)𝑑𝑄, where integration is carried out over a certain interval of sales quantity 𝑄. 

Moreover, “marginal cost” (𝑀𝐶) denotes the additional cost of producing one extra unit of 

output, and, therefore, it can be defined as the derivative of “total cost” (𝑇𝐶) with respect to 

 
541 See: Lovell, Economics with Calculus. 



Dr. Nicolas Laos, The Dialectic of Rational Dynamicity 380 

output quantity 𝑄, symbolically, 𝑀𝐶 =
𝑑𝑇𝐶

𝑑𝑄
. Hence, given a marginal cost function 𝑀𝐶(𝑄), 

the total cost is given by 𝑇𝐶(𝑄) = ∫𝑀𝐶(𝑄)𝑑𝑄, where integration is carried out over a 

certain interval of output quantity Q. 

Given that “total profit” (𝑇𝑃) is defined as 𝑇𝑃 = 𝑇𝑅 − 𝑇𝐶, the equation of “marginal 

profit” (𝑀𝑃) is 𝑀𝑃 = 𝑀𝑅 −𝑀𝐶 ⇒
𝑑𝑇𝑃

𝑑𝑄
=

𝑑𝑇𝑅

𝑑𝑄
−
𝑑𝑇𝐶

𝑑𝑄
. 

Let 𝐼(𝑡) denote the rate of investment flow (as a function of time, 𝑡). If 𝐾(𝑡) denotes the 

“capital stock” at time 𝑡, then  

 
𝑑𝐾(𝑡)

𝑑𝑡
= 𝐼(𝑡).  

 

Moreover, notice that an increase in 𝐼(𝑡) raises the rate of income flow 𝑌(𝑡) as follows: 

 
𝑑𝑌(𝑡)

𝑑𝑡
=

1

𝑠
∙
𝑑𝐼(𝑡)

𝑑𝑡
, 

 

where 𝑠 is a constant standing for the marginal propensity to save.  

The “total capital stock” 𝐾(𝑡) during the time interval [𝑎, 𝑏] is given by 

 

𝐾(𝑡) = ∫ 𝐼(𝑡)𝑑𝑡
𝑏

𝑎
. 

 

 

2.20.7. A Social Utility Model and Optimal Control 

 

The “social utility” to nation 𝑋 at any point in time 𝑡|(𝑈𝑋𝑡) is assumed to depend on both 

consumption 𝐶𝑋 and on infrastructure spending 𝐼𝑋, so that 

 

𝑈𝑋𝑡 = 𝑢(𝐶𝑋, 𝐼𝑋). 

 

The objective for nation 𝑋 is to maximize a welfare function (integral) that gives the 

discounted present value of all future utility levels: 

 

𝑈𝑋
∗ = ∫ 𝑒−𝑟𝑡𝑢(𝐶𝑋, 𝐼𝑋)𝑑𝑡

∞

0
. 

 

Hence, in this case, the welfare of nation 𝑋, namely, 𝑈𝑋
∗, is obtained by adding 

(integrating) the contributions to welfare at each instant of time over all the time periods from 

the present, 𝑡 = 0.542 

The welfare integral is maximized by the choice of an additional investment in 

infrastructure, 𝑍𝑋, and the level of consumption, 𝐶𝑋, under the constraints 

 

{
𝑀𝑋
′ = 𝑍𝑋 − 𝜆𝑋𝑀𝑋
𝑃𝑋 = 𝐶𝑋 + 𝑍𝑋

}, 

 

 
542 See: Athans and Falb, Optimal Control. 
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where: 𝑀𝑋
′  represents the rate of change in the infrastructure of nation 𝑋 (i.e., we take the first 

derivative); the first constraint says that the increase in 𝑋’s infrastructure is equal to its gross 

investment in new infrastructure, denoted by 𝑍𝑋, minus the cost of operating its old 

infrastructure, denoted by 𝜆𝑋𝑀𝑋; and the second constraint says that the gross national 

product, denoted by 𝑃𝑋, is divided between consumption, 𝐶𝑋, and the additional investment in 

infrastructure, 𝑍𝑋.  

 

 

2.20.8. Integration and Ordinary Differential Equations543 

 

The Fundamental Theorem of Infinitesimal Calculus is a rigorous explanation of the 

dialectical relationship between integration and differentiation, and, thus, it is a major 

underpinning of the theory of differential equations.  

By the term “ordinary differential equation,” we refer to any equation that contains an 

unknown function, some of its derivatives, and an independent variable. The “order” of a 

differential equation is the order of the highest ordered derivative occurring in the given 

differential equation. The fundamental problem of the theory of differential equations is to 

find all of the functions 𝑦 = 𝑓(𝑥) that satisfy some differential equation. Every function 𝑦 =

𝑓(𝑥) that satisfies some differential equation is said to be a “solution” of the given differential 

equation.  

A family of functions 

 

𝑦 = 𝑓(𝑥, 𝑐)  (∗) 

 

where 𝑐 is a constant belonging to 𝐴 ⊆ ℝ, is said to be a “general solution” of a differential 

equation 

 

𝑦′ = 𝐹(𝑥, 𝑦)  (∗∗) 

 

if, for every 𝑐 ∈ 𝐴, (∗) is a solution of (∗∗). The solution that we obtain for each particular 

value of 𝑐 is said to be a “partial solution” of the differential equation (∗∗). 

The theory of differential equations is a branch of mathematics in which the study of 

theoretical problems can hardly be distinguished from the study of practical problems, and 

dynamicity, which is a major characteristic of modern mathematics, is clearly manifested. 

Moreover, the theory of differential equations has played an important role in the transition 

from the eighteenth-century infinitesimal calculus to advanced mathematical analysis and 

modern geometry. One of the major advantages of differential equations is that they constitute 

one of the major underpinnings and instruments of the “mathematization” (i.e., of the 

“mathematical modelling”) of many problems both in the context of the natural sciences and 

in the context of the social sciences.  

 

 
543 See: Ayres, Theory and Problems of Differential Equations; Borzì, Modelling with Ordinary Differential 

Equations; Derrick and Grossman, Introduction to Differential Equations with Boundary Value Problems; 

Hochstadt, Differential Equations; Imhoff, Differential Equations in 24 Hours; Simmons, Differential Equations 

with Applications and Historical Notes.  
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Example: If 𝑠(𝑡) gives the position of a moving particle as a function of time, then 

velocity, 𝑣(𝑡), is given by the formula 

 

𝑠′(𝑡) =
𝑑𝑠(𝑡)

𝑑𝑡
= 𝑣(𝑡), 

 

and acceleration, 𝑎(𝑡), is given by the formula  

 

𝑣′(𝑡) =
𝑑𝑣(𝑡)

𝑑𝑡
= 𝑎(𝑡).  

 

Suppose that we wish to study the motion of an object of mass 𝑚 that is in free fall in 

vacuum (this hypothesis is a simplification of physical reality in order to facilitate the 

mathematization of this problem, which can easily lead to generalizations that, under certain 

conditions, provide satisfactory approximations of the actual state of affairs). Moreover, for 

reasons of simplicity, we shall assume that the orbit of the object’s fall is so small in 

comparison with the radius of the Earth that (without a significant error in the conclusion) we 

can suppose that the object’s weight (i.e., the force acting on it due to gravity) is constant. 

Then the object’s acceleration is constant, too, and it is denoted by 𝑔 (𝑔 is said to be the 

“gravitational acceleration,” namely, the free fall acceleration of an object in vacuum; 𝑔 ≈

9.80 𝑚/𝑠𝑒𝑐2). In view of the foregoing, we have: 

 

𝑣′(𝑡) = −𝑔 (the negative sign indicates that the object’s motion is accelerating 

downward), and 

∫𝑣′(𝑡)𝑑𝑡 = ∫(−𝑔)𝑑𝑡 ⇒ 𝑣(𝑡) = −𝑔𝑡 + 𝑐1, where 𝑐1 is a constant. 

 

The last equation gives the value of velocity if we know the constant 𝑐1. Furthermore, we 

obtain: 

 

𝑠′(𝑡) = 𝑣(𝑡) ⇒ ∫𝑠′(𝑡)𝑑𝑡 =∫(−𝑔𝑡 + 𝑐1) 𝑑𝑡 ⇒ 𝑠(𝑡) = −
1

2
𝑔𝑡2 + 𝑐1𝑡 + 𝑐2, where 𝑐2 is a 

constant. 

 

Hence, we can determine displacement, too, provided that we know 𝑐2. In general, 

constants are determinable quantities. 

In physics, constants are functions of the initial conditions of the phenomenon under 

investigation. For instance, in the aforementioned phenomenon of free fall in vacuum, we 

must take into consideration whether the object was left to fall, in which case its initial 

velocity is 𝑣0 = 0, or whether it was given a non-zero initial velocity 𝑣0 = 𝑣(𝑡0). In any case, 

applying the formula of velocity for 𝑡0 = 0, we obtain 𝑣(𝑡0) = −𝑔0+ 𝑐1 ⇒ 𝑐1 = 𝑣0, and, 

therefore, 𝑣(𝑡) = −𝑔𝑡 + 𝑣0. By analogy, regarding displacement, we have: 𝑠(𝑡0) =

−
1

2
𝑔02 + 𝑐10 + 𝑐2, and, therefore, setting 𝑠(𝑡0) = 𝑠0, we obtain 𝑠(𝑡) = −

1

2
𝑔𝑡2 + 𝑣0𝑡 + 𝑠0, 

which is the formula of “uniformly accelerated motion.”  

The aforementioned results are based on the hypothesis that we study motion in vacuum. 

If, however, we decide to take account of the resistance of the Earth’s atmosphere during the 

object’s fall, then we must modify the aforementioned model as follows: we assume that a 
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force due to the resistance of the Earth’s atmosphere is applied on the moving object in the 

direction opposite to the object’s motion (for which reason this force has a negative sign), and 

that this force is proportional to the moving object’s speed. In other words, for a suitable 𝑘 >

0, this force is equal to −𝑘𝑣(𝑡). Then we assume that the total force that is applied on the 

moving body is −𝑚𝑔 − 𝑘𝑣(𝑡), that is, weight and air resistance. Consequently, according to 

Newton’s Second Law of Motion (i.e., 𝐹𝑜𝑟𝑐𝑒 = 𝑀𝑎𝑠𝑠 × 𝐴𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛), we obtain the linear 

differential equation 

 

−𝑚𝑔 − 𝑘𝑣(𝑡) = 𝑚𝑣′(𝑡) ⇒ 𝑣′(𝑡) +
𝑘

𝑚
𝑣(𝑡) + 𝑔 = 0, 

 

so that, in this case, we must solve the given linear differential equation in order to find 𝑣.  

 

Separation of Variables544: If a differential equation may be written in the form 

 
𝑑𝑦

𝑑𝑥
= 𝑓(𝑥)𝑔(𝑦), 

 

then it is said to be solvable by “separation of variables” as follows: 

 

∫
𝑑𝑦

𝑔(𝑦)
=∫𝑓(𝑥)𝑑𝑥. 

 

Remark: In case we have a differential equation of the form 

 

𝑦(𝑛) = 𝑓(𝑥) ⇔
𝑑𝑛𝑦

𝑑𝑥𝑛
= 𝑓(𝑥),   (1) 

 

then, by integrating (1), we obtain 

 
𝑑𝑛−1𝑦

𝑑𝑥𝑛−1
= ∫𝑓(𝑥)𝑑𝑥 + 𝑐1.   (2) 

 

By setting ∫𝑓(𝑥)𝑑𝑥 = 𝑓1 (𝑥) and then integrating (2), we obtain 

 
𝑑𝑛−2𝑦

𝑑𝑥𝑛−2
= ∫𝑓1(𝑥)𝑑𝑥 + 𝑐1 𝑥 + 𝑐2.   (3) 

 

Repeating the same process, we obtain the general solution of (1), which is of the form 

𝑦 = 𝑤(𝑥) +
𝑐1

(𝑛−1)!
𝑥𝑛−1 +

𝑐2

(𝑛−2)!
𝑥𝑛−2 +⋯+ 𝑐𝑛, 

 

meaning that the general solution of 𝑦(𝑛) = 𝑓(𝑥) can be obtained through 𝑛 successive 

integrations. 

For instance, let us find the general solution of the differential equation 𝑥2𝑑𝑦 − 𝑦𝑑𝑥 = 0 

as well as its partial solution that satisfies the condition 𝑦(2) = 4 (i.e., the integral curve that 

passes through the point 𝑃(2,4)). We shall apply the method of separation of variables: 

 
544 Ibid.  
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𝑥2𝑑𝑦 − 𝑦𝑑𝑥 = 0 ⇒
𝑑𝑦

𝑦
=

𝑑𝑥

𝑥2
⇒

𝑑𝑦

𝑦
= 𝑥−2𝑑𝑥 ⇒ ∫

𝑑𝑦

𝑦
= ∫𝑥−2𝑑𝑥 ⇒ 𝑙𝑛𝑦 =

𝑥−1

−1
+ 𝑐 ⇒

𝑙𝑛𝑦 = −
1

𝑥
+ 𝑐 ⇒ 𝑦 = 𝑒−

1

𝑥
+𝑐 ⇒ 𝑦 = 𝑒𝑐𝑒−

1

𝑥 ⇒ 𝑦 = 𝑘𝑒−
1

𝑥, which is the general solution of the 

given differential equation. In order to find the partial solution for which 𝑥 = 2 ⇒ 𝑦 = 4 (i.e., 

the integral curve that passes through the point 𝑃(2,4)), we must determine the constant 𝑘. If 

we substitute 𝑥 = 2 and 𝑦 = 4 into the general solution, then we obtain 4 = 𝑘𝑒−
1

2 ⇒ 𝑘 =

4𝑒
1

2 = 4√𝑒. Hence, if we substitute this value of 𝑘 into the general solution, then we shall 

obtain the required partial solution, namely, 𝑦 = 4√𝑒𝑒
−
1

𝑥. 

 

Homogeneous Differential Equations545: A differential equation is said to be 

“homogeneous” if it may be written in the form 

 

𝑓(𝑥, 𝑦)𝑑𝑥 + 𝑔(𝑥, 𝑦)𝑑𝑦 = 0,   (1) 

 

where the functions 𝑓(𝑥, 𝑦) and 𝑔(𝑥, 𝑦) are homogeneous with respect to 𝑥 and 𝑦 of the same 

degree of homogeneity, meaning that  

 

𝑓(𝑥, 𝑦) may be written in the form 𝑥𝑚𝐴(
𝑦

𝑥
) and   (2) 

 

𝑔(𝑥, 𝑦) may be written in the form 𝑥𝑚𝐵 (
𝑦

𝑥
).   (3) 

 

Thus, due to (2) and (3), (1) becomes (for 𝑥𝑚 ≠ 0): 

 

𝐴 (
𝑦

𝑥
)𝑑𝑥 + 𝐵 (

𝑦

𝑥
)𝑑𝑦 = 0 ⇒

𝑑𝑦

𝑑𝑥
= −

𝐴(
𝑦

𝑥
)

𝐵(
𝑦

𝑥
)
, 

 

which ultimately reduces to the form  

 
𝑑𝑦

𝑑𝑥
= 𝑓 (

𝑦

𝑥
) ⇔ 𝑦′ = 𝑓 (

𝑦

𝑥
),   (4) 

 

where 𝑓 (
𝑦

𝑥
) is a homogeneous function whose degree of homogeneity is equal to zero. In 

order to find the general solution of (4), we set  
𝑦

𝑥
= 𝑤 ⇔ 𝑦 = 𝑥𝑤  (5) 

 

where 𝑤 is a function of the independent variable 𝑥, that is, 𝑤 = 𝑤(𝑥).  

By differentiating (5), we obtain 

 

𝑑𝑦 = 𝑤𝑑𝑥 + 𝑥𝑑𝑤, 

 

and, after dividing by 𝑑𝑥, we obtain 

 
545 Ibid.  
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𝑑𝑦

𝑑𝑥
= 𝑤 + 𝑥

𝑑𝑤

𝑑𝑥
.   (6) 

 

Therefore, due to (5) and (6), the original differential equation becomes 

 

𝑤 + 𝑥
𝑑𝑤

𝑑𝑥
= 𝑓(𝑤) ⇒ 𝑥

𝑑𝑤

𝑑𝑥
= 𝑓(𝑤) − 𝑤 ⇒

𝑑𝑤

𝑓(𝑤)−𝑤
=

𝑑𝑥

𝑥
.  (7) 

 

The differential equation (7), which is equivalent to (1), can be solved by the method of 

separation of variables. In particular, (7) gives 

 

∫
𝑑𝑤

𝑓(𝑤)−𝑤
= 𝑙𝑛𝑥 + 𝑙𝑛𝑐, or ∫

𝑑𝑤

𝑓(𝑤)−𝑤
= 𝑙𝑛𝑐𝑥, or 𝑐𝑥 = 𝑒

∫
𝑑𝑤

𝑓(𝑤)−𝑤.   (8) 

 

In (8), we have to compute the integral ∫
𝑑𝑤

𝑓(𝑤)−𝑤
 and then to make the substitution 𝑤 =

𝑦

𝑥
 

in order to ultimately find the general solution of (1). 

For instance, let us solve the differential equation (𝑥2 − 𝑦2)𝑑𝑥 + 2𝑥𝑦𝑑𝑦 = 0. This 

differential equation is homogeneous, because the expressions 𝑓(𝑥, 𝑦) = 𝑥2 − 𝑦2 and 

𝑔(𝑥, 𝑦) = 2𝑥𝑦 are homogeneous with respect to 𝑥 and 𝑦, and their degree of homogeneity is 

2. We set 

 
𝑦

𝑥
= 𝑤 ⇔ 𝑦 = 𝑥𝑤  (∗) 

 

where 𝑤 = 𝑤(𝑥). By differentiating (∗) with respect to 𝑥, we obtain 

 

𝑦′ = 𝑤 + 𝑥𝑤′.   (∗∗) 

 

Due to (∗) and (∗∗), the given differential equation becomes 

 

(𝑥2 − 𝑥2𝑤2) + 2𝑥2𝑤(𝑤 + 𝑥𝑤′) = 0 ⇒ 𝑥2(1 − 𝑤2) + 2𝑥2𝑤(𝑤 + 𝑥𝑤′) = 0, and, 

because, by (∗), 𝑥 ≠ 0, we divide the last expression by 𝑥2 to obtain 

 

(1 − 𝑤2) + 2𝑤(𝑤 + 𝑥𝑤′) = 0 ⇒ 1 − 𝑤2 + 2𝑤2 + 2𝑥𝑤
𝑑𝑤

𝑑𝑥
= 0 ⇒ 1+ 𝑤2 + 2𝑥𝑤

𝑑𝑤

𝑑𝑥
=

0 ⇒
2𝑤𝑑

𝑤2+1
= −

𝑑𝑥

𝑥
⇒ ∫

2𝑤𝑑𝑤

𝑤2+1
= −∫

𝑑𝑥

𝑥
⇒ 𝑙𝑛(𝑤2 + 1) = −𝑙𝑛𝑥 + 𝑙𝑛𝑐 ⇒ 𝑙𝑛(𝑤2 +

1) = 𝑙𝑛 (
𝑐

𝑥
) ⇒ 𝑤2 + 1 =

𝑐

𝑥
. 

 

By the substitution 𝑤 =
𝑦

𝑥
, we realize that the general solution of the given differential 

equation is 𝑦2 + 𝑥2 = 𝑐𝑥. 

 

Differential Equations Reducible to Homogeneous Differential Equations546: The 

differential equations of the form  

 

 
546 Ibid. 
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𝑑𝑦

𝑑𝑥
= 𝑓 (

𝑎1𝑥+𝑏1𝑦+𝑐1

𝑎2𝑥+𝑏2𝑦+𝑐2
),   (∗)  

 

where 𝑎1, 𝑏1, 𝑐1, 𝑎2, 𝑏2, 𝑐2 are real constants, are reducible to homogeneous differential 

equations. In order to solve (∗) by reducing it to a homogeneous differential equation, we 

distinguish the following two cases: 

 

Case I: If 
𝑎1

𝑎2
≠

𝑏1

𝑏2
⇔ 𝑎1𝑏2 − 𝑎2𝑏1 ≠ 0, then we can find the general solution of (∗) as 

follows: We solve the system of equations 

 

{
𝑎1𝑥 + 𝑏1𝑦 + 𝑐1 = 0
𝑎2𝑥 + 𝑏2𝑦 + 𝑐2 = 0

}.   (1) 

 

Let (𝑥, 𝑦) = (𝑥0, 𝑦0) be the solution of (1). Then we set 

 

{
𝑥 = 𝑥0 +𝑤
𝑦 = 𝑦0 + 𝑣

},   (2) 

 

and, by differentiating (2), we obtain  

{
𝑑𝑥 = 𝑑𝑤
𝑑𝑦 = 𝑑𝑣

},   (3) 

 

so that, by (2) and (3), the differential equation (∗) becomes  

 
𝑑𝑣

𝑑𝑤
= 𝑓 (

𝑎1(𝑥0+𝑤)+𝑏1(𝑦0+𝑣)+𝑐1

𝑎2(𝑥0+𝑤)+𝑏2(𝑦0+𝑣)+𝑐2
) ⇒

𝑑𝑣

𝑑𝑤
= 𝑓 (

𝑎1𝑥0+𝑏1𝑦0+𝑐1+𝑎1𝑤+𝑏1𝑣

𝑎2𝑥0+𝑏2𝑦0+𝑐2+𝑎2𝑤+𝑏2𝑣
). 

 

But 𝑎1𝑥0 + 𝑏1𝑦0 + 𝑐1 = 0 and 𝑎2𝑥0 + 𝑏2𝑦0 + 𝑐2 = 0, because (𝑥0, 𝑦0) is the solution of 

(1), and, therefore, 

 
𝑑𝑣

𝑑𝑤
= 𝑓 (

𝑎1𝑤+𝑏1𝑣

𝑎2𝑤+𝑏2𝑣
).   (4)  

 

The differential equation (4) is homogeneous with respect to 𝑣 and 𝑤, and, in order to 

find its general solution, we set 
𝑣

𝑤
= 𝑧 ⇔ 𝑣 = 𝑤𝑧, where 𝑧 = 𝑧(𝑤), and we work according 

to the method of solving homogeneous differential equations, which I have already explained. 

When we find the general solution of (4), we set 𝑧 =
𝑣

𝑤
, and then, by (2), 𝑤 = 𝑥 − 𝑥0 and 𝑣 =

𝑦 − 𝑦0 in order to ultimately find the general solution of (∗).  

 

Case II: If 
𝑎1

𝑎2
=

𝑏1

𝑏2
= 𝜆 ⇒ 𝑎1𝑏2 − 𝑎2𝑏1 = 0, then we can find the general solution of (∗) 

as follows: Because 𝑎1 = 𝜆𝑎2 and 𝑏1 = 𝜆𝑏2, (∗) becomes 

 
𝑑𝑦

𝑑𝑥
= 𝑓 (

𝜆(𝑎2𝑥+𝑏2𝑦)+𝑐1

𝑎2𝑥+𝑏2𝑦+𝑐2
).   (5) 
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We set 𝑎2𝑥 + 𝑏2𝑦 = 𝑤, where 𝑤 = 𝑤(𝑥), and, by differentiating (5) with respect to 𝑥, 

we obtain 𝑎2 + 𝑏2𝑦
′ = 𝑤′ ⇔ 𝑦′ =

1

𝑏2
(𝑤′ − 𝑎2), so that (5) becomes 

 
1

𝑏2
(
𝑑𝑤

𝑑𝑥
− 𝑎2) = 𝑓 (

𝜆𝑤+𝑐1

𝑤+𝑐1
).   (6) 

 

The differential equation (6) can be solved by the method of separation of variables. 

When we find the general solution of (6), we set 𝑤 = 𝑎2𝑥 + 𝑏2𝑦. 

 

First-Order Linear Differential Equations547: The general form of these equations is  

 
𝑑𝑦

𝑑𝑥
+ 𝐴𝑦 = 𝐵,   (∗) 

 

 

where 𝐴 and 𝐵 are functions of 𝑥, that is, 𝐴 = 𝐴(𝑥) and 𝐵 = 𝐵(𝑥). The general solution of 

(∗) is  

 

𝑦 = 𝑒−∫𝐴𝑑𝑥(𝑐 + ∫𝐵𝑒∫𝐴𝑑𝑥 𝑑𝑥),  

 

where 𝑐 is an arbitrary constant. 

Proof: If 𝐵 = 0, then (∗) becomes 
𝑑𝑦

𝑑𝑥
+ 𝐴𝑦 = 0, and it is said to be a homogeneous linear 

differential equation, which can be solved by separation of variables: 
𝑑𝑦

𝑦
= −𝐴𝑑𝑥 ⇒

∫
𝑑𝑦

𝑦
= −∫𝐴𝑑𝑥 ⇒ 𝑙𝑛𝑦 = −∫𝐴𝑑𝑥 + 𝑐 ⇒𝑦 = 𝑒−∫𝐴𝑑𝑥+𝑐 = 𝑒𝑐𝑒−∫𝐴𝑑𝑥 = 𝑐𝑒−∫𝐴𝑑𝑥, which is 

the general solution of the aforementioned homogeneous linear differential equation; and, if 

𝑐 = 1, then we obtain its partial solution 𝑦1 = 𝑒
−∫𝐴𝑑𝑥. 

In order to find the general solution of (∗), we consider a new unknown function 𝑧 of 𝑥 

such that  

 

𝑦 = 𝑦1𝑧.   (1) 

 

By differentiating (1) with respect to 𝑥, we obtain 

 

𝑦′ = 𝑦1
′𝑧 + 𝑦1𝑧

′.   (2) 

 

Hence, by (1) and (2), the differential equation (∗) becomes 

 

𝑦1
′𝑧 + 𝑦1𝑧

′ + 𝐴𝑦1
′𝑧 = 𝐵 ⇔ (𝑦1

′ + 𝐴𝑦1)𝑧 + 𝑦1𝑧
′ = 𝐵.  

 

But 𝑦1
′ + 𝐴𝑦1 = 0, since 𝑦1 is a partial solution of 

𝑑𝑦

𝑑𝑥
+ 𝐴𝑦 = 0, and, therefore, 

 

𝑦1𝑧
′ = 𝐵 ⇒ 𝑒−∫𝐴𝑑𝑥𝑧′ = 𝐵 ⇒ 𝑧′ = 𝐵𝑒∫𝐴𝑑𝑥 ⇒ 𝑧 = ∫𝐵𝑒∫𝐴𝑑𝑥𝑑𝑥 + 𝑐. 

 
547 Ibid. 
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Because 𝑦1 = 𝑒
−∫𝐴𝑑𝑥 and 𝑧 = ∫𝐵𝑒∫𝐴𝑑𝑥𝑑𝑥 + 𝑐, equation (1) gives the general solution 

of (∗), which is 𝑦 = 𝑒−∫𝐴𝑑𝑥(𝑐 + ∫𝐵𝑒∫𝐴𝑑𝑥 𝑑𝑥).■  

 

Linearization of Nonlinear Differential Equations548: Problems of nonlinear analysis 

started to exist ever since the creation of the universe. Some of them were solved by ancient 

Greek mathematicians, but many new nonlinear problems were created, both in pure 

mathematics and in other sciences, such as biology, physics, astronomy, economics, etc. The 

distinction between linear and nonlinear analysis is not quite clear, because a considerable 

part of information about a nonlinear system can be extracted from a linear approximation of 

the corresponding nonlinear problem. Moreover, it is often possible to extract information 

about the solution of a linear system from a relevant nonlinear one.549 The term 

“linearization” of a nonlinear differential equation refers to the reduction of a nonlinear 

differential equation to a linear differential equation that is either equivalent or almost 

equivalent to the given nonlinear differential equation, that is, the solution of the linear 

differential equation may give the solution of the nonlinear differential equation either exactly 

or approximately within an acceptable error. Two well-known examples of linearization of 

nonlinear differential equations are the following: 

 

i. The Bernoulli equation:  
𝑑𝑦

𝑑𝑥
+ 𝐴𝑦 = 𝐵𝑦𝑛,   (∗) 

where 𝐴 and 𝐵 are functions of 𝑥, and 𝑛 ∈ ℝ− {0,1} (if 𝑛 = 0, then the equation is 

linear; if 𝑛 = 1, then the equation can be solved by separation of variables). 

Multiplying both sides of (∗) by 𝑦−𝑛, we obtain 

𝑦−𝑛
𝑑𝑦

𝑑𝑥
+ 𝐴𝑦1−𝑛 = 𝐵.   (1) 

Let 𝑦1−𝑛 = 𝑤,   (2) 

where 𝑤 = 𝑤(𝑥). By differentiating (2) with respect to 𝑥, we obtain 

(1 − 𝑛)𝑦−𝑛
𝑑𝑦

𝑑𝑥
=

𝑑𝑤

𝑑𝑥
⇔ 𝑦−𝑛𝑦′ =

𝑤′

1−𝑛
. (3) 

Hence, (1), due to (2) and (3), yields 
𝑤′

1−𝑛
+ 𝐴𝑤 = 𝐵 ⇒

𝑑𝑤

𝑑𝑥
+ (1 − 𝑛)𝐴𝑤 = (1 − 𝑛)𝐵, (4) 

which is a linear differential equation (whose dependent variable is 𝑤), and it can be 

solved according to the aforementioned method of solving linear differential 

equations. When we find the general solution of (4), we set 𝑤 = 𝑦1−𝑛, according to 

(2), and, thus, we obtain the general solution of (∗). 

ii. The Riccati equation:  
𝑑𝑦

𝑑𝑥
= 𝐴 + 𝐵𝑦 + 𝐶𝑦2,   (∗) 

where 𝐴, 𝐵, and 𝐶 are functions of 𝑥. We can find the general solution of the Riccati 

equation only if we know one of its partial solutions. Suppose that 𝑦 = 𝑦1 is a partial 

solution of (∗), so that  
𝑑𝑦1

𝑑𝑥
+ 𝐴 + 𝐵𝑦1 + 𝐶𝑦1

2 = 0.   (1) 

 
548 Ibid. 
549 Lomonosov, “Invariant Subspaces for the Family of Operators which Commute with a Completely Continuous 

Operator.” 
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Then, using the transformation  

𝑦 = 𝑦1 +𝑤,   (2) 

where 𝑤 = 𝑤(𝑥), and differentiating (2) with respect to 𝑥, we obtain 
𝑑𝑦

𝑑𝑥
=

𝑑𝑦1

𝑑𝑥1
+
𝑑𝑤

𝑑𝑥
.   (3) 

Hence, (∗), due to (2) and (3), yields 
𝑑𝑦1

𝑑𝑥
+ 𝐴 + 𝐵𝑦1 + 𝐶𝑦1

2 +
𝑑𝑤

𝑑𝑥
+ (𝐵 + 2𝐶𝑦1)𝑤 + 𝐶𝑤

2 = 0. 

But, due to (1), 
𝑑𝑦1

𝑑𝑥
+ 𝐴 + 𝐵𝑦1 + 𝐶𝑦1

2 = 0, so that we obtain 

𝑑𝑤

𝑑𝑥
+ (𝐵 + 2𝐶𝑦1)𝑤 = −𝐶𝑤2,   (4)  

which is a Bernoulli equation (where 𝑤 is the dependent variable), and it can be 

solved according to the aforementioned method of solving the Bernoulli equation: 

multiplying both sides of (4) by 𝑤−2 we obtain 

𝑤−2 𝑑𝑤

𝑑𝑥
+ (𝐵 + 2𝐶𝑦1)𝑤

−1 = −𝐶.   (5) 

If we set  

𝑤−1 = 𝑧,   (6) 

where 𝑧 = 𝑧(𝑥), and we differentiate (5) with respect to 𝑥, then we obtain  

−𝑤−2𝑤′ = 𝑧′.   (7) 

Therefore, (5), due to (6) and (7), yields 

−𝑧′ + (𝐵 + 2𝐶𝑦1)𝑧 = −𝐶 ⇔ 𝑧′ − (𝐵 + 2𝐶𝑦1)𝑧 = −𝐶,   (8) 

which is a linear differential equation (where 𝑧 is the dependent variable), and its 

general solution is  

𝑧 = 𝑒−∫−(𝐵+2𝐶𝑦1)𝑑𝑥(𝑐 + ∫𝐶𝑒∫−(𝐵+2𝐶𝑦1)𝑑𝑥 𝑑𝑥). 

By substituting this value of 𝑧 into (6), we find 𝑤, and, by substituting the so found 

value of 𝑤 into (2), we find the general solution of the Riccati equation.  

 

 

2.21. INTEGRATION OF MULTIVARIABLE FUNCTIONS 
 

In this section, we shall apply the concept of integration to functions of several variables 

𝑥, 𝑦, … As we have already realized, integration can be used in order to find the area under a 

curve given by some function of one variable. By adding a dimension, we obtain a double 

integral, by which we can find the volume under a surface given by some function of two 

variables. 

The concept of a Riemann integral can be extended to the computation of volumes under 

the graph of bivariate functions.550 Assume that the domain of a bivariate function is the 

Cartesian product of two closed intervals, that is, a rectangle, say  

 

𝑅 = [𝑎, 𝑏] × [𝑐, 𝑑] = {(𝑥, 𝑦) ∈ ℝ2|𝑎 ≤ 𝑥 ≤ 𝑏, 𝑐 ≤ 𝑥 ≤ 𝑑}. 

 

 
550 See: Apostol, Calculus; Courant and John, Introduction to Calculus and Analysis; Edwards, A Treatise on the 

Integral Calculus; Fraleigh, Calculus with Analytic Geometry; Haaser and Sullivan, Real Analysis; McLeod, The 

Generalized Riemann Integral; Nikolski, A Course of Mathematical Analysis; Piskunov, Differential and 

Integral Calculus; Rudin, Principles of Mathematical Analysis; Spivak, Calculus; Taylor, General Theory of 

Functions and Integration. 
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Analogously to section 2.18, we partition 𝑅 into rectangular subregions  

 

𝑅𝑖𝑗 = [𝑥𝑖−1, 𝑥𝑖] × [𝑦𝑗−1, 𝑦𝑗], where 1 ≤ 𝑖 ≤ 𝑛 and 1 ≤ 𝑗 ≤ 𝑚, 

 

so that we obtain the partition 𝑃 defined by 

 

𝑎 = 𝑥0 < 𝑥1 < ⋯ < 𝑥𝑛 = 𝑏, and 𝑐 = 𝑦0 < 𝑦1 < ⋯ < 𝑦𝑚 = 𝑑.  

 

Such a partition can be constructed by drawing straight lines 𝑥 = 𝑥𝑖 and 𝑦 = 𝑦𝑗 (𝑖 =

1,2,… , 𝑛 and 𝑗 = 1,2,… ,𝑚) that are parallel to the 𝑦-axis and the 𝑥-axis, respectively. The 

area of each of the aforementioned subregions 𝑅𝑖𝑗 is  

 

𝐴𝑖𝑗 = (𝑥𝑖 − 𝑥𝑖−1)(𝑦𝑗 − 𝑦𝑗−1) = 𝛥𝑥𝑖𝛥𝑦𝑗, 

 

so that the area of the rectangle 𝑅 is 

 

𝐴 = (𝑏 − 𝑎)(𝑑 − 𝑐) = ∑ ∑ 𝐴𝑖𝑗
𝑚
𝑗=1

𝑛
𝑖=1 . 

 

Assume that 𝑓 is a bounded function defined on the aforementioned rectangle 𝑅. Let 𝑚𝑖𝑗 

and 𝑀𝑖𝑗 be the infimum (greatest lower bound) and the supremum (least upper bound) of 𝑓 in 

𝑅𝑖𝑗, respectively: 

 

𝑚𝑖𝑗 = 𝑖𝑛𝑓(𝑥,𝑦)∈𝑅𝑖𝑗(𝑓(𝑥, 𝑦)), and 

𝑀𝑖𝑗 = 𝑠𝑢𝑝(𝑥,𝑦)∈𝑅𝑖𝑗(𝑓(𝑥, 𝑦)). 

 

Then the real number 𝑈(𝑃, 𝑓) = ∑ ∑ 𝑀𝑖𝑗𝐴𝑖𝑗
𝑚
𝑗=1

𝑛
𝑖=1  is the “upper sum” of 𝑓 corresponding 

to the partition 𝑃 of 𝑅, and the real number 𝐿(𝑃, 𝑓) = ∑ ∑ 𝑚𝑖𝑗𝐴𝑖𝑗
𝑚
𝑗=1

𝑛
𝑖=1  is the “lower sum” of 

𝑓 corresponding to the partition 𝑃 of 𝑅. Analogously to section 2.18, a pair of lower and 

upper sums corresponds to each partition of 𝑅, and, for every partition 𝑃 of 𝑅, it holds that 

𝑚𝐴 ≤ 𝐿(𝑃, 𝑓) ≤ 𝑈(𝑃, 𝑓) ≤ 𝑀𝐴, where 𝑚 and 𝑀 are, respectively, the infimum and the 

supremum of 𝑓 in 𝑅, and 𝐴 is the area of 𝑅. If 𝑋 is the set of all possible upper sums, if 𝑌 is 

the set of all possible lower sums, if 𝐽 = 𝑖𝑛𝑓(𝑋) = 𝑖𝑛𝑓({𝑈(𝑃, 𝑓) ∀𝑃 𝑜𝑓 𝑅}), and if 𝐼 =

𝑠𝑢𝑝(𝑌) = 𝑠𝑢𝑝({𝐿(𝑃, 𝑓) ∀𝑃 𝑜𝑓 𝑅}), then 𝐽 and 𝐼 are called, respectively, the “upper double 

integral” and the “lower double integral” of 𝑓 on 𝑅, and they are denoted as follows: 

 

𝐽 = ∬𝑓(𝑥, 𝑦)𝑑𝑥𝑑𝑦

−

𝑅

 

and 

 

𝐼 = ∬𝑓(𝑥, 𝑦)𝑑𝑥𝑑𝑦
𝑅̅
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(given the aforementioned notation). If 𝐼 = 𝐽, that is, if ∬ 𝑓(𝑥, 𝑦)𝑑𝑥𝑑𝑦
−

𝑅
= ∬ 𝑓(𝑥, 𝑦)𝑑𝑥𝑑𝑦

𝑅̅
, 

then 𝑓 is said to be “Riemann integrable,” or simply “integrable,” on the rectangle 𝑅, and the 

common value of its upper and lower integrals is denoted by 

 

∬𝑓(𝑥, 𝑦)𝑑𝑥𝑑𝑦
𝑅

 

 

and is called the “double integral” of 𝑓 on the region 𝑅. 

In other words, for a bivariate function 𝑓: 𝑅 ⊂ ℝ2 → ℝ, we compute 𝑓(𝑝𝑖 , 𝑞𝑗) for 

evaluation points (𝑝𝑖 , 𝑞𝑗) arbitrarily chosen in 𝑅𝑖𝑗, and, thus, we approximate the volume 𝑉 

under the graph of 𝑓 by the following Riemann sum: 

 

𝑉 ≈ ∑ ∑ 𝑓(𝑝𝑖 , 𝑞𝑗)(𝑥𝑖 − 𝑥𝑖−1)(𝑦𝑗 − 𝑦𝑗−1)
𝑚
𝑗=1

𝑛
𝑖=1 , 

 

where (𝑥𝑖 − 𝑥𝑖−1)(𝑦𝑗 − 𝑦𝑗−1) is the area of rectangle 𝑅𝑖𝑗, and each term 𝑓(𝑝𝑖 , 𝑞𝑗)(𝑥𝑖 −

𝑥𝑖−1)(𝑦𝑗 − 𝑦𝑗−1) in the aforementioned sum is the volume of the bar [𝑥𝑖−1, 𝑥𝑖] × [𝑦𝑗−1, 𝑦𝑗] ×

[0, 𝑓(𝑝𝑖 , 𝑞𝑗)]. Now, let us refine the aforementioned partition by assuming that the diameter 

of the largest rectangle (i.e., the “norm” ‖𝑅𝑖𝑗‖ = 𝑚𝑎𝑥(𝑅𝑖𝑗)) tends to 0, symbolically, 

‖𝑅𝑖𝑗‖ → 0. If the Riemann sum converges for every such sequence of partitions for arbitrarily 

chosen points (𝑝𝑖 , 𝑞𝑗), then this limit is said to be the double integral of 𝑓 over 𝑅, 

symbolically,   

 

∬ 𝑓(𝑥, 𝑦)
𝑅

𝑑𝑥𝑑𝑦 = 𝑙𝑖𝑚‖𝑅𝑖𝑗‖→0
∑ ∑ 𝑓(𝑝𝑖 , 𝑞𝑗)(𝑥𝑖 − 𝑥𝑖−1)(𝑦𝑗 − 𝑦𝑗−1)

𝑚
𝑗=1

𝑛
𝑖=1 .  (∗) 

 

In short, if 𝑓(𝑥, 𝑦) is continuous on a region 𝑅 in the plane 𝑧 = 0, then: 

 

i. the area of the region 𝑅 is 

𝐴 = ∬ 𝑑𝐴 ≡ ∬ 𝑑𝑥𝑑𝑦
𝑅𝑅

; 

and 

ii. the volume of the solid that lies below the surface 𝑧 = 𝑓(𝑥, 𝑦) and above the given 

region (assuming that this integral exists) is 

𝑉 = ∬ 𝑓(𝑥, 𝑦)
𝑅

𝑑𝐴 ≡ ∬ 𝑓(𝑥, 𝑦)
𝑅

𝑑𝑥𝑑𝑦. 

 

In view of the foregoing, if 𝑅 = [𝑎, 𝑏] × [𝑐, 𝑑], whenever the integrand is 𝑓(𝑥, 𝑦), we 

have to integrate over two variables, 𝑥 and 𝑦, so that, for each variable, we have an 

integration sign, and, in order to indicate the variables involved, we have 𝑑𝑥 and 𝑑𝑦, 

symbolically, 

 

∬ 𝑓(𝑥, 𝑦)
𝑅

𝑑𝑥𝑑𝑦 ≡ ∫ ∫ 𝑓(𝑥, 𝑦)𝑑𝑥𝑑𝑦
𝑏

𝑎

𝑑

𝑐
, 
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where 𝑓(𝑥, 𝑦) is an integrable function of two real variables.551 In this case, we compute the 

innermost integral first, and then we work our way outward. In particular, we compute the 𝑑𝑥 

integral inside first, while treating 𝑦 as a constant, and then we integrate the result over 𝑦 as 

we would do with any variable. However, the order in which we do the integrations does not 

matter, provided that we keep track of the limits of integration of each variable. For instance, 

in the double integral ∫ ∫ 𝑓(𝑥, 𝑦)𝑑𝑥𝑑𝑦
𝑏

𝑎

𝑑

𝑐
, 𝑑𝑥 is associated with the 𝑥 integrand, which runs 

from 𝑎 to 𝑏, while 𝑑𝑦 is associated with the 𝑦 integrand, which runs from 𝑐 to 𝑑, and, 

therefore, 

 

∫ ∫ 𝑓(𝑥, 𝑦)𝑑𝑥𝑑𝑦 = ∫ ∫ 𝑓(𝑥, 𝑦)𝑑𝑦𝑑𝑥
𝑑

𝑐

𝑏

𝑎

𝑏

𝑎

𝑑

𝑐
, 

 

so that the limits of integration of each integrand remain the same (this result is known as 

Fubini’s Theorem).552 

Let 𝑋 be a set in ℝ2 such that, ∀𝜀 > 0, there is a finite number of rectangles 𝑅𝑖, where 

𝑖 = 1,… , 𝑛, such that 𝑋 is contained in the union of these rectangles, and, if 𝐴𝑖 is the area of 

rectangle 𝑅𝑖, then ∑ 𝐴𝑖 < 𝜀
𝑛
𝑖=1 . If this is the case (namely, if 𝑋 can be covered by finitely 

many rectangles of arbitrarily small area), then 𝑋 is called a set with “Jordan content zero” 

(named after the French mathematician Camille Jordan). Obviously, singletons have content 

zero, and any finite set of points has content zero (e.g., given a set of 𝑛 points, we can 

surround each of them with an interval of 
𝜀

𝑛
). If a set contains some rectangle of positive area, 

then it is said to be a set with “positive (Jordan) content.” Moreover, a region 𝑈 in ℝ2 is a set 

with area if the boundary of 𝑈 has content zero (and then 𝑈 is said to be a “domain”); and, as 

I mentioned earlier, if 𝑅 = {(𝑥, 𝑦) ∈ ℝ2|𝑎 ≤ 𝑥 ≤ 𝑏, 𝑐 ≤ 𝑥 ≤ 𝑑}, then the area of 𝑅 is 

(𝑏 − 𝑎)(𝑑 − 𝑐). 
The concept of the measure of a set is more general than the concept of the (Jordan) 

content of a set. In ℝ2, a set of (Lebesgue) “measure zero” is a set that can be covered by a 

countable collection of rectangles of arbitrarily small total area. Although there are sets of 

measure zero whose algebraic sum is non-measurable, and, hence, their content is undefined, 

compact sets have measure zero if and only if they have content zero. In the theory of 

Riemann integration, we deal with compact sets, and, therefore, the notion of content is 

sufficient.  

For the definition of the Riemann integral of a bivariate function, the partition 𝑃 need not 

consist of rectangles. In other words, the same concept of a Riemann integral also applies in 

case of non-rectangular regions 𝑅. The partition has to consist of subregions 𝑅𝑖 of 𝑅 whose 

areas can be determined, so that the rationale of (∗) is satisfied.  

Analogously to section 2.18, if a bounded function 𝑓(𝑥, 𝑦) is defined on a region 𝑅 ⊂

ℝ2, and if the boundary of 𝑅 and the set of discontinuities of 𝑓 each have content zero in ℝ2, 

then 𝑓 is integrable on 𝑅.553 This statement is an important criterion for the existence of a 

double integral. In view of the foregoing, we realize that the properties of double integrals are 

similar to those of definite single integrals 554: If 𝑈 is a set with area in ℝ2 (i.e., the boundary 

 
551 Ibid.  
552 Ibid. 
553 Ibid. 
554 Ibid. 
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of 𝑈 has content zero); if both 𝑋 and 𝑌 have area and 𝑈 = 𝑋 ∪ 𝑌 (i.e., every point of 𝑈 is a 

point of 𝑋 or 𝑌 or their boundary points, and 𝑋 and 𝑌 have at most some of their boundary 

points in common); and if 𝑓 and 𝑔 are functions defined and continuous on 𝑈, then the double 

integrals of 𝑓 and 𝑔 over 𝑈 exist and have the following properties555: 

 

i. ∬ 𝑑𝑥𝑑𝑦 = 𝑡ℎ𝑒𝑎𝑟𝑒𝑎𝑜𝑓𝑈
𝑈

. 

ii. ∬ [𝑎𝑓(𝑥, 𝑦) + 𝑏𝑔(𝑥, 𝑦)]
𝑈

𝑑𝑥𝑑𝑦 = 𝑎∬ 𝑓(𝑥, 𝑦)
𝑈

𝑑𝑥𝑑𝑦 + 𝑏∬ 𝑔(𝑥, 𝑦)
𝑈

𝑑𝑥𝑑𝑦 for any 

constants 𝑎 and 𝑏. 

iii. ∬ 𝑓(𝑥, 𝑦)
𝑈

𝑑𝑥𝑑𝑦 = ∬ 𝑓(𝑥, 𝑦)
𝑋

𝑑𝑥𝑑𝑦 +∬ 𝑓(𝑥, 𝑦)
𝑌

𝑑𝑥𝑑𝑦. 

iv. If 𝑓(𝑥, 𝑦) ≤ 𝑔(𝑥, 𝑦) ∀(𝑥, 𝑦) ∈ 𝑈, then 

v. ∬ 𝑓(𝑥, 𝑦)
𝑈

𝑑𝑥𝑑𝑦 ≤ ∬ 𝑔(𝑥, 𝑦)
𝑈

𝑑𝑥𝑑𝑦. 

vi. |∬ 𝑓(𝑥, 𝑦)
𝑈

𝑑𝑥𝑑𝑦| ≤ ∬ |𝑓(𝑥, 𝑦)|𝑑𝑥𝑑𝑦
𝑈

. 

vii. |∬ 𝑓(𝑥, 𝑦)
𝑈

𝑑𝑥𝑑𝑦| ≤ 𝑚𝑎𝑥𝑈(|𝑓|)𝐴(𝑈), where 𝐴(𝑈) is the area of 𝑈. 

viii. If 𝑚 and 𝑀 are, respectively, the infimum and the supremum of 𝑓 on 𝑈, then there 

exists a value 𝑤 with 𝑚 ≤ 𝑤 ≤ 𝑀 such that 

𝑚𝐴(𝑈) ≤ ∬ 𝑓(𝑥, 𝑦)
𝑈

𝑑𝑥𝑑𝑦 = 𝑤 ≤ 𝑀𝐴(𝑈), 

where 𝐴(𝑈) is the area of 𝑈 (this is a version of the Mean Value Theorem for double 

integrals). Notice that, in view of the aforementioned analysis of the Riemann 

integral of a bivariate function, if 𝑓(𝑥, 𝑦) is an integrable function over a region 𝑅 

with area 𝐴, then the “average value” of 𝑓 over 𝑅 is equal to 
1

𝐴
∬ 𝑓(𝑥, 𝑦)
𝑅

𝑑𝑥𝑑𝑦. 

 

In general, increasing the number of integrals in the context of multiple integration is the 

same as increasing the number of dimensions: a single integral gives a two-dimensional area, 

a double integral gives a three-dimensional volume, a triple-integral gives a four-dimensional 

hypervolume, etc.556 Those sets in ℝ2 which are suitable domains of integration are said to be 

sets with area. Those sets in ℝ3 which are suitable domains of integration are said to be sets 

with volume; and we define the volume 𝑉 of a rectangular parallelepiped 𝑅 = {(𝑥, 𝑦, 𝑧) ∈

ℝ3|𝑎1 ≤ 𝑥 ≤ 𝑏1, 𝑎2 ≤ 𝑦 ≤ 𝑏2, 𝑎3 ≤ 𝑧 ≤ 𝑏3}, where 𝑎𝑘 < 𝑏𝑘 for 𝑘 = 1,2,3, as follows: 𝑉 =
(𝑏1 − 𝑎1)(𝑏2 − 𝑎2)(𝑏3 − 𝑎3). Using the notion of the volume of a rectangular parallelepiped, 

we can define a set 𝑈 in ℝ3 to have content zero if, ∀𝜀 > 0, there exists a finite set of 

rectangular parallelepipeds 𝑅1, … , 𝑅𝑛 such that 𝑈 is contained in the union of these 

rectangular parallelepipeds, and 𝑉(𝑅1) +⋯+ 𝑉(𝑅𝑛) < 𝜀, where 𝑉(𝑅𝑖) denotes the volume 

of 𝑅𝑖 for 𝑖 = 1,2,… , 𝑛. 

In case of triple integrals, the function 𝑓 is a function of three variables, and integration 

takes place over a closed and bounded region 𝑅 in ℝ3. Let 𝑅𝑖 (where 𝑖 = 1,2,… , 𝑛) be a 

closed and bounded subregion of a closed and bounded region 𝑅 in ℝ3; let 𝑉(𝑅𝑖) be the 

volume of 𝑅𝑖; and let (𝑝𝑖 , 𝑞𝑖 , 𝑟𝑖) be an arbitrary point of 𝑅𝑖. Then the “triple integral” is 

defined as  

 

∭ 𝑓(𝑥, 𝑦, 𝑧)
𝑅

𝑑𝑥𝑑𝑦𝑑𝑧 = 𝑙𝑖𝑚𝑛→∞∑ 𝑓(𝑝𝑖 , 𝑞𝑖 , 𝑟𝑖)𝑉(𝑅𝑖)
𝑛
𝑖=1 . 

 

 
555 Ibid. 
556 Ibid. 
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If, in particular, 𝑅 is the rectangular parallelepiped [𝑎1, 𝑏1] × [𝑎2, 𝑏2] × [𝑎3, 𝑏3], then 

 

∭ 𝑓(𝑥, 𝑦, 𝑧)
𝑅

𝑑𝑥𝑑𝑦𝑑𝑧 = 𝑙𝑖𝑚𝑛→∞∑ ∑ ∑ 𝑓(𝑝𝑗 , 𝑞𝑖 , 𝑟𝑘)
𝜈
𝑘=1

𝜇
𝑖=1

𝜆
𝑗=1 𝛥𝑥𝑗𝛥𝑦𝑖𝛥𝑧𝑘, 

 

where 𝑛 = 𝜆 ∙ 𝜇 ∙ 𝜈 is the number of elementary rectangular parallelepipeds (subregions 𝑅𝑗𝑖𝑘) 

each of which has volume 𝑉(𝑅𝑗𝑖𝑘) = 𝛥𝑥𝑗𝛥𝑦𝑖𝛥𝑧𝑘.  

 

If 𝑅 = [𝑎1, 𝑏1] × [𝑎2, 𝑏2] × [𝑎3, 𝑏3] and the number of rectangular parallelepipeds is 𝑛3, 

then 

 

∭ 𝑓(𝑥, 𝑦, 𝑧)
𝑅

𝑑𝑥𝑑𝑦𝑑𝑧 = 𝑙𝑖𝑚𝑛→∞∑ ∑ ∑ 𝑓(𝑝𝑖 , 𝑞𝑖 , 𝑟𝑖)
𝑛
𝑖=1

𝑛
𝑖=1

𝑛
𝑖=1 𝛥𝑥𝑖𝛥𝑦𝑖𝛥𝑧𝑖. 

 

The properties of triple integrals are analogous to the properties of double integrals. 

Similarly, we can develop integrals over ℝ𝑛 for any 𝑛 > 3, which enable us to integrate 

functions of 𝑛 > 3 variables. 

In general, the multiple integral of a function 𝑓(𝑥1, … , 𝑥𝑛) in 𝑛 variables over a domain 𝑈 

is represented by 𝑛 nested integral signs in the reverse order of computation (in the sense that 

the leftmost integral is computed last), followed by the function and the integrand arguments 

in such an order that indicates that the integral with respect to the rightmost argument is 

computed last; and the domain of integration is either represented symbolically for every 

argument over each integral sign or it is indicated by a characteristic letter (variable) at the 

rightmost integral sign: 

 

∫…∫ 𝑓(𝑥1, … , 𝑥𝑛)𝑑𝑈
𝑥1…𝑑𝑥𝑛. 

 

 

2.22. VECTOR-VALUED FUNCTIONS
557 

 

When a function takes a real number and sends it to a vector (whose meaning was 

clarified in sections 2.2.5 and 2.2.6), then it is said to be a vector-valued function. In the real 

plane, namely, in the 𝑥𝑦-plane, the general form of a vector-valued function is the following: 

 

𝑟(𝑡) = 𝑓(𝑡)𝑖̂ + 𝑔(𝑡)𝑗̂;   (1) 

 

and, in the real 3-dimensional space, namely, in the 𝑥𝑦𝑧-space, the general form of a vector-

valued function is the following: 

 

𝑟(𝑡) = 𝑓(𝑡)𝑖̂ + 𝑔(𝑡)𝑗̂ + ℎ(𝑡)𝑘̂;   (2) 

 

where the component functions 𝑓, 𝑔, and ℎ are real-valued functions of the parameter 𝑡, and 

𝑖̂, 𝑗̂, and 𝑘̂ are the corresponding unit vectors on the 𝑥-axis, the 𝑦-axis, and the 𝑧-axis, 

 
557 Ibid. 
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respectively. The standard unit vectors in the direction of the 𝑥, 𝑦, and 𝑧 axes of a 3-

dimensional Cartesian coordinate system are 

 

𝑖̂ = (
1
0
0
), 𝑗̂ (

0
1
0
), and 𝑘̂ = (

0
0
1
). 

 

Analogously to section 2.6, the “limit” of a vector-valued function 𝑟(𝑡) is 𝐿⃗⃗ as 𝑡 tends to 

𝑎, symbolically, 

 

𝑙𝑖𝑚𝑡→𝑎𝑟(𝑡) = 𝐿⃗⃗ 

 

if and only if 

 

𝑙𝑖𝑚𝑡→𝑎‖𝑟(𝑡) − 𝐿⃗⃗‖ = 0. 

 

Therefore, (1) implies that 

 

𝑙𝑖𝑚𝑡→𝑎𝑟(𝑡) = [𝑙𝑖𝑚𝑡→𝑎𝑓(𝑡)]𝑖̂ + [𝑙𝑖𝑚𝑡→𝑎𝑔(𝑡)]𝑗,̂ 

 

and (2) implies that 

 

𝑙𝑖𝑚𝑡→𝑎𝑟(𝑡) = [𝑙𝑖𝑚𝑡→𝑎𝑓(𝑡)]𝑖̂ + [𝑙𝑖𝑚𝑡→𝑎𝑔(𝑡)]𝑗̂ + [𝑙𝑖𝑚𝑡→𝑎ℎ(𝑡)]𝑘̂, 

 

provided that the limits of the component functions 𝑓, 𝑔, and ℎ as 𝑡 → 𝑎 exist. Similarly, we 

can define the limit of a vector-valued function of 𝑛 component functions for 𝑛 > 3.  

Analogously to section 2.7, a vector-valued function 𝑟(𝑡), where 𝑡 ∈ [𝑎, 𝑏], is said to be 

“continuous” at a point 𝑡0 ∈ [𝑎, 𝑏] if 𝑙𝑖𝑚𝑡→𝑡0𝑟(𝑡) = 𝑟(𝑡0); and 𝑟(𝑡) is said to be continuous 

on [𝑎, 𝑏] if it is continuous at every point of [𝑎, 𝑏].  

Analogously to section 2.10, the derivative of a vector-valued function 𝑟(𝑡), where 𝑡 ∈
[𝑎, 𝑏], is defined as follows: 

 

𝑟′⃗⃗⃗⃗ (𝑡) = 𝑙𝑖𝑚𝛥𝑡→0
𝑟(𝑡+𝛥𝑡)−𝑟(𝑡)

𝛥𝑡
, 

 

provided that the limit exists. If 𝑟′⃗⃗⃗⃗ (𝑡) exists, then 𝑟(𝑡) is said to be differentiable at 𝑡. If 𝑟′⃗⃗⃗⃗ (𝑡) 

exists ∀𝑡 ∈ (𝑎, 𝑏), then 𝑟(𝑡) is said to be differentiable on the interval (𝑎, 𝑏). In order for 𝑟(𝑡) 

to be differentiable on [𝑎, 𝑏], 𝑟(𝑡) must be differentiable on the interval (𝑎, 𝑏), and the 

following two limits must exist as well: 

 

𝑟′⃗⃗⃗⃗ (𝑎) = 𝑙𝑖𝑚𝛥𝑡→0+
𝑟(𝑎+𝛥𝑡)−𝑟(𝑎)

𝛥𝑡
 and 

 

𝑟′⃗⃗⃗⃗ (𝑏) = 𝑙𝑖𝑚𝛥𝑡→0−
𝑟(𝑏+𝛥𝑡)−𝑟⃗(𝑏)

𝛥𝑡
. 
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Consequently, (1) implies that 

 

𝑟′⃗⃗⃗⃗ (𝑡) = 𝑓′(𝑡)𝑖̂ + 𝑔′(𝑡)𝑗̂, 

 

and (2) implies that 

 

𝑟′⃗⃗⃗⃗ (𝑡) = 𝑓′(𝑡)𝑖̂ + 𝑔′(𝑡)𝑗̂ + ℎ′(𝑡)𝑘̂. 

 

The properties of the derivative of a vector-valued function are analogous to those of the 

derivative of a scalar-valued function.  

Let 𝑓, 𝑔, and ℎ be integrable real-valued functions on [𝑎, 𝑏]. Then (1) implies that the 

indefinite integral of a vector-valued function 𝑟(𝑡) = 𝑓(𝑡)𝑖̂ + 𝑔(𝑡)𝑗̂ is 

 

∫[𝑓(𝑡)𝑖̂ + 𝑔(𝑡)𝑗̂] 𝑑𝑡 = [∫𝑓(𝑡)𝑑𝑡]𝑖̂ + [∫𝑔(𝑡)𝑑𝑡]𝑗̂, 

 

and the definite integral of a vector-valued function 𝑟(𝑡) = 𝑓(𝑡)𝑖̂ + 𝑔(𝑡)𝑗̂ is 

 

∫ [𝑓(𝑡)𝑖̂ + 𝑔(𝑡)𝑗̂]𝑑𝑡 = [∫ 𝑓(𝑡)𝑑𝑡
𝑏

𝑎
]

𝑏

𝑎
𝑖̂ + [∫ 𝑔(𝑡)𝑑𝑡

𝑏

𝑎
] 𝑗̂. 

 

By analogy, (2) implies that 

 

∫[𝑓(𝑡)𝑖̂ + 𝑔(𝑡)𝑗̂ + ℎ(𝑡)𝑘̂] 𝑑𝑡 = [∫𝑓(𝑡)𝑑𝑡]𝑖̂ + [∫𝑔(𝑡)𝑑𝑡]𝑗̂ + [∫ ℎ(𝑡)𝑑𝑡]𝑘̂, 

 

and 

 

∫ [𝑓(𝑡)𝑖̂ + 𝑔(𝑡)𝑗̂ + ℎ(𝑡)𝑘̂]𝑑𝑡 = [∫ 𝑓(𝑡)𝑑𝑡
𝑏

𝑎
]

𝑏

𝑎
𝑖̂ + [∫ 𝑔(𝑡)𝑑𝑡

𝑏

𝑎
] 𝑗̂ + [∫ ℎ(𝑡)𝑑𝑡

𝑏

𝑎
] 𝑘̂. 

 

The properties of the integral of a vector-valued function are analogous to those of the 

integral of a scalar-valued function.  

Let us consider a function 𝑓(𝑥, 𝑦), namely, 𝑓 depends on both 𝑥 and 𝑦, and its graph is a 

surface in space. Then, in order to interpret and compute the rate of change of 𝑓(𝑥, 𝑦), we 

find the rate of change of 𝑓(𝑥, 𝑦) in a specific direction independently: if we want the rate of 

change in the 𝑥-direction, we differentiate 𝑓(𝑥, 𝑦) with respect to 𝑥 while treating 𝑦 as a 

constant, namely, we compute the partial derivative 
𝜕𝑓(𝑥,𝑦)

𝜕𝑥
; similarly, if we want the rate of 

change in the 𝑦-direction, we differentiate 𝑓(𝑥, 𝑦) with respect to 𝑦 while treating 𝑥 as a 

constant, namely, we compute the partial derivative 
𝜕𝑓(𝑥,𝑦)

𝜕𝑦
. The “gradient” of 𝑓(𝑥, 𝑦) is 

denoted by ∇𝑓, and it is a concept that combines the two aforementioned partial derivatives; 

specifically, the gradient of 𝑓(𝑥, 𝑦) is a vector consisting of both partial derivatives of 𝑓 in 

their associated positions; symbolically: 

 

𝑔𝑟𝑎𝑑𝑓 ≡ ∇𝑓 =
𝜕𝑓(𝑥,𝑦)

𝜕𝑥
𝑖̂ +

𝜕𝑓(𝑥,𝑦)

𝜕𝑦
𝑗̂, 
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where 𝑖̂ is the unit vector in the 𝑥-direction, and 𝑗̂ is the unit vector in the 𝑦-direction. By 

analogy, we can define the gradient of a function 𝑓(𝑥, 𝑦, 𝑧), etc.  

Let us consider a vector-valued function 𝑟(𝑥, 𝑦, 𝑧) = 𝑓(𝑥, 𝑦, 𝑧)𝑖̂ + 𝑔(𝑥, 𝑦, 𝑧)𝑗̂ +

ℎ(𝑥, 𝑦, 𝑧)𝑘̂ such that the partial derivatives 
𝜕𝑓

𝜕𝑥
, 
𝜕𝑔

𝜕𝑦
, and 

𝜕ℎ

𝜕𝑧
 exist and are continuous on 𝑈 ⊆ ℝ3. 

Then the “divergence” of 𝑟(𝑥, 𝑦, 𝑧) is a vector operator that operates on a vector field, 

producing a scalar field that gives the quantity of the vector field’s source at each point; and it 

is defined as follows:  

 

𝑑𝑖𝑣𝑟 ≡ ∇⃗⃗⃗𝑟 = (
𝜕

𝜕𝑥
𝑖̂ +

𝜕

𝜕𝑦
𝑗̂ +

𝜕

𝜕𝑧
𝑘̂) (𝑓𝑖̂ + 𝑔𝑗̂ + ℎ𝑘̂) =

𝜕𝑓

𝜕𝑥
+
𝜕𝑔

𝜕𝑦
+
𝜕ℎ

𝜕𝑧
. 

For instance, as I explained in Chapter 1, in quantum physics, everything is described in 

terms of wave functions. In quantum mechanics, a wave function is a vector in a Hilbert 

space, and the vector coefficients are complex numbers. According to Paul Dirac’s notation, 

in quantum physics, vectors are symbolized as follows (the bra-ket notation):  

|𝛹〉 = 𝑎1 (
1
0
0
) + 𝑎2 (

0
1
0
)+𝑎3 (

0
0
1
), where 𝑎1, 𝑎2, 𝑎3 ∈ ℂ. 

The aforementioned type of brackets helps us to keep track of whether a vector is a row 

vector or a column vector: |𝛹〉 is a column vector, whereas 〈𝛹| is a row vector. In quantum 

mechanics, if we convert a column vector to a row vector, then we have to take the complex 

conjugate of each coefficient. In other words, for instance,  

|𝛹〉 = (

𝑎1
𝑎2
𝑎3
) and 〈𝛹| = (𝑎1

∗ , 𝑎2
∗ , 𝑎3

∗), where 𝑎1
∗ , 𝑎2

∗ , 𝑎3
∗  are, respectively, the complex 

conjugates of 𝑎1, 𝑎2, 𝑎3. 

In quantum mechanics, all vectors describe probabilities, and, usually, we choose the 

basis in the space under consideration in such a way that the basis vectors correspond to 

possible measurement outcomes; for instance: 

 

|𝛹〉 = 𝑎1 (
1
0
0
) + 𝑎2 (

0
1
0
)+𝑎3 (

0
0
1
) corresponds to |𝛹〉 = 𝑎1|𝑋〉 + 𝑎2|𝑌〉 + 𝑎3|𝑍〉.  

 

Hence, the probability of a particular measurement outcome is the absolute square of the 

scalar product with the basis vector that corresponds to the outcome; so that, for instance, the 

probability of measuring 𝑋 is |〈𝑋|𝛹〉|2 = 𝑎1𝑎1
∗ (Born’s Rule). In quantum physics, the 

gradient operator works as follows: 

∇|𝛹〉 =
𝜕

𝜕𝑥
|𝛹〉𝑖̂ +

𝜕

𝜕𝑦
|𝛹〉𝑗̂ +

𝜕

𝜕𝑧
|𝛹〉𝑘̂. 
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Chapter 3 

 

 

 

RATIONALITY, TRUTH, AND ETHICS 
 

 

3.1. BASIC PRINCIPLES OF LOGIC 
 

Logic, namely, the science of correct reasoning, is a necessary underpinning of every 

philosophical and scientific endeavor. The first systematization of logic is due to the ancient 

Greek philosopher and scientist Aristotle, and, for this reason, the phrase “Aristotelian logic” 

is still commonly used. Aristotle’s works on logic were grouped together by ancient 

commentators under the title Organon (“Instrument”). In particular, the Organon comprises 

the following logical treatises of Aristotle: (i) Categories, (ii) On Interpretation, (iii) Prior 

Analytics, (iv) Posterior Analytics, (v) Topics, and (vi) On Sophistical Refutations. The title 

Organon, meaning instrument, implies that logic is an instrument and a method used by 

philosophy and science, and, in particular, according to both Aristotle and the later 

Peripatetics, the ultimate purpose of correct reasoning is to create correct social relationships 

and to enable people to correctly communicate the results of philosophical and scientific 

research to each other. In the third century B.C., the Greek Stoic philosopher and logician 

Chrysippus founded a propositional calculus, studying implication, conjunction, and 

disjunction. In the mid-nineteenth century, the (largely self-taught) English mathematician, 

philosopher, and logician George Boole put logic within a rigorous mathematical setting, thus 

giving rise to what has been known as “Boolean algebra.”558 

As I mentioned in Chapter 2, logic involves a special set of symbols, namely: 

 

˄ or &: conjunction (“and”), 

˅: disjunction (“or”), 

¬: negation (“not”), 

→ or ⇒: material implication (“if . . . then . . .”) 

↔ or ⇔: biconditional (“if and only if”), 

∀: universal quantification (“for every”), 

∃: “there exists,” 

∃!: “there exists exactly one,” 

 
558 See: Arnold, Logic and Boolean Algebra; Bell and Machover, A Course in Mathematical Logic; Ebbinghaus, 

Flum, and Thomas, Mathematical Logic; Epp, Discrete Mathematics with Applications; Kolman, Busby, and 

Ross, Discrete Mathematical Structures; Rautenberg, A Concise Introduction to Mathematical Logic.  
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∄: “there does not exist,” 

𝑃(𝑥): predicate letter (meaning that 𝑥 (an object) has property 𝑃), 

|: “such that,” 

⊢: turnstile (𝑥 ⊢ y means that 𝑥 “proves” (i.e., syntactically entails) 𝑦; a sentence 𝜑 is 

“deducible” from a set of sentences 𝛴, expressed 𝛴 ⊢ 𝜑, if there exists a finite chain 

of sentences 𝜓0, 𝜓1, 𝜓2, … , 𝜓𝑛 where 𝜓𝑛 is 𝜑 and each previous sentence in the chain 

either belongs to 𝛴, or follows from one of the logical axioms, or can be inferred 

from previous sentences; ⊬ denotes the negation of ⊢), 

⊨: double turnstile (𝑥 ⊨ y means that 𝑥 “models” (i.e., semantically entails) 𝑦; a sentence 

𝜑 is a “consequence” of a set of sentences 𝛴, expressed 𝛴 ⊨ 𝜑, if every model of 𝛴 is 

a model of 𝜑).  

 

Using the aforementioned notation, we can depict the well-known “logical square” that 

Aristotle articulated in the context of his Organon in order to describe the basic kinds of 

propositions as follows: 

 

 

Figure 3.1. Aristotle’s Logical Square. 

George Boole realized that arguments expressed in an ordinary language (e.g., in 

ordinary English) can be expressed in the notation of mathematical logic and then studied in 

the context of “propositional calculus.” For instance, consider the following argument: 
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• If you want to learn mathematics, then you must study methodically. 

• If you must study methodically, then you must be taught an effective method of 

studying.  

 

Therefore, if you want to learn mathematics, then you must be taught an effective method 

of studying. 

The aforementioned argument involves various propositions, which we may present by 

letters as follows: 

 

𝑃: You want to learn mathematics.  

𝑄: You must study methodically. 

𝑅: You must be taught an effective method of studying.  

 

These propositions can be “true” or “false.” In section 3.2, we shall study propositions 

called “predicates,” which contain variables. The aforementioned argument can be formalized 

as follows: 

 

𝑃 ⇒ 𝑄 

𝑄 ⇒ 𝑅 

---------- 

𝑃 ⇒ 𝑅 

 

where the two propositions above the dashed line are the “premises,” and the one below the 

dashed line is the “conclusion.” The reasoning process that leads from premises to a 

conclusion is called a “deductive process” or just a “deduction.”  

It is important to distinguish between the terms “validity” and “truth” as they are used in 

logic. An argument, or a reasoning process, or a deduction is said to be valid (i.e., logically 

correct) if the truth of the conclusion follows from the truth of the premises. Notice that, if the 

premises are both true, then the conclusion is logically necessarily true, too, and, therefore, 

with one or more factually incorrect premises, an argument may still be valid, although its 

conclusion may be false. Furthermore, a valid argument based on false premises does not 

necessarily lead to a false conclusion. In other words, there is a substantial difference between 

logical (i.e., procedural) correctness, namely, “validity,” and factual correctness. If an 

argument is valid (i.e., logically correct), and if its premises are true (i.e., if the facts on which 

it is based are true), then it is said to be “sound.” In logic, we focus on the validity of 

arguments rather than on their soundness, and this fact explains the “instrumental” role of 

logic in philosophy and science.  

A “Boolean algebra” is the 6-tuple 

 

〈𝐴, ˄, ˅,¬, 0, 1〉,  

 

consisting of a set 𝐴 equipped with two binary operations, namely, ˄(called “meet” or “and”) 

and ˅ (called “join” or “or”), a unary operation ¬ (called “complement” or “not”), and two 

elements 0 and 1 in 𝐴 (called “bottom” and “top,” respectively, and denoted, respectively, by 
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the symbols ⊥ 𝑎𝑛𝑑 ⊤), such that, the truth value of a true sentence is 1, the truth value of a 

false sentence is 0, and, for all elements 𝑎, 𝑏, and 𝑐 of 𝐴, the following axioms hold: 

 

i. Associativity:  

𝑎˅(𝑏˅𝑐) = (𝑎˅𝑏)˅𝑐;  𝑎˄(𝑏˄𝑐) = (𝑎˄𝑏)˄𝑐. 
ii. Commutativity: 

𝑎˅𝑏 = 𝑏˅𝑎;  𝑎˄𝑏 = 𝑏˄𝑎. 

iii. Absorption: 

𝑎˅(𝑎˄𝑏) = 𝑎;  𝑎˄(𝑎˅𝑏) = 𝑎. 

iv. Identity: 

𝑎˅0 = 𝑎; 𝑎˄1 = 𝑎. 

v. Distributivity: 

𝑎˅(𝑏˄𝑐) = (𝑎˅𝑏)˄(𝑎˅𝑐);  𝑎˄(𝑏˅𝑐) = (𝑎˄𝑏)˅(𝑎˄𝑐). 
vi. Complements: 

𝑎˅¬𝑎 = 1 and 𝑎˄¬𝑎 = 0.  

 

For instance, the 2-element Boolean algebra has only two elements, namely, 0 and 1, and 

it is defined by the following rules:  

 

Table 3.1. Truth Tables of a 2-Element Boolean Algebra 

 

𝑎 𝑏 𝑎˄𝑏 𝑎˅𝑏 𝑎 ¬𝑎 

0 0 0 0 0 1 

1 0 0 1 1 0 

0 1 0 1 

1 1 1 1 

 

Those propositions whose truth value depends on the values of the variables in them are 

called “predicates.” 

 

 

3.2. PREDICATE CALCULUS 
 

As I mentioned in section 3.1, George Boole developed a purely symbolic system for 

deduction in a rigorous language of predicates (or relations, or properties), and, thus, 

Predicate Calculus (henceforth, PC) emerged.559 The formal system PC involves the 

following: 

 

i. The alphabet of PC: a countable set of variables (or arguments): 𝑣1, 𝑣2,𝑣3, … and a 

two-place predicate letter 𝑃; two logical connectives: ¬and ˄; one quantifier 

symbol:∃; three improper symbols: the left parenthesis, the comma, and the right 

parenthesis, namely, ( , ), but quite often we may also use brackets [ and ] as well as 

the symbol | standing for “such that.” 

 
559 Ibid.  
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ii. These symbols are used in order to build the (well-formed) formulas of PC, 

according to the following rules: 

a. If 𝑥, 𝑦 are individual variables, then 𝑃(𝑥, 𝑦) is a formula of PC.  

b. If 𝜑,𝜓 are formulas of PC, then so are (𝜑˄ψ)as well as ¬𝜑 and ¬𝜓.  

c. If 𝑥 is an individual variable and 𝜑 is a formula, then so is ∃𝑥𝜑.  

d. Something is a formula of PC only by virtue of the aforementioned conditions 

(a), (b), and (c).  

 

Remark: The alphabet contains only the logical symbols¬, ˄, and ∃, because the other 

usual symbols can be defined in terms of these three as follows:  

 

(𝜑˅𝜓) is defined as ¬(¬𝜑˄¬𝜓), 

(𝜑 → 𝜓) is defined as ¬(𝜑˄¬𝜓), 

(𝜑 ↔ 𝜓) is defined as ((𝜑 → 𝜓)˄(𝜓 → 𝜑)), and 

∀𝑥𝜑 is defined as ¬∃𝑥¬𝜑.  

 

A variable is said to be “bounded” if it is determined by a quantifier; otherwise, it is said 

to be “free.” For instance, in the formula ∃𝑥𝑃(𝑥, 𝑦), 𝑥 is bounded, and 𝑦 is free. If a formula 

of PC contains no free variables, then it is said to be a “sentence.”  

By an “interpretation,” we mean the task of giving a certain meaning to the undefined 

terms of a formal system. Consider, for instance, the following sentences of PC: 

 

i. ∀𝑥∀𝑦(𝑃(𝑥, 𝑦) → 𝑃(𝑥, 𝑦)), 
ii. ((𝑃(𝑥, 𝑦)˄𝑃(𝑦, 𝑧)) → 𝑃(𝑥, 𝑧)), and 

iii. ∀𝑦∃𝑥𝑃(𝑥, 𝑦).  
 

If we interpret 𝑃 as the ancestor relation over the domain of all (living and dead) people 

(and if we assume that such a relation is biologically determined in a definite way), then: (i) 

means that, “if 𝑥 is an ancestor of 𝑦, then 𝑥 is an ancestor of 𝑦, for every 𝑥 and 𝑦,” namely, it 

is a tautology; (ii) means that “if 𝑥 is an ancestor of 𝑦, and if 𝑦 is an ancestor of 𝑧, then 𝑥 is an 

ancestor of 𝑧”; (iii) means that, “for every 𝑦, there exists an ancestor 𝑥.” Thus, (i), (ii), and 

(iii) are true. However, if we interpret 𝑃 as < (“strictly less than”) over the natural numbers, 

then (iii) is false. Moreover, if we interpret 𝑃 as “the father of” over the domain of human 

beings, then (ii) is false. We can easily notice that (i) will remain true for any interpretation of 

𝑃; such sentences of PC are said to be “universally valid” (and they are tautological in 

character). 

A “formal system” is obtained by choosing a finite set of axioms (or schemes of axioms, 

i.e., selected formulas) and a finite set of rules of inference in a given language. In the case of 

PC, we have the following axioms and the following rule of inference (𝜑,𝜓, 𝜒 are formulas, 

𝑥, 𝑦, 𝑦1, … , 𝑦𝑛, … are variables, and 𝜑(𝑦) is the result of substituting 𝑦 for all free occurrences 

of 𝑥 in 𝜑(𝑥)): 

 

Axioms of Predicate Calculus560: 

 

 
560 Ibid. 
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i. ∀𝑦1…∀𝑦𝑛 (𝜑 → (𝜓 → 𝜑)). 

ii. ∀𝑦1…∀𝑦𝑛 ((𝜑 → (𝜓 → 𝜒)) → ((𝜑 → 𝜓) → (𝜑 → 𝜒))). 

iii. ∀𝑦1…∀𝑦𝑛 ((¬𝜑 → ¬𝜓) → ((¬𝜑 → 𝜓) → 𝜑)).  

iv. ∀𝑦1…∀𝑦𝑛 (∀𝑥(𝜑 → 𝜓) → (𝜑 → ∀𝑥𝜓)), provided that 𝜑 has no free occurrence of 

𝑥. 

v. ∀𝑦1…∀𝑦𝑛 ((𝜑 → 𝜓) → (∀𝑦1…∀𝑦𝑛𝜑 → ∀𝑦1…∀𝑦𝑛𝜓)). 

vi. ∀𝑦1…∀𝑦𝑛 (∀𝑥𝜑(𝑥) → 𝜑(𝑦)), provided that, as we substitute the free occurrences of 

𝑥 in 𝜑(𝑥) with 𝑦, the 𝑦’s are free in 𝜑(𝑦), that is, they are not determined by 

quantifiers already occurring in 𝜑. 

 

Rule of Inference for Predicate Calculus561: 

 

Modus Ponens: from 𝜑 and (𝜑 → 𝜓), infer 𝜓. In other words, if a conditional statement 

(“if 𝜑 then 𝜓”) is accepted, and the antecedent (𝜑) holds, then the consequent (𝜓) may be 

inferred.  

 A “theorem” is a formula inferred by means of a rule of inference in a finite number of 

steps from axioms and previously inferred formulas. Hence, we are faced with the problem of 

determining that finite set of axioms (or schemes of axioms) from which the rule of inference 

will give only true sentences.  

 First, we must clearly determine the meaning of the term “true formula” in a given 

interpretation, regardless of whether it is a sentence. When we interpreted 𝑃(𝑥, 𝑦) as the 

ancestor relation, we realized that 𝑃(𝑥, 𝑦) may be true for some values of 𝑥 and 𝑦 and false 

for others. Therefore, we have to specify the values of free variables when we interpret them 

(such a problem does not exist in case of bounded variables).  

 An “interpretation of the formal system PC” is a structure 

 

𝐼 = 〈𝑈, 𝑅〉, 

 

where 𝑈 is a (non-empty) set whose members are 𝑢, 𝑢1, 𝑢2, …, and 𝑅 is a relation on 𝑈. Then 

𝑈 is called the universe of the interpretation, and the predicate letter 𝑃 is interpreted as 𝑅 (for 

which reason 𝑅 is two-place).  

 Assume that members of 𝑈 are assigned to all the individual variables of PC in such a 

way that at most one member of 𝑈 is assigned to each variable of PC (one member of 𝑈 may 

be assigned to more than one variable). Then a formula 𝜑 is said to be satisfied in 𝐼 by an 

assignment of 𝑢1 to 𝑥, 𝑢2 to 𝑦, etc. (𝑥, 𝑦, … are free variables in 𝜑) if the relation over 𝑈 

corresponding to 𝜑 (i.e., if the replacement of each 𝑃 in 𝜑 by 𝑅) holds between the elements 

assigned to the free variables of 𝜑. In this case, we write 

 

𝐼 ⊨ 𝜑[𝑢1, 𝑢2, … ],  

 

where 𝑢1, 𝑢2, … are all the assignments to the free variables of 𝜑. Thus, for the interpretation 

𝐼 = 〈𝑈, 𝑅〉 for PC, we have:  

 

 
561 Ibid. 
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i. 𝐼 ⊨ 𝑃(𝑥1, 𝑥2)[𝑢1, 𝑢2] if and only if 𝑢1𝑅𝑢2.  

ii. 𝐼 ⊨ ¬𝜑[𝑢1, … ] if and only if 𝐼 ⊨ 𝜑[𝑢1, … ] does not hold. 

iii. 𝐼 ⊨ (𝜑˄𝜓)[𝑢1, … ] if and only if 𝐼 ⊨ 𝜑[𝑢1, … ]˄𝐼 ⊨ 𝜓[𝑢1, … ].  

iv. Let 𝜓(𝑥1, … , 𝑥𝑛) be of the form ∃𝑦𝜑(𝑥1, … , 𝑥𝑛, 𝑦). Then  

v. 𝐼 ⊨ 𝜓[𝑢1, … , 𝑢𝑛] if and only if there exists a 𝑡 in 𝑈 such that 𝐼 ⊨ 𝜑[𝑢1, … 𝑢𝑛, 𝑡].  

 

If 𝐼 ⊨ 𝜑[𝑢1, … ] for every possible assignment to the free variables in 𝜑, then we write 

𝐼 ⊨ 𝜑, and then 𝜑 is said to be “true” in 𝐼. If, for every interpretation 𝐼, 𝐼 ⊨ 𝜑 holds, then 𝜑 is 

said to be “universally valid,” and we write ⊨ 𝜑. If 𝜑 is a sentence (i.e., if it has no free 

variables), then 𝐼 ⊨ 𝜑 if and only if 𝐼 ⊨ 𝜑[𝑢1, … , 𝑢𝑛] for some choice of 𝑢1, … , 𝑢𝑛 (such a 

choice is, in fact, arbitrary).  

For instance, consider the interpretation 𝐼 = 〈𝑉, 𝑇〉, where 𝑉 is the universe of all (living 

or dead) human beings, and 𝑇 is the ancestor relation over 𝑉, and the formula ∃𝑥𝑃(𝑥, 𝑦). If 𝑝 

and 𝑞 are human beings, then  

 

𝐼 ⊨ ∃𝑥𝑃(𝑥, 𝑦)[𝑝] if and only if 𝐼 ⊨ 𝑃(𝑥, 𝑦)[𝑞, 𝑝] 

 

for some 𝑞 ∈ 𝑉. This holds if and only if 𝑞𝑇𝑝 for some 𝑞 ∈ 𝑉. According to biology, this is 

always true (i.e., for each 𝑝, there is always someone who is an ancestor of 𝑝), and, therefore, 

there is always some 𝑞 ∈ 𝑉 such that 𝑞𝑇𝑝, meaning that the formula ∃𝑥𝑃(𝑥, 𝑦) is always true 

in 𝐼 = 〈𝑉, 𝑇〉. 

If 𝛴 is a set of sentences of PC and 𝐼 is an interpretation such that 𝐼 ⊨ 𝜑 for every 

sentence 𝜑 in 𝛴, then 𝐼 is said to be a “model” of 𝛴.  

We are already familiar with the axioms and the rule of inference of PC. However, we 

have to prove that the axiomatic system PC is “complete” (that is, the theorems generated by 

the axiomatic system PC are all the universally valid formulas) and “consistent” (that is, the 

theorems generated by the axiomatic system PC are only universally valid formulas, or, in 

other words, the axiomatic system PC neither contains nor produces contradictions). Given 

the axiomatic system PC, a “proof” in PC is a finite sequence of formulas, each of which is 

either an axiom or inferred from formulas earlier in the sequence by a rule of inference. A 

“theorem” can be regarded as the last line of a proof, and we write ⊢ 𝜑 if 𝜑 is a theorem.  

If 𝛴 is a set of axioms, then we write 𝛴 ⊢ 𝜑 if 𝜑 is provable in the axiomatic system 

composed of the initial axiomatic system PC and the sentences in 𝛴 that have been accepted 

as additional axioms. A set of sentences 𝛴 is “consistent” if there exists no formula 𝜑 for 

which both 𝛴 ⊢ 𝜑 and 𝛴 ⊢ ¬𝜑 hold.  

 

The Gödel–Henkin Completeness Theorem for PC562: The Austrian mathematician and 

logician Kurt Gödel (1906–78) and the American logician Leon Albert Henkin (1921–2006) 

have independently proved the following theorem, which is known as the “Gödel–Henkin 

Completeness Theorem for PC”: If 𝛴 is a consistent set of formulas, then there exists an 

interpretation 𝐼 such that 𝐼 ⊨ 𝜓 for every 𝜓 in 𝛴. Thus, if a formula is logically valid, then 

there is a finite deduction (i.e., a formal proof) of the formula.  

 

 
562 Ibid. 
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Proof: In order to prove the aforementioned theorem, we need, first of all, to prove 

Lindenbaum’s Lemma, according to which any consistent theory of predicate calculus can be 

extended to a complete consistent theory, or, in other words, every consistent set of formulas 

has a maximal consistent superset.  

Notice that a consistent set of sentences 𝛴 is said to be “complete” if, for each sentence 𝜑 

of the language, either 𝛴 ⊢ 𝜑 or 𝛴 ⊢ ¬𝜑. Then Lindenbaum’s Lemma can be formulated as 

follows: If 𝛴 is consistent, then there exists a complete consistent extension 𝛴∗ of 𝛴, that is, 

for any sentence 𝜑 of the language, exactly one of the following holds: 𝛴∗ ⊢ 𝜑 or 𝛴∗ ⊢ ¬𝜑. 

We can prove Lindenbaum’s Lemma as follows: First, let us list all sentences 𝜑1, 𝜑2, 𝜑3, … of 

PC. Then let us define a sequence 𝛴0, 𝛴1, 𝛴2, … of sets of sentences as follows: Set 𝛴0 = 𝛴. 

Let  

 

𝛴1 = {
𝛴0 𝑖𝑓 𝛴0 ⊢ ¬𝜑1

𝛴0 + 𝜑1 𝑖𝑓 𝛴0 ⊬ ¬𝜑1
 ,  

 

that is, if 𝜑1 can be added to 𝛴0 so that the new set is still consistent, then we add it to obtain 

𝛴1; otherwise, we leave 𝛴1 = 𝛴0. Under the same reasoning, we obtain 

 

𝛴𝑛+1 = {
𝛴𝑛 𝑖𝑓 𝛴𝑛 ⊢ ¬𝜑𝑛+1

𝛴𝑛 +𝜑𝑛+1 𝑖𝑓 𝛴𝑛 ⊬ ¬𝜑𝑛+1
 ,  

 

so that each 𝛴𝑛 is consistent. If 𝛴∗ is what we get by adding or not adding, as the case may be, 

each formula in our list of sentences of PC, then 𝛴∗ is consistent; because, given that the 

length of every proof is finite, a proof of inconsistency in 𝛴∗ would imply that one of the 𝛴𝑛 

is inconsistent, but this is impossible because we have guaranteed by the construction that 

each of the 𝛴𝑛 is consistent. Moreover, all sentences of the language are in the list 

𝜑1, 𝜑2, 𝜑3, …, and, at each stage 𝑛, we determine whether to add 𝜑𝑛 to the 𝛴𝑛. Thus, for each 

formula 𝜑, exactly one of 𝜑 or ¬𝜑 is in 𝛴∗ and is provable from 𝛴∗. In this way, we have 

proved Lindenbaum’s Lemma, and, now, we shall return to the proof of the Gödel–Henkin 

Completeness Theorem for PC.  

 

Step 1: We start with a theory Σ. 

Step 2: Add the constants 𝑐1, 𝑐2, 𝑐3, … to the language and revise the alphabet and the 

definition of a formula of PC to obtain 𝛴′. These individual constants were added in 

such a way that, whenever a property 𝜓(𝑣1) is satisfied by some object in our 

universe, we can fix some constant 𝑐 and assert 𝜓(𝑐), and, in this case, 𝑐 is a definite 

“witness” that there exists an element satisfying the property 𝜓. Obviously, if 𝛴 is 

consistent, then so is 𝛴′ (since we simply add names of the objects in a prospective 

universe).  

Step 3: List all the formulas whose unique free variable is 𝑣1: 𝜓1(𝑣1),… , 𝜓𝑛(𝑣1),… Let 

𝜔𝑛 be the formula 

∃𝑣1𝜓𝑛(𝑣1) → 𝜓𝑛(𝑐), 

where 𝑐 is the first witness not previously used in a 𝜓 or a 𝜔. 

Step 4: In order to add the 𝜔𝑛 as axioms, let 

𝛴0 = 𝛴′, 
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𝛴𝑛+1 = 𝛴𝑛 +𝜔𝑛, 

𝛴∞ =∪ 𝛴𝑛. 

Thus, if we add all the new axioms to 𝛴, we obtain the system 𝛴∞. Obviously, 

each 𝛴𝑛 is consistent. Therefore, 𝛴∞ is consistent (notice that a proof of 𝛴∞’s 

inconsistency would be a proof of 𝛴𝑛’s inconsistency for some 𝑛). 

Step 5: By Lindenbaum’s Lemma, 𝛴∞ can be extended to a complete consistent 

extension 𝛴∗. Thus, for any sentences 𝜑 and 𝜓 of 𝛴∗, we have:  

a) 𝛴∗ ⊢ 𝜑𝑜𝑟𝛴∗ ⊢ ¬𝜑, 𝑖. 𝑒. , 𝛴∗𝑖𝑠𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒. 

b) 𝛴∗ ⊢ ¬𝜑𝑖𝑓𝑎𝑛𝑑𝑜𝑛𝑙𝑦𝑖𝑓𝛴∗ ⊬ 𝜑.  

c) 𝛴∗ ⊢ (𝜑˄𝜓)𝑖𝑓𝑎𝑛𝑑𝑜𝑛𝑙𝑦𝑖𝑓𝛴∗ ⊢ 𝜑 ˄ 𝛴∗ ⊢ 𝜓.  

d) 𝛴∗ ⊢ ∃𝑣1𝜓(𝑣1)𝑖𝑓𝑎𝑛𝑑𝑜𝑛𝑙𝑦𝑖𝑓𝛴
∗ ⊢ 𝜓(𝑐)𝑓𝑜𝑟𝑠𝑜𝑚𝑒𝑐; 𝑠𝑖𝑛𝑐𝑒∃𝑣1𝜓(𝑣1) →

𝜓(𝑐)𝑖𝑠𝑜𝑛𝑒𝑜𝑓𝑡ℎ𝑒𝜔𝑛𝑎𝑥𝑖𝑜𝑚𝑠.  

Step 6: Define a model 𝑀 = 〈𝑈, 𝑅〉 for 𝛴∗, so that we have the universe 𝑈 = {𝑐1,𝑐2, … } 

and the relation 𝑅 on 𝑈 such that 𝑐𝑖𝑅𝑐𝑗 if and only if 𝛴∗ ⊢ 𝑃(𝑐𝑖 , 𝑐𝑗).  

Step 7: We conclude that (due to Steps 1, 2, 3, and 4, and due to the definition of an 

interpretation of PC) 

𝑀 ⊨ 𝜑𝑖𝑓𝑎𝑛𝑑𝑜𝑛𝑙𝑦𝑖𝑓𝛴∗ ⊢ 𝜑. 

Step 8: Since 𝛴 is contained in  𝛴∗, it follows that 𝑀 ⊨ 𝜑 for all 𝜑 in 𝛴. Thus, if 𝛴 is 

consistent, then 𝛴 has a model. In this way, we have proved the Gödel–Henkin 

Completeness Theorem for PC.■  

 

Remark:𝛴 has a countable model, since the 𝑐𝑖 form a countable set.  

A set of sentences is said to be 𝜔-complete if, whenever it deductively yields every 

instance of a universal generalization, it also yields the given generalization. In particular, an 

arithmetic theory 𝑇 is said to be 𝜔-complete if, for every formula 𝜑(𝑥) in one free variable 𝑥, 

the fact that, in 𝑇, one can derive all the formulas of the form 𝜑(0), 𝜑(1),… implies that the 

formula ∀𝑥𝜑(𝑥) is derivable in 𝑇. A set of sentences is said to be 𝜔-consistent if, whenever it 

yields every instance of a universal generalization, it does not also yield that there exists an 

instance that contradicts it.  

 

 

3.3. AXIOMATIC MODEL THEORY 
 

In the study of the foundations of science as a semiotic phenomenon (that is, as 

something strongly connected with the subject matter of the science of signs), language is a 

crucial factor; for, civilization, in general, can be regarded sub specie semioticae, on the 

grounds that it is a system of systems of meaning.563 According to the Swiss linguist 

Ferdinand de Saussure, language is made of linguistic units, or “sings,” which are composed 

of two parts, namely, a concept (or meaning) and a sound-image: respectively, “the signified” 

and the “signifier.”564 Since, according to Saussure, a language is a system of “signs” that 

express “ideas,” the study of signs is of great significance. The American philosopher and 

mathematician Charles Sanders Peirce has placed particular emphasis on the notion of a 

 
563 See: Ecco, A Theory of Semiotics. 
564 Saussure, Course in General Linguistics. 
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“sign” as something that substitutes for something else to somebody else from some point of 

view or relative to some properties.565 As Charles Morris, has argued, something is a “sign” if 

it is interpreted as a sign of another thing by someone, namely, there are different “possible 

interpretations” and “possible interpreters.”566 

Consider the following syllogism: 

 

(𝑆) The Queen is the head of England, and 

Elizabeth II is the Queen of England; 

hence, Elizabeth II is the head of England.  

 

In order to formalize (𝑆), we shall use a predicate language 𝕃 having, in addition to the 

usual system of PC and quantifiers, an one-place predicate 𝑃 interpreted as “is the head of 

England,” a two-place predicate letter 𝑇 interpreted as “is the same as,” and two constant 

letters 𝑒 and 𝑞 for “Elizabeth II” and “Queen,” respectively. In addition, we shall use two of 

the usual PC connectives: ˄ and ⇒. Then (𝑆) can be formalized as follows:  

 

(𝑆′)𝑃(𝑞)˄𝑇(𝑒, 𝑞) ⇒ 𝑃(𝑒). 

 

The predicate letter 𝑇 is called the “identity predicate,” and PC equipped with 𝑇 is called 

“predicate calculus with identity,” denoted by PC(i).  

Consider the structure 𝑄 = 〈𝐴, 𝐾, 𝑎1, 𝑎2, 𝑅〉, where 𝐴 is a non-empty set, 𝐾 is a property 

on 𝐴 (i.e., a subset of 𝐴), 𝑅 is a relation on 𝐴, and 𝑎1 and 𝑎2 are members of 𝐴. It is easily 

seen that 𝑄 is a structure wherein we can interpret (𝑆′). Thus, if 𝑒 is interpreted as 𝑎1, 𝑞 as 

𝑎2, 𝑃 as 𝐾, and 𝑇 as 𝑅 (i.e., 𝑅 is the identity relation on 𝐴), and if 𝐴 = {𝑎1, 𝑎2}, we conclude 

that (𝑆′) asserts that, if 𝑎2 has property 𝐾, and if 𝑎1 and 𝑎2 are the same, then 𝑎1 has property 

𝐾.  

A “normal interpretation” for a language 𝕃 is one for which the interpretation of the two-

place predicate (𝑇) is the identity relation. In every normal interpretation, the following are 

true: 

 

Axioms of Equality: 

 

i. ∀𝑥 𝑇(𝑥, 𝑥), that is, 𝑇 is reflexive; 

ii. ∀𝑥∀𝑦 (𝑇(𝑥, 𝑦) ⇒ 𝑇(𝑦, 𝑥)), that is, 𝑇 is symmetric; 

iii. ∀𝑥∀𝑦∀𝑧 (𝑇(𝑥, 𝑦)˄𝑇(𝑦, 𝑧) ⇒ 𝑇(𝑥, 𝑧)), that is, 𝑇 is transitive; 

iv. Leibniz’s Law (the Identity of the Indiscernibles): For any formula 𝜑 of 𝕃, 

 

∀𝑥∀𝑦 (𝑇(𝑥, 𝑦) ⇒ (𝜑(𝑥, 𝑥) ⇒ 𝜑(𝑥, 𝑦))). In other words, according Leibniz, no two 

distinct things exactly resemble each other, or, equivalently, no two (distinct) objects have 

exactly the same properties.567 

Two interpretations 𝐼1 and 𝐼2 of an axiomatic system 𝛴 are said to be “isomorphic” if 

there exists a correspondence (i.e., an one-to-one mapping) from the elements of 𝐼1 onto the 

 
565 Peirce, Collected Papers. 
566 See: Ecco, A Theory of Semiotics.  
567 Leibniz, “Discourse on Metaphysics.”  
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elements of 𝐼2 (namely, a bijection 𝐼1 → 𝐼2) such that it is preserved by the relations and the 

operations of 𝛴. Notice that two isomorphic models differ only in the nature of their elements, 

but the structure in each is the same.  

 

Example: Consider the axioms of an elementary part of geometry called “incidence 

geometry”: 

 

i. For any two distinct points 𝑃 and 𝑄, there exists exactly one straight line 𝑙 incident 

with 𝑃 and 𝑄. 

ii. For every straight line 𝑙, there exist at least two distinct points incident with 𝑙.  

iii. There exist three distinct points such that no straight line is incident with all three of 

them.  

 

Now, consider a set {𝐴, 𝐵, 𝐶} of three letters that we call “points.” By “lines,” we mean 

those subsets that contain exactly two letters, such as {𝐴, 𝐵}. A point is interpreted as 

“incident” with a “line” if it is a member of that subset; for instance, 𝐴 lies on {𝐴, 𝐵} and 

{𝐴, 𝐶} but not on {𝐵, 𝐶}. It is easily seen that the preceding interpretation is a model for 

incidence geometry. Furthermore, let us consider another set {𝑎, 𝑏, 𝑐} of three letters that we 

call “lines.” Now, by “points,” we mean those subsets that contain exactly two letters, such as 

{𝑎, 𝑏}. Assume that incidence is set membership, namely, that “point” {𝑎, 𝑏} is “incident” 

with “lines” 𝑎 and 𝑏 but not with “line” 𝑐. This model has the same structure as the 

aforementioned three-point model, and these two models differ only in notation. An explicit 

isomorphism is given by the following correspondences: 𝐴 ↔ {𝑎, 𝑏}, 𝐵 ↔ {𝑏, 𝑐}, 𝐶 ↔ {𝑎, 𝑐}, 
{𝐴, 𝐵} ↔ 𝑏, {𝐵, 𝐶} ↔ 𝑐, and {𝐴, 𝐶} ↔ 𝑎. Hence, 𝐴 lies on {𝐴, 𝐵} and {𝐴, 𝐶} only, and its 

corresponding “point” {𝑎, 𝑏} lies on the corresponding “lines” 𝑏 and 𝑎 only; by analogy, 

incidence is preserved by the correspondence for 𝐵 and 𝐶, too. Nevertheless, notice that, if 

we use the correspondence {𝐴, 𝐵} ↔ 𝑎, {𝐵, 𝐶} ↔ 𝑏, {𝐴, 𝐶} ↔ 𝑐 for the “lines” and leave the 

correspondence for the “points” as it was before, then we do not obtain an isomorphism, 

because, for instance, 𝐴 lies on {𝐴, 𝐶}, but the corresponding “point” {𝑎, 𝑏} does not lie on the 

corresponding “line” 𝑐.  

A set of axioms is called “categorical” if any two of its interpretations are isomorphic. 

Thus, a “categorical judgment” is one in which the attribute refers to the subject in an 

absolute, unconditional way (for instance, “Humans are mammals.”).  

The Gödel–Henkin Completeness Theorem for PC is a very important result in model 

theory. Because of the fact that a formula that is satisfiable in some non-empty domain cannot 

be refutable, it follows that the aforementioned Completeness Theorem includes the 

Löwenheim–Skolem Theorem, which asserts that, if a formula is satisfiable, then it is 

satisfiable in a countably infinite domain (or, equivalently, that, if a countable theory has a 

model, then it has a countable model).568 In particular the Norwegian mathematician and 

logician Thoralf Albert Skolem (1887–1963) not only showed that German mathematician 

Leopold Löwenheim’s argument was true once again, but also extended the theorem to the 

case of a countable infinity of formulas. Moreover, if they are simultaneously satisfiable, Kurt 

Gödel treated the case in the domain of natural numbers.  

 
568 See: Heijenoort, From Frege to Gödel. 
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If a set of sentences 𝛴 is inconsistent, then some finite subset of 𝛴 is inconsistent, too569; 

because, by hypothesis, for some formula 𝜑, both 𝛴 ⊢ 𝜑 and 𝛴 ⊢ ¬𝜑, namely, there exists a 

finite string of formulas 𝜑1, 𝜑2, … , 𝜑𝑛 with 𝜑𝑛 = 𝜑˄¬φ such that, for each 𝜑𝑖, 𝑖 = 1,2,… , 𝑛, 

one of the following holds: (a) 𝜑𝑖 is a logical or equality axiom, or (b) 𝜑𝑖 is a member of 𝛴, 

or (c) 𝜑𝑖 is inferred by the established rule of inference from two formulas in the list before 

𝜑𝑖; since the list is finite, it follows that the number of the formulas in it that are members of 

𝛴 is finite.  

 

The Compactness Theorem (Kurt Gödel proved the countable compactness theorem in 

1930, and Anatoly Maltsev proved the uncountable case in 1936)570: If every finite subset of 

𝛴 has a model, then 𝛴 has a model (𝛴 is a countably infinite set of formulas).  

 

Proof: This theorem can be easily proved by reductio ad absurdum as follows: Suppose, 

for contradiction, that every finite subset of 𝛴 has a model, but 𝛴 does not have a model. 

Then, by the contrapositive of the Gödel–Henkin Completeness Theorem, 𝛴 is inconsistent. 

Therefore, there exists a sentence 𝜑 such that 𝛴 ⊢ 𝜑 and 𝛴 ⊢ ¬𝜑, and each of these 

deductions consists of a finite chain of sentences. If 𝛴′ is the set of sentences of 𝛴 involved in 

the deduction of 𝜑, and if 𝛴′′is the set of sentences of 𝛴 involved in the deduction of ¬𝜑, 

then we obtain two finite subsets of 𝛴 such that 𝛴′ ⊢ 𝜑 and 𝛴′′ ⊢ ¬𝜑. Obviously,  𝛴′ ∪ 𝛴′′ ⊢

𝜑 and  𝛴′ ∪ 𝛴′′ ⊢ ¬𝜑, since the sentences involved in the original deductions still belong to 

the union of the two finite subsets. Consequently,  𝛴′ ∪ 𝛴′′ is inconsistent, and, hence, it does 

not have a model. By having thus produced a finite subset of 𝛴 that does not have a model, 

we have reached the desired contradiction.■  

 

Example571: Assume that 𝛴 is a set of sentences with arbitrarily large finite normal 

models. In the language of 𝛴 augmented by infinitely many new constant letters 𝑐1, 𝑐2, …, let 

 𝛴∗ be the set of sentences consisting of 𝛴 plus all the sentences ¬𝑇(𝑐𝑖 , 𝑐𝑗) for which 𝑖 ≠ 𝑗. 

We shall show that  𝛴∗ has a model by showing that every finite subset of  𝛴∗ has and then 

applying the Compactness Theorem. If 𝛴′ is a finite subset of  𝛴∗, then 𝛴′ contains some of 

the elements of 𝛴 and finitely many sentences ¬𝑇(𝑐𝑖 , 𝑐𝑗) involving only finitely many of the 

constant letters 𝑐𝑖 that will be among 𝑐1, 𝑐2, … , 𝑐𝑛 for an appropriate 𝑛. By hypothesis, 𝛴 has a 

normal model 〈𝐴, … 〉 with at least 𝑛 elements, so that, if 𝑎1, 𝑎2, … are elements of 𝐴 with 

𝑎1, 𝑎2, … , 𝑎𝑛 distinct, then 〈𝐴,… , 𝑎1, 𝑎2, … 〉 is a model of 𝛴′, where 𝑎1, 𝑎2, … are the 

interpretations of 𝑐1, 𝑐2, … Hence,  𝛴∗ has a model, and so has a normal model 

〈𝐵, … , 𝑏1, 𝑏2, … 〉, where 𝑏1, 𝑏2, … are the interpretations of 𝑐1, 𝑐2, … Consequently, 〈𝐵,… 〉 is a 

normal model of 𝛴, since  𝛴∗ includes 𝛴, and 𝑏𝑖 ≠ 𝑏𝑗 whenever 𝑖 ≠ 𝑗, and, thus, 𝐵 is infinite. 

We conclude that 𝛴 has an infinite normal model. In general, we can easily reach the 

conclusion that the Gödel–Henkin Completeness Theorem implies that every consistent set of 

sentences in a countable language (i.e., a language with a countable number of formulas) with 

an equality predicate letter including the equality axioms has a countable normal model.  

 
569 See: Arnold, Logic and Boolean Algebra; Bell and Machover, A Course in Mathematical Logic; Ebbinghaus, 

Flum, and Thomas, Mathematical Logic; Epp, Discrete Mathematics with Applications; Kolman, Busby, and 

Ross, Discrete Mathematical Structures; Rautenberg, A Concise Introduction to Mathematical Logic.  
570 Ibid. 
571 Ibid. 
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3.4. COMMON SENSE, NON-MONOTONIC LOGIC,  

AND MANY-VALUED LOGIC 
 

By now, it has become clear that the character of the system that is used in formalization 

is “monotonic,” in the sense that, given the operator of logical consequence 𝐶𝑜𝑛 for two sets 

of formulas (databases) 𝑋 and 𝑌, it holds that, if 𝑋 ⊆ 𝑌, then 𝐶𝑜𝑛(𝑋) ⊆ 𝐶𝑜𝑛(𝑌). However, 

we must consider the case in which the addition of new data to the existing sets of formulas 

(databases) may contradict propositions that had been previously accepted as valid, and it 

may compel us to revise previous syllogisms. 

For instance, consider the following logical proposition: 

 

“Birds fly.” 

 

This proposition is not generally true, since there exist birds that do not fly. Let us add 

the following piece of information to our database: 

 

“Hedwig is a bird.” 

 

Then common sense urges us to infer that Hedwig flies, since there is no clear evidence 

that Hedwig belongs to a non-typical case. Thus, the conclusion that “Hedwig flies” is due to 

the lack of data indicating that Hedwig is an exception to the established rule. Now, assume 

that we receive the following piece of information: 

 

“Hedwig is a hen, or a penguin, or an ostrich, or a bird with broken wings.” 

 

Then the conclusion that “Hedwig flies” must be retracted.  

The structure of the aforementioned syllogism is characteristic of what we call “non-

monotonic reasoning.”572 The data management method and the proof procedure that 

characterize non-monotonic logic are different from those that characterize classical 

syllogisms. Thus, we should incorporate new hypotheses (which are regarded as 

“exceptions”) into the proof procedure. In particular, the general form of formalization should 

be modified as follows:  

 

“From the set 𝑋 of hypotheses, we can infer 𝑦, 

unless it happens to have 𝑧 as a hypothesis.”  

 

In fact, non-monotonic systems have significant applications to medical diagnoses, 

database analysis, conflict analysis, intelligence analysis, etc.573 

 
572 It is important to mention that reasoning may also prove to be defeasible when it is applied to an inconsistent 

stock of information obtained via different sources.  
573 See: Arieli and Avron, “General Patterns of Nonmonotonic Reasoning”; Elqayam and Over, “New Paradigm 

Psychology Reasoning”; Pearl, Probabilistic Reasoning in Intelligent Systems; Pollock, “Defeasible 

Reasoning.” 
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Non-monotonic logic, originally systematized by the American computer scientists Jon 

Doyle and Drew McDermott in the early 1980s, implies that there are several possibilities. 

Hence, non-monotonic reasoning deals with the problem of deriving plausible yet not 

infallible conclusions from a given set of formulas, and, since the conclusions are not certain, 

it must be possible to retract some of them if new information shows that they are wrong. The 

concept of “possible worlds” underpins the development of many-valued logics.  

Many-valued logics are similar to classical (Aristotelian) logic, because they accept the 

principle of truth functionality, according to which the truth of a compound sentence is 

determined by the truth values of its constituent sentences, as shown in section 3.1 (and, 

therefore, the truth value of a compound sentence remains unaffected when one of its 

component sentences is replaced by another sentence of the same truth value). However, in 

contrast to classical (Aristotelian) logic, multi-valued logics discard the principle of excluded 

middle, in the sense that they do not restrict the number of truth values to only two (denoted 

by “0” and “1”). In fact, multi-valued logics allow for a larger set 𝐾 of truth degrees. In a 𝑘-

valued logic, there are 𝑘 − 2 different (“intermediate”) truth degrees between the extreme 

truth values “absolutely false” (denoted by “0”) and “absolutely true” (denoted by “1”).574 

The Polish logician and mathematician Jan Łukasiewicz started studying multi-valued 

logic in the 1920s, developing a 3-valued logic, whose set of truth degrees consists of the 

values “true” (denoted by “1”), “false” (denoted by “0”), and “undetermined” or “possible” 

(denoted by “1/2”), in order to deal with Aristotle’s “paradox of the sea-battle.” In particular, 

Aristotle, in his treatise On Interpretation (the second treatise from Aristotle’s Organon), 

formulated the famous “paradox of the sea-battle,” which can be summarized as follows: 

Consider a statement, such as “a sea-battle will be fought tomorrow.” According to 

Aristotle’s principle of excluded middle, statements must be either true or false. But, if there 

are several possibilities out of which one is going to take place tomorrow, can there be a truth 

now about which one will take place? If the answer is “yes,” then the following problem 

emerges: on what grounds could something that is still a mere possibility, nevertheless be true 

already now? If the answer is “no,” then the following problem emerges: can we argue that all 

logically exclusive possibilities are necessarily untrue without denying that one of the 

possible outcomes must turn out to be the chosen one? This is a characteristic example of the 

so-called problem of future contingents: how can we assign truth values to contingent 

statements about the future? To solve the aforementioned problem (and resolve the 

corresponding paradox), Łukasiewicz developed his 3-valued logic, which accepts the values 

“true,” “false,” and “undetermined.”  

According to Łukasiewicz’s principles governing implication and equivalence involving 

the third value (“possibly,” or, symbolically, “1/2”), 3-valued logic gives rise to the following 

truth tables:  

Table 3.2. Truth Tables of a 3-Valued Logic (Łukasiewicz Logic) 

 

AND True Undetermined False 

True T U F 

Undetermined U U F 

False F F F 

 
574 See: Ackerman, An Introduction to Many-Valued Logics; Bolc and Borowik, Many-Valued Logics; Yablonsky, 

Introduction to Discrete Mathematics.  
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OR True Undetermined False 

True T T T 

Undetermined T U U 

False T U F 

 

NOT  

True F 

Undetermined U (i.e., ¬𝑈 = 𝑈) 

False T 

 

P Q 𝑃 → 𝑄 

T T T 

T F F 

T U U 

F T T 

F F T 

F U T 

U T T 

U F U 

U U T 

 

In fact, in the 1920s, the American logician and mathematician Emil Leon Post 

formulated 𝑘 additional truth degrees with 𝑘 ≥ 2, and, later, Łukasiewicz and the Polish-

American logician and mathematician Alfred Tarski together formulated a logic of 𝑘 truth 

values, where 𝑘 ≥ 2. In the 1930s, the German philosopher of science and logician Hans 

Reichenbach formulated an infinitely-valued logic.  

In the 1960s, the American mathematician, logician, and computer scientist Lofti Zadeh 

of the University of California at Berkeley formulated the so-called “fuzzy logic,” in which a 

proposition can possess a degree of truth anywhere between 0.0 and 1.0. In other words, in 

fuzzy logic, the truth values of variables may be any real number between 0.0 and 1.0 both 

inclusive. Fuzzy logic is based on the assumption that people make decisions based on 

imprecise and non-numerical information, and it has significant applications to control theory 

and artificial intelligence.575 

As I have already explained, logic studies the concepts of syntactic consequence and 

semantic consequence, and, in this context, it is concerned with propositions, sets of 

propositions, and the relation of consequence among them. Hence, as Petr Hájek has pointed 

out, logic tries to represent all this “by means of well-defined logical calculi admitting exact 

investigation,” but “various calculi differ in their definitions of sentences and notion(s) of 

consequence,” and, in particular, “fuzziness is imprecision (vagueness); a fuzzy proposition 

may be true to some degree.”576 Hájek has explained the reasoning of fuzzy logic as follows:  

 

Standard examples of fuzzy propositions use a linguistic variable as, for example, age 

with possible values young, medium, old or similar. The sentence “The patient is young” is 

 
575 See: Hájek, Metamathematics of Fuzzy Logic; Cintula, Hájek, and Noguera, eds., Handbook of Mathematical 

Fuzzy Logic. 
576 Hájek, Metamathematics of Fuzzy Logic, p. 1. 
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true to some degree—the lower the age of the patient (measured e.g., in years), the more the 

sentence is true. Truth of a fuzzy proposition is a matter of degree . . . In a narrow sense, fuzzy 

logic, FLn, is a logical system which aims at a formalization of approximate reasoning. In this 

sense, FLn is an extension of multivalued logic . . . In its wide sense, fuzzy logic, FLn, is 

fuzzily synonymous with the fuzzy set theory, FST, which is the theory of classes with 

unsharp boundaries.577 

 

 

3.5. CRISES IN THE FOUNDATIONS OF MATHEMATICS  

AND MATHEMATICAL PHILOSOPHY 
 

Mathematics is a large discipline, and it has many particular areas (such as number 

theory, algebra, geometry, mathematical analysis, topology, probability and statistics, 

combinatorics, etc.). In the domain that is known as the foundations of mathematics, one 

deals with the problem of the systematization of mathematics and with the problem of infinity 

(in fact, these two problems are interrelated). There is much to learn from the foundations of 

mathematics regarding both the structure of consciousness and the structure of the world. 

Moreover, the study of the foundations of mathematics refines and puts into practice critical-

thinking skills. Ideally, “mathematical rigor” consists in the following set of attributes and 

tasks: (i) Formulating initial definitions in a careful and precise way. (ii) Making a minimum 

number of reasonable assumptions. (iii) Deriving new theorems in a step by step logical way. 

(iv) Constantly verifying and cross-checking the constituent components of one’s research 

work in order to preclude mistakes and logical gaps from creeping into it. (v) Making careful 

computations. Hence, there is a substantial difference between giving one confidence in an 

argument and formally proving it. However, as I shall explain shortly, achieving rigor (in 

particular, logical continuity) is a very arduous task even within the context of mathematics.  

 

 

3.5.1. The First Crisis in the Foundations of Mathematics 

 

In the seventh century B.C., Thales of Miletus, a Greek mathematician, astronomer, and 

philosopher from Miletus, in Ionia, Asia Minor, officially initiated a new approach to 

mathematics. In contrast to the mathematics of other civilizations, such as the Babylonians 

and the Egyptians, Thales’s approach to mathematics is based on the thesis that scientific 

propositions are not recipes for practical tasks, that is, techniques whose validity is 

determined by the method of trial and error, but they should be explained and proved.578 In 

other words, Thales attempted to endow mathematics with rigor, which, in this case, means 

logical validity.  

In the context of Thales’s rigorous mathematics, by the term “line segment,” we mean a 

part of a line that is bounded by two distinct endpoints, and contains every point on the line 

between the endpoints. Let us consider the line segments 𝑎1, 𝑎2, 𝑎3, … , 𝑎𝑛 and the non-zero 

line segments 𝑏1, 𝑏2, 𝑏3, … , 𝑏𝑛. The line segments 𝑎1, 𝑎2, 𝑎3, … , 𝑎𝑛 are said to be 

“proportional” to 𝑏1, 𝑏2, 𝑏3, … , 𝑏𝑛, respectively, if 

 
577 Ibid, p. 2. 
578 Heilbron, Geometry Civilized; Holme, Geometry; Ostermann and Wanner, Geometry and Its History.  



Dr. Nicolas Laos, The Dialectic of Rational Dynamicity 415 

 
𝑎1

𝑏1
=

𝑎2

𝑏2
=

𝑎3

𝑏3
= ⋯ =

𝑎𝑛

𝑏𝑛
. 

 

Thus, two arbitrary line segments 𝑎 and 𝑐 are proportional to two other arbitrary line 

segments 𝑏 and 𝑑, respectively, if 𝑏 and 𝑑 are non-zero, and it holds that 

 
𝑎

𝑏
=

𝑐

𝑑
.   (1) 

 

Any equality between two ratios, such as (1), is said to be a “proportion” with terms 𝑎, 𝑏, 

𝑐, and 𝑑, as shown above. 

Assume that 𝐴𝐵 is a non-zero straight line segment, and that 𝑃 is a point on 𝐴𝐵. Then we 

say that the point 𝑃 “divides internally” the straight line segment 𝐴𝐵 in a ratio 𝜆, where 𝜆 ≥

0, if it holds that  

 
𝑃𝐴

𝑃𝐵
= 𝜆. 

 

If this is the case, then 
𝑃𝐴

𝑃𝐴+𝑃𝐵
=

𝜆

𝜆+1
⇔ 𝑃𝐴 =

𝜆

𝜆+1
𝐴𝐵, which implies the uniqueness of 𝑃. 

Similarly, we say that a point 𝑄 “divides externally” the straight line segment 𝐴𝐵 in a ratio 𝜆, 

where 𝜆 ≥ 0, if the points 𝐴, 𝐵, and 𝑄 are collinear, 𝑄 is external to 𝐴𝐵, and it holds that  

 
𝑄𝐴

𝑄𝐵
= 𝜆. 

 

If this is the case, then 
𝑄𝐴

|𝑄𝐴−𝑄𝐵|
=

𝜆

|𝜆−1|
 (given that 𝑄𝐴 ≠ 𝑄𝐵, it holds that 𝜆 ≠ 1), so that 

𝑄𝐴 =
𝜆

|𝜆−1|
 AB, which implies the uniqueness of 𝑄. 

 

Thales’s Theorem579: If parallel straight lines intersect two straight lines, then they define 

proportional straight line segments on them. For instance, if parallel straight lines 𝑙1, 𝑙2, and 

𝑙3 intersect straight lines 𝑎 and 𝑎′ at points 𝐴,𝐵, 𝐶 and 𝐴′, 𝐵′, 𝐶′, respectively, as shown in 

Figure 3.2, then 

 
𝐴𝐵

𝐴′𝐵′
=

𝐴𝐶

𝐴′𝐶′
=

𝐵𝐶

𝐵′𝐶′
. 

 

Corollary 1: Every straight line that is parallel to the bases of a trapezoid divides, both 

internally and externally, the non-parallel sides of the given trapezoid in equal ratios. 

 

Corollary 2: Every straight line that is parallel to one side of a triangle divides, both 

internally and externally, the other two sides of the given triangle in equal ratios.  

 

 
579 Ibid. 



Dr. Nicolas Laos, The Dialectic of Rational Dynamicity 416 

Corollary 3: If two triangles have a common angle, and if they have parallel opposite 

sides, then they are said to be in Thales position, and then they are similar and have 

proportional sides.  

 

 

Figure 3.2. Thales’s Theorem. 

In the sixth century B.C., Pythagoras and his school (the so-called “Pythagoreans”) 

endorsed Thales’s approach to mathematics. From the Pythagorean perspective of 

mathematics, the relations between the objects of the world (e.g., magnitudes) correspond to 

the relations between natural (and, generally, integral) numbers. However, it was soon 

realized that things are not so simple, since it was realized that there exist magnitudes that do 

not have a common measure. According to the Pythagoreans, two objects (magnitudes) are 

“commensurable,” that is, they have a common measure, if and only if there is a magnitude of 

the same kind contained an integral number of times in both of them. In other words, two 

magnitudes are “commensurable” if and only if their ratio is a rational number. However, the 

Pythagoreans encountered “incommensurable” magnitudes, namely, magnitudes whose ratio 

is an irrational number. For instance, the length of a diagonal of a unit square, namely, of a 

square whose sides have length 1, is, according to the Pythagorean Theorem, equal to √2, 

which is an irrational number; similarly, a circle’s circumference and its diameter are 

incommensurable (see sections 2.1.2, 2.2.3, and 2.2.4). The awareness that there exist 

incommensurable magnitudes compelled ancient Greek mathematicians to inquire into the 

relations between incommensurable magnitudes. This event marked a major crisis in ancient 

mathematics.  

According to ancient Greek mathematicians, quantities (magnitudes) are continuous and 

uniform objects, which are best represented by straight line segments, whereas their division 

into parts, namely, their measurement in terms of a “unit of measurement” (i.e., a definite 

magnitude of a quantity), represents the notion of discreteness. Ancient Greek 

mathematicians used the term “ratio of magnitudes” in order to refer to the relation between 

two magnitudes that can be measured in terms of a common unit of measurement, and, thus, 

the ancient Greek concept of a ratio is most similar to the more abstract modern concept of a 

number. In the context of ancient Greek mathematics, the objects of mathematics were 

quantities (represented by straight line segments), and the ratio between two quantities was a 

meta-object, namely, something that was used in order to study mathematical objects without 

being treated as a mathematical object itself. In other words, in the context of ancient Greek 
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mathematics, a ratio (namely, a number) was construed as a measuring relationship between 

two quantities, and such a measuring relationship could be built up (and, hence, proved) in 

finitely many steps, using a common unit of measurement. Nevertheless, the discovery of 

incommensurable ratios demonstrated that a ratio could not be interpreted as a measuring 

relationship in the aforementioned way. In fact, as a result of the discovery of 

incommensurable ratios, the concept of a ratio (or a number) acquired its conceptual 

autonomy, and, instead of being treated as a meta-object, it started being treated as an object 

of mathematics. Therefore, ancient Greek mathematicians had to transcend the system of 

mathematics that was based on commensurable ratios (notice that a commensurable ratio 

could easily become an object of mathematical theory, since it is a rational number, and, 

therefore, it can be constructed in finitely many steps, whereas the decimal representation of 

an irrational number neither terminates nor infinitely repeats but extends forever without 

regular repetition).  

In the fourth century A.D., Theon, one of the most important Greek mathematicians and 

commentators of Euclid’s and Ptolemy’s works, attempted to solve the problems that were 

generated as a result of the aforementioned crisis in the foundations of ancient Greek 

mathematics. In particular, Theon started from an extremely small (namely, infinitesimal) unit 

square such that the ratio between any of its sides and any of its diagonals is equal to 1 (given 

that it is infinitely small); symbolically, if 𝑎1 is the length of each of the sides of the given 

infinitesimal unit square, and if 𝛿1 is the length of each of the diagonals of the given 

infinitesimal unit square, then 
𝛿1

𝑎1
= 1. Subsequently, Theon formulated a recursive sequence 

of unit squares defined by  

 

𝑎𝑛 = 𝛿𝑛−1 + 𝑎𝑛−1 and 𝛿𝑛 = 2𝑎𝑛−1 + 𝛿𝑛−1, 

 

so that the ratio between a diameter and a side of these unit squares approaches its real value 

(meaning the real relationship between a diameter and a side of these unit squares according 

to the Pythagorean Theorem), namely, 

 
𝛿𝑛

𝑎𝑛
→ √2. 

 

He explained that he started from the case in which 
𝛿1

𝑎1
= 1 because, just as the sperm of a 

living organism encompasses all the subsequent properties of the given organism, so any ratio 

(including the ratio between a diagonal and a side of a unit square) spermatically (namely, at 

the infinitesimal level) encompasses the unit.  

Theon’s aforementioned reasoning is underpinned by Aristotle’s concept of a “potential 

infinity.” The concept of modern mathematics that is semantically most similar to Aristotle’s 

concept of a “potential infinity” is the convergence of a sequence of natural numbers (see 

section 2.4). Thus, from the perspective of ancient Greek mathematics, infinity is not a being 

(i.e., it is not an actual state), namely, it cannot be simultaneously considered in its whole 

extension, but it can only be considered as a becoming (i.e., a process). In this way, the 

concept of an infinite approach helps us to overcome the contradiction between 

incommensurable ratios and commensurable ratios, since we can think of an 

incommensurable ratio infinitely approaching a commensurable ratio and vice versa. 
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Similarly, the concept of an infinite approach helps us to overcome the contradiction between 

broken lines and curves as well as the contradiction between continuity and discreteness. This 

reasoning is endorsed by Euclid, and, therefore, in his Elements, he does not consider 

infinitely extended straight lines, but he always works with straight line segments, which, as 

he says, can be extended as much as one needs.  

However, several intellectuals have used infinite processes in a way that is not rigorous. 

For instance, they have attempted to compute the length of the circumference of a circle by 

considering an inscribed polygon whose number of sides increases indefinitely, and, 

therefore, the length of each side of such a polygon decreases indefinitely, so that a triangle 

whose base is a side of the given polygon and whose vertex (i.e., the “top” corner opposite its 

base) is the center of the given circle could become such that its base coincides with the given 

circle’s circumference. But then to what extent is such a shape a triangle, and beyond which 

point does a straight line segment (in this case, the base of a triangle) become a chord? One 

may argue that these changes happen when a straight line segment becomes infinitely small, 

but then one may counter-argue that, by becoming infinitely small, a straight line segment is 

not “something” any more, and it becomes “nothing.” Hence, how is it possible that an 

infinite series of “nothing” (namely, of “no-things”) gives “something,” such as a circle? The 

aforementioned example indicates the problems that are generated as a result of the use of 

infinite processes in computations. 

The aforementioned crisis in the foundations of mathematics was overcome by 

Eudoxus’s theory of proportions and by the method of exhaustion, which derives from 

Eudoxus’s theory of proportions, and it was used by Archimedes. As I mentioned in section 

2.2.6, Archimedes was very careful in the use of infinite processes, and, therefore, he 

approximated 𝜋 by using the fact that the circumference of a circle is bounded by the 

perimeter of an inscribed polygon and the perimeter of a circumscribed polygon. According 

to Eudoxus (an ancient Greek mathematician, astronomer, philosopher, and student of 

Archytas and Plato) and Archimedes, there is always a ratio between any two magnitudes, 

and we can always make any magnitude smaller or greater than a given magnitude, so that the 

ratio between two magnitudes 𝑎 and 𝑏 is the same as the ratio between two other magnitudes 

𝑐 and 𝑑 if and only if, for any natural numbers 𝑚 and 𝑛, it holds that 

 

𝑚𝑎 ⪌ 𝑛𝑏 ⇒ 𝑚𝑐 ⪌ 𝑛𝑑, that is, 
𝑚

𝑛
⪌

𝑎

𝑏
⇒

𝑚

𝑛
⪌

𝑐

𝑑
,   (1) 

 

meaning that both of these ratios are characterized by the same placement property (i.e., 

ordering) with regard to other numbers. In (1), the equality sign (=) refers to commensurable 

ratios, whereas the inequality signs (≷) refer to incommensurable ratios. These ideas of 

Eudoxus and Archimedes indicate that ancient Greek mathematicians discovered not only 

incommensurable magnitudes but also incommensurable numbers. Moreover, the ideas of 

Eudoxus and Archimedes are conceptually very similar to Dedekind’s cuts (see section 2.2.4). 

Eudoxus’s aforementioned theory of proportions underpins Archimedes’s method of 

exhaustion for the solution of geometric problems, and Archimedes’s method of exhaustion 

underpins modern infinitesimal calculus (see section 2.9).  

It is important to notice that the way in which Eudoxus solved the problem of the 

existence of incommensurable ratios (i.e., his attempt to make rigorous the conundrum of 
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irrationality that appears to exist in elementary geometry) marks a shift away from the 

traditional constructivist approach to mathematics toward formalism. In other words, Eudoxus 

does not explain what is a ratio (as a mathematical object), but he states only when two ratios 

are similar to each other. The constructivist approach to mathematics allows us to determine 

what is an object by being able to construct it, whereas the formalist approach to mathematics 

is not concerned with the substance of the mathematical object under consideration, and it is 

concerned only with the relations of the mathematical object under consideration to other 

mathematical objects. The difference between the constructivist approach to mathematics and 

the formalist approach to mathematics reappeared and gave rise to heated epistemological 

debates in the nineteenth and the twentieth centuries in the context of the controversy between 

the “school” of intuitionism and the “school” of formalism, to which I shall refer later in this 

section.  

Eudoxus’s decision to give primacy to the concept of a ratio as a meta-object over the 

concept of a quantity as an object underpins the dual way in which a “number” is construed in 

the context of modern mathematics: a “number” can be construed both as a multiplicative 

entity (in which case, for instance, “six” means a quantity six times bigger than a given 

quantity) and as an additive entity (in which case, for instance, “six” means a quantity whose 

magnitude is six units). Therefore, using the terminology of abstract algebra (studied in 

section 2.1.4), we may say that any real number can be considered both as an element of a 

multiplicative group and as an element of an additive group. Due to the fact that 

multiplication distributes over addition, the conception of real numbers as a multiplicative 

group can be considered as a group of automorphisms of the corresponding additive group, 

since, for every 𝑎 ∈ ℝ, we may define the automorphism 𝜓𝑎 of the additive group of real 

numbers by 𝜓𝑎(𝑥) = 𝑎 ∙ 𝑥 for every 𝑥 ∈ ℝ (the converse does not hold, because addition is 

not distributive over multiplication).  

 

 

3.5.2. The Second Crisis in the Foundations of Mathematics 

 

Another important crisis in the foundations of mathematics broke out in the seventeenth 

century. Whereas ancient Greek mathematics (as it is expounded and systematized by Euclid 

in his Elements) is based on a geometric way of thinking (arguably, with the exception of the 

research works of Archimedes and Diophantus), modern European mathematics is more 

inclined to an algebraic way of thinking (and, hence, it tends to give primacy to arithmetic 

over geometry). This shift was typified by the reduction of geometry to arithmetic in the 

context of the so-called analytic geometry, which is characterized by the use of coordinates 

and by the correspondence between curves and equations (see section 2.2.6). From the 

perspective of ancient Greek mathematics, the only curves that “exist” are those that can be 

constructed and, hence, be defined according to Euclid’s Elements, whereas, from the 

perspective of analytic geometry, any curve that can be expressed through an algebraic 

equation is acceptable (see sections 2.2.6, 2.5, and 2.6). The use of coordinate systems 

implies that space itself is encoded by 𝑛-tuples (i.e., by sequences, or ordered lists, of 𝑛 

numbers), and, specifically, that the 2-dimensional space, the “plane,” is encoded by pairs of 

numbers, so that the conception of space becomes subordinate to the conception of arithmetic.  
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In the seventeenth century, mathematicians (primarily the initiators and developers of 

calculus) were preoccupied with such geometric problems as the computation of areas and 

volumes of arbitrary geometric figures and the construction of tangents to curves (see section 

2.9) as well as with such physical problems as the formulation of the law that determines the 

rate of change of velocity and of acceleration (with respect to time) when one knows the law 

that determines the rate of change of displacement of an object (i.e., its velocity) and vice 

versa. The tendency toward the study of the aforementioned types of geometric and physical 

problems was reinforced by Galileo’s physical theory, which constrained Aristotle’s theory of 

motion (according to which the term “motion” referred to any kind of change, development, 

and growth) to the study of change in the relative position of physical objects.  

The most prominent seventeenth-century mathematicians realized that, when we treat 

geometric figures and the motions of physical bodies as “wholes,” we cannot demonstrate 

significant apparent similarities between them, but, when we analyze them into (sufficiently) 

“small” pieces, they display great similarities to each other. Hence, the major problem of 

seventeenth-century mathematics consisted in determining the proper processes for dividing 

the “whole” into “small” parts, which would be more easily and more rigorously studied than 

the “whole,” as well as in determining the proper processes for resynthesizing the behavior of 

the “whole” from the behavior of its “small” parts. However, the “small” parts into which an 

object of scientific research was divided were similar to the “small” parts into which another 

object of scientific research was divided, and, thus, they could give rise to generalizations 

(such as natural laws), only when the dimensions of such “small” parts tended to zero, and, 

thus, only when the number (i.e., the population size) of such “small” parts tended to infinity. 

Therefore, the need for the use of infinite processes, specifically, infinitesimals, became 

prominent again. Even though “infinitesimal methods” could lead to correct results and useful 

applications, they lacked the logical rigor that characterized ancient Greek mathematics, 

particularly, Euclid’s Elements, and they were susceptible to contradictions. Some 

mathematicians argued that lengths consisted of (infinitely many) infinitesimal lengths, areas 

consisted of (infinitely many) infinitesimal areas, and volumes consisted of (infinitely many) 

infinitesimal volumes, while other mathematicians argued that lines consisted of an infinite 

number of points, surfaces consisted of an infinite number of lines, and solid bodies consisted 

of an infinite number of surfaces. In that era, namely, in the seventeenth century, the concept 

of a limit (which I studied in sections 2.3.4, 2.3.5, 2.4, 2.5, and 2.6) was not yet clarified. It is 

worth pointing out that the famous French Enlightenment scholar Voltaire described calculus 

as “the art of measuring exactly a thing whose existence cannot be conceived,” thus 

expressing his bewilderment at the fact that the seventeenth-century infinitesimal calculus 

was a useful and powerful scientific instrument, but the actual things that it was talking about 

were almost beyond conception.580 

As I mentioned in Chapter 2, Newton defined the derivative of a function as the “ultimate 

ratio” of “vanishing quantities,” and Leibniz argued that the quantities 𝑑𝑦 and 𝑑𝑥, which 

appear in the definition of the derivative of a function, are infinitely small yet non-zero 

quantities. These ambiguities ignited heated debates regarding the foundations of 

infinitesimal calculus. In fact, the major problem pertaining to the development of 

infinitesimal calculus in the seventeenth and the eighteenth centuries was the reduction of a 

continuous entity, namely, a “whole,” to discrete entities, namely, infinitesimals (i.e., 

 
580 Quoted in: Simoson, Voltaire’s Riddle, p. 51.  
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infinitely small parts of the corresponding “whole”), by means of a non-well-defined concept, 

namely, the concept of infinity. However, the effectiveness of the application of infinitesimal 

methods to physics and astronomy played a significant role in the acceptance and the further 

development of infinitesimal calculus. In general, many eighteenth-century mathematicians 

drew their subject matter from many branches of physics, astronomy, navigation, 

cartography, commerce, and finance. 

Before the invention of infinitesimal calculus, physics was mainly a qualitative science, 

in the sense that it described and attempted to interpret phenomena without using specific 

magnitudes and laws for the synthesis of magnitudes, whereas infinitesimal calculus allowed 

physics to become a clearly quantitative science. Regarding the significance of the transition 

from old, pre-Newtonian qualitative (“speculative”) physics to quantitative physics, René 

Thom has pointedly argued as follows: 

 

. . . it is not the impossibility of giving a quantitative result that condemns the old qualitative 

theories to modern eyes, for what matters most for everyday use is almost always a qualitative 

result and not the precise value of some real number. When we drive our car from town 𝐴 to 

town 𝐵 a hundred miles away, we rarely calculate our route with precision. What matters is 

the qualitative result: that we will arrive at 𝐵 after a finite and reasonable time without having 

hit any obstacles lying in our path . . . What condemns these speculative theories in our eyes is 

not their qualitative character but the relentlessly naïve form of, and the lack of precision in, 

the ideas that they use.581 

 

Thus, what modern physics has been actually requesting from mathematics from the 

eighteenth century onward is not so much to provide physics with instruments and methods 

that ensure computational precision as to provide physics with instruments and methods that 

ensure conceptual precision and logical rigor. Having said that, I do not intend to 

underestimate the tendency of scientific consciousness toward descriptive accuracy, but, 

following René Thom’s reasoning, I intend to highlight the significance of developing this 

tendency to its ultimate consequences, which involve explanatory accuracy. In this way, 

physics has played an important role in the further development of infinitesimal calculus, and, 

in the eighteenth and the nineteenth centuries, infinitesimal calculus developed into the broad 

discipline that is known as mathematical analysis (including differential equations, complex 

functions, and differential dynamics). Nevertheless, during the same period, almost every 

thorough mathematician was concerned with the epistemological problems of mathematics, 

and refused to content oneself with the production of theorems of advanced mathematical 

analysis while particular areas of mathematics (pertaining to basic mathematical analysis) 

were lacking in rigor and were dependent on geometric and physical perceptions.  

In the eighteenth and the nineteenth centuries, neither the notion of evidentness (as a 

method of justification) nor the reduction to Euclid’s geometry was deemed to be sufficient 

for the rigorous foundation of mathematical analysis. Furthermore, the creation of non-

Euclidean geometries and the proof of the fact that the consistency of non-Euclidean 

geometries is equivalent to the consistency of Euclidean geometry gave rise to the question of 

which is the geometry of physical space, on which the development of infinitesimal calculus 

(and, hence, of mathematical analysis, in general) was based. Therefore, many 

mathematicians turned their attention to the concepts of a function and a real number, and 

 
581 Thom, Structural Stability and Morphogenesis, p. 6. 
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they attempted to achieve a rigorous foundation of mathematical analysis by means of these 

concepts (as I explained in Chapter 2). The rigorous foundation of mathematical analysis was 

initiated by Cauchy (with his “epsilon-delta” definitions of the limit and the continuity of a 

function and with the use of the characteristic phrases “as little as one wishes” and “the 

variable approaches its limit”), and it was developed further by Bolzano, Abel, Dirichlet, and 

Weierstrass (all these scientific endeavors and concepts were studied in Chapter 2). Due to 

the research works of such mathematicians as Cauchy, Bolzano, Abel, Dirichlet, and 

Weierstrass, we can present qualitative results in a rigorous way, because, in the context of 

modern mathematical analysis, we know how to define a “form,” and we can determine 

whether two functions have the same form. 

 

 

3.5.3. Logicism582 

 

The attempts of nineteenth-century mathematicians to found mathematical analysis in a 

rigorous way was based on real numbers, which also needed a rigorous foundation. The first 

mathematician who attempted to study real numbers in a systematic way and interpreted them 

in terms of infinite decimals was the Flemish mathematician, physicist, and military engineer 

Simon Stevin (1548–1620). In his book De Thiende (The Tenth), Stevin introduced the idea 

that we could get away with doing arithmetic only with integers, so that, instead of having to 

deal with difficult fractions, we could use only decimal numbers, provided that we are ready 

to think of numbers extending indefinitely (for instance, the repeated fraction 
11

7
 could be 

interpreted as something going on forever with the same pattern repeated over and over again, 

namely, 1.571428571428…; similarly, 
11

6
 could be interpreted as 1.833333333333…, etc.; 

and several irrational numbers can be expressed in terms of infinite decimal numbers, such as 

√2 = 1.414213…, 𝜋 = 3.1415926…, 𝑒 = 2.718281…, etc.). But Stevin did not define a 

real number in a rigorous way, nor did he clarify the exact manner in which the system of real 

numbers works (for instance, he did not give rigorous answers to such questions as how do 

we do arithmetic with infinite decimals, how do we verify the laws of arithmetic with infinite 

decimals, etc.). However, in the nineteenth century, mathematicians realized that the theory of 

real numbers was at the core of most foundational problems of mathematical analysis, and 

Weierstrass argued that we cannot understand continuous functions unless we have a rigorous 

theory of the arithmetic continuum, namely, a rigorous way of thinking of numbers as being 

on a number line (see section 2.7).  

Whereas, from the perspective of ancient mathematicians, numbers are things by means 

of which we count, Cartesianism, which is based on the algebraization of geometry, gave rise 

to the idea that numbers can be thought of as positions on the number line. Fusing geometry 

and arithmetic is an arduous task. In order to understand the difficulties that originate from 

fusing geometry and arithmetic, let us consider, for instance, the famous irrational number 

√2, which was discovered by Pythagoreans when they attempted to compute the length of a 

diagonal of a unit square. The Pythagoreans realized that the diagonal of a unit square is not 

 
582 Kneebone, Mathematical Logic and the Foundations of Mathematics; Leng, Mathematics and Reality; Moore, 

The Infinite; Potter, Set Theory and Its Philosophy; Struik, A Concise History of Mathematics. The origins of 

the logicist project, according to which mathematics is reducible to logic, can be traced in the work of Leibniz.  
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commensurable with the side of the given square, but, by keeping geometry and arithmetic 

separate from each other (that is, by refusing to identify numbers with lengths of straight line 

segments), ancient Greek mathematicians could argue as follows: given a straight line 

segment whose length is one, we can construct a straight line segment whose length is √2, 

and, in general, irrational numbers are geometrically constructible (and, hence, geometrically 

explicable and manageable), even though, from the perspective of arithmetic, irrational 

numbers are ideal quantities, in the sense that the calculation of irrational numbers (e.g., √2) 

is an infinite process (i.e., irrational numbers have infinitely many decimal digits). On the 

other hand, in the nineteenth century, having endorsed the Cartesian approach to 

mathematics, mathematicians realized that they had to clarify some still ambiguous 

fundamental concepts (such as that of a real number), to formulate new methods of doing 

mathematics in a logically rigorous way, and to create a rigorous theory of the arithmetic 

continuum, specifically, a rigorous theory of real numbers and their arithmetic.  

As I explained in Chapter 2, Dedekind developed his theory of the so-called Dedekind 

cuts as a theoretical framework for the arithmetic continuum, or, in other words, for 

establishing a rigorous theory of real numbers and their arithmetic. Dedekind recognized that 

the major difficulty in establishing a rigorous theory of real numbers and their arithmetic 

consists in the transition from rational numbers to irrational numbers, or, equivalently, in the 

transition from the realm of discreteness to the realm of continuity. In particular, according to 

Dedekind, we can define a real number in terms of rational numbers by thinking about cuts of 

rational numbers into two subsets that partition the whole set of rational numbers, so that, for 

instance, √2 can be defined as the set {𝑎 ∈ ℚ|𝑎2 < 2 𝑜𝑟 𝑎 < 0}. Finally, Dedekind attempted 

to articulate a rigorous foundation of rational numbers, namely, of the set ℚ, and, hence, 

ultimately, of natural numbers, namely, of the set ℕ, and he argued that the only stable 

foundation in order to achieve this goal is logic. In particular, Dedekind attempted to use 

purely logical principles and concepts, such as the concept of a “class” (a precursor of the 

concept of a set), in order to achieve his goal. By being based on the concept of the set ℚ of 

all rational numbers and on the concept of a subset of ℚ, and by interpreting rational numbers 

as infinite sets, Dedekind’s theory solves particular problems, but it creates new ones, because 

it requires a prior rigorous formulation of set theory and of the concept of infinity, and, 

therefore, Dedekind’s theory per se is incomplete. Furthermore, there is an important 

difference between defining a subset of ℚ by “choice” and defining a subset of ℚ by an 

“algorithm,” and Dedekind failed to address this difference.  

Even though it is incomplete, Dedekind’s research work in the foundations of 

mathematics is the precursor of a corpus of mathematical research works that espouse the 

thesis that the principles of logic are a priori, independent of the physical world, history, and 

society, and that mathematics can be entirely reduced to logic and, thus, acquire an absolute 

character. Dedekind’s approach to mathematics, which is known as “logicism,” was similar to 

Cantor’s approach to mathematics. As I explained in Chapter 2, Cantor attempted to articulate 

a rigorous theory of sets and of infinity and to define the concept of a number by means of his 

theory of sets. In fact, in the early 1870s, Dedekind and Cantor spent much time in 

mathematical discussions with each other. However, as I explained in Chapter 2, Cantor’s 

theory of sets was lacking in rigor, for which reason another great German mathematician, 

Kronecker (who headed the Department of Mathematics at the University of Berlin until his 

death in 1891), went as far as to call Cantor a “corrupter of youth” for teaching, prematurely, 
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his set theory to a younger generation of mathematicians.583 In fact, Cantor’s definition of a 

set (which I studied in section 2.1.1), leaves the following questions unanswered: (i) What 

kind of objects does his definition allow? (ii) How should one tackle self-referential issues? 

Specifically, is the collection of all conceivable sets a set? As I explained in section 2.1.1, if 

we accept 𝑈 = {𝑥|𝑥𝑖𝑠𝑎𝑠𝑒𝑡} as a set, then 𝑈 contains itself, and, therefore, as Russell has 

shown, set theory produces contradictions.  

In the late nineteenth century, working in parallel with Cantor, Gottlob Frege attempted 

to extricate modern mathematics from the ambiguities and the logical deficiencies of 

Dedekind’s theory. Frege wanted to develop a logically rigorous mathematical language that 

would make possible the formalization of every definition and every proof within a symbolic 

system precluding every ambiguity. Frege outlined his plan in his book entitled Begriffsschrift 

(Concept-script), published in 1879, and he formulated it in a more mature way in his two-

volume book entitled Grundgesetze der Arithmetik (Basic Laws of Arithmetic), whose first 

edition was published in 1893, and its second edition was published in 1903. In other words, 

Frege’s system, which has been characterized as a term logic (since every complete 

expression denotes terms), is a predicate calculus. In particular, in Frege’s term logic, 

sentences denote terms that denote truth values. Frege distinguished two truth values, The 

True and The False, which he interpreted as objects. The basic sentences of Frege’s logical 

system are constructed by using the expression  

 

“( ) = ( )” 

 

which signifies a binary function that maps a pair of objects 𝑥 and 𝑦 to The True if 𝑥 is 

identical to 𝑦, and maps 𝑥 and 𝑦 to The False if 𝑥 is not identical to 𝑦. Moreover, according to 

Frege, a “concept” is a function that maps every relevant argument to a truth value. Thus, 

Frege extended his system to the representation of non-mathematical thoughts and 

predications, paving the way for the development of predicate calculus. In Frege’s system, 

complex and general statements are expressed by means of the following four special 

functional expressions: 

 

Statement: The function that maps The True to the True, and maps every other object to 

The False (it is used in order to express the thought that the argument of the function 

is a true statement). 

Negation: The function that maps The True to The False, and maps every other object to 

The True. 

Condition: The function that maps a pair of objects to The False if the first is The True 

and the second is not The True, and maps every other pair of objects to The True. 

Generality: The second-level function that maps a first-level concept 𝛷 to The True if 𝛷 

maps every object to The True, while, otherwise, it maps 𝛷 to The False.  

In his Grundgesetze der Arithmetik (Basic Laws of Arithmetic), Frege attempted to 

expand the domain of objects of his logical system as follows: given any function (or 

concept) f in his system, he associated an object, which he called “the course-of-values of f,” 

with f. The course-of-values of a function (or a concept) f consists in a record of the values of 

f for each argument. Frege symbolized the course-of-values of a function f with a Greek letter 

 
583 Quoted in: Dauben, “Georg Cantor and Pope Leo XIII,” p.89. 
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epsilon with a smooth breathing mark above it, namely: ἐ(f). Using this notation, Frege 

formulated his basic law of extension as follows: the course-of-values of a concept f is 

identical to the course-of-values of a concept g if and only if f and g agree on the value of 

every argument, that is, if and only if, for every object x, f(x) = g(x); symbolically: 

 

ἐ(𝑓) = ἀ(𝑔) ≡ ∀𝑥(𝑓(𝑥) = 𝑔(𝑥)). 

 

Therefore, Frege’s system departed from what was until then the ordinary way of using 

mathematical concepts, and, on the basis of his logical system, Frege attempted to prove that 

mathematical concepts can be defined in terms of purely logical concepts, and that 

mathematical principles can be derived from the laws of logic alone. It goes without saying 

that, in the context of Frege’s logical system, argumentation is extended into an impressive 

subtlety that precludes evidentness and is underpinned by and addressed to logic alone. 

Nevertheless, in June 1902, as Frege was preparing the proofs of the second volume of the 

Grundgesetze der Arithmetik, he received a letter from Russell, informing him that he had 

discovered a contradiction in set theory that was also present in the first volume of Frege’s 

Grundgesetze. In particular, as I mentioned in section 2.1.1, Russell pointed out the following 

paradox in Cantor’s set theory: if U is the set of all those sets which are not members of 

themselves, symbolically, U = {X|X ∉ X}, then both the statement that U ∈ U and the 

statement that U ∉ U contradict the definition of U. By analogy, regarding Frege’s logical 

theory, Russell framed the aforementioned paradox first in terms of the predicate P = “being 

a predicate which cannot be predicated on itself,” and then in terms of the class of all those 

classes which are not members of themselves. Hence, Frege’s logical system was proved to 

be logically deficient. Even though Frege’s system is unsuitable for the foundation of 

mathematics, it is far from a useless or failed system. As I shall explain in section 3.6, the 

concept of a fallacy should be clearly distinguished from the concept of an irrationality, and, 

as I argued in section 1.3.3 (regarding the over-statements and the over-simplifications of 

skepticism), partial knowledge should not be semantically equated with ignorance, and an 

approximation of truth should not be equated with falsehood. Frege’s work reinforced and 

clarified the philosophical “school” of logicism, according to which logic is a suitable and 

sufficient foundation for mathematics. In fact, the philosophical and mathematical work of 

Russell and Whitehead was based on Frege’s work, and it marks the culmination of logicism. 

Russell and Whitehead formulated their viewpoints and their own variety of logicism in 

their book entitled Principia Mathematica (Principles of Mathematics), which was first 

published in three volumes in 1910, 1912, and 1913, while a second edition appeared in 1925 

(Volume I) and in 1927 (Volumes II and III). Before the publication of this book, Alfred 

North Whitehead was already a distinguished mathematician and philosopher (and, in 1903, 

he was elected a Fellow of the Royal Society as a result of his work on universal algebra, 

symbolic logic, and the foundations of mathematics), while Bertrand Russell was a lecturer at 

Trinity College, University of Cambridge. The viewpoints of Russell and Whitehead 

regarding the foundations of mathematics and philosophy consist essentially of the basic 

theses of logicism, which are also found in the works of Dedekind, Cantor, and Frege. 

However, the symbolic language that Russell and Whitehead used in their Principia 

Mathematica was based on the work of the Italian mathematician Giuseppe Peano, who was 

the first mathematician who constructed a symbolic language for mathematics and formulated 
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the needs of mathematics in terms of a symbolic language. As I explained in section 2.2.1, 

Peano, in his seminal research work entitled Formulaire de Mathématiques, formulated the 

axiomatic system of the set ℕ of all natural numbers. The major difference between Peano 

and the logicists is that Peano treats symbolic logic and the axiomatic method as means to a 

logically rigorous foundation of mathematics, whereas logicism attempts to philosophically 

explain mathematics in terms of logic. From this perspective, Peano’s research work was a 

precursor of Hilbert’s formalism, to which I shall refer later in this section.  

Russell believed that the foundational problems of mathematics could be solved and 

overcome by reformulating Aristotelian logic in a “Platonic” way, in order, in this way, to 

equip mathematics with epistemologically and ontologically robust underpinnings. Thus, 

Russell argued that mathematical truths are reducible to logical truths, and that logic is 

equivalent to Plato’s world of ideas. In other words, at the core of Russell’s logicism, is 

Russell’s decision to interpret Platonic ideas as logical substances, and, thus, to assert the 

universality and the necessity of logic. In view of the arguments that I put forward in section 

1.2.2, Russell’s aforementioned interpretation of Plato’s ontology and Aristotle’s logic 

represents a significant departure from both original Platonism and original Aristotelianism, 

and it is a logicist synthesis between Plato’s ontology and Aristotle’s logic. According to the 

Principia Mathematica, mathematics is an ideal system of propositions, or, in other words, it 

is the formalization of mathematical propositions in the context of mathematical theories, 

which they are ultimately underpinned by logic. From the perspective of the Principia 

Mathematica, the substance of mathematics consists in logically perfect theories that 

mathematicians formulate.  

In order to understand the manner in which Russell and Whitehead attempted to reduce 

all mathematics to logic and to the concept of a set, we have to understand the manner in 

which they defined the concept of a number as a set of mutually equivalent sets. For instance, 

Russell and Whitehead defined the number five as the set of all sets that are equivalent to the 

set of the elements of a natural 5-tuple. However, because, in the aforementioned example, 

the number five has an empirical content, whereas Russell and Whitehead want mathematics 

to be founded on logic alone, the manner in which numbers are ultimately defined in the 

context of the Principia Mathematica is the following: Zero (0) is the class of all classes that 

are equivalent to the class of all those objects which are not identical to themselves: such a 

class is empty, because, otherwise, the principle of identity would not hold; and, because all 

classes that have the same members are identical to each other, there is only one class that is 

empty. The uniqueness of the zero class underpins the definition of the number one. Thus, in 

the context of the Principia Mathematica, the number one (1) is the class of all classes that 

are equivalent to the class whose only member is zero (0). By analogy, the number two (2) is 

the class of all classes that are equivalent to the class whose members are zero and one, and 

this process can be repeated indefinitely. In this way, Russell and Whitehead defined natural 

numbers on the basis of the logical principle of identity, the logical concept of a class, the 

logical concept of a member of a class, and the logical principle of equivalence between 

classes.  

Given that Russell pointed out the contradictory nature of Cantor’s set theory through his 

famous Russell’s Paradox, the Principia Mathematica uses set-theoretical concepts in an 

alternative way, exactly in order to keep away from logical contradictions. In particular, the 

Principia Mathematica expounds and proposes the so-called theory of types, which I 

explained in section 2.1.1. In simple terms, the theory of types rigorously and systematically 
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classifies every set-theoretical concept into hierarchical levels that are called types. In this 

way, elements belong to the type 0, sets of elements belong to the type I, sets of sets of 

elements belong to the type II, etc. Having thus rigorously and systematically classified 

concepts into types, Russell and Whitehead proceed with the study of the relations between 

members of types, and they postulate that relations must relate only members of specific 

types to each other. In particular, “inclusion,” denoted by ⊆, is a logically legitimate set-

theoretical concept if it relates members of type I (i.e., sets) to each other; and “belonging,” 

denoted by ∈, is a logically legitimate set-theoretical concept if there is a member of type 0 to 

the left of ∈, and if there is a member of type I to the right of ∈. Thus, according to Russell’s 

and Whitehead’s theory of types, ⊆ refers to members of the same type, whereas ∈ refers to 

members of successive types. By postulating the use of ∈ in the aforementioned way, Russell 

and Whitehead preclude any statement of the form X ∈ X, and, therefore, they manage to 

overcome Russell’s Paradox and to equip set theory with a very high level of logical rigor. 

However, the contradictory nature of Cantor’s set theory can be overcome through an 

axiomatization of set theory that does not need to impose logical constraints as strict as those 

imposed by Russell and Whitehead.  

 

 

3.5.4. Axiomatic Set Theory and Category Theory584 

 

As I mentioned in section 2.1.1, before the first rigorous axiomatization of set theory by 

Ernst Zermelo, Cantor’s set theory was based on his (intuitive) definition of the set and on the 

General Comprehension Principle, according to which, given any condition expressible by a 

formula 𝜑(𝑥), it is possible to form the set of all sets 𝑥 meeting that condition. Cantor 

endorsed the General Comprehension Principle mainly because it was in agreement with his 

intuition about sets, but Bertrand Russell stated the well-known Russell’s Paradox, which 

implies that the General Comprehension Principle is not valid. 

Almost simultaneously with the development of Russell’s and Whitehead’s theory of 

types, Ernst Zermelo proposed a different way to overcome the antinomies of Cantor’s set 

theory, namely, to replace Cantor’s intuitions with axioms. Zermelo regards set theory as a 

fundamental theory, in the sense that, according to Zermelo, set theory investigates 

mathematically the fundamental concepts of a number, an order, and a function. As I 

mentioned in section 2.1.1, in Zermelo’s axiomatic system, it is assumed that there exist a 

“universe of objects” 𝑈, some of which are sets, and some “definite conditions and operators” 

in 𝑈, the basic of which are the following: 

 

𝑥 = 𝑦 ⇔ 𝑡ℎ𝑒 𝑜𝑏𝑗𝑒𝑐𝑡 𝑥 𝑖𝑠 𝑖𝑑𝑒𝑛𝑡𝑖𝑐𝑎𝑙 𝑡𝑜 𝑦, 

𝑆𝑒𝑡(𝑥) ⇔ 𝑥 𝑖𝑠 𝑎 𝑠𝑒𝑡, 

𝑥 ∈ 𝑦 ⇔ 𝑆𝑒𝑡(𝑦)& 𝑥 𝑏𝑒𝑙𝑜𝑛𝑔𝑠 𝑡𝑜 𝑦. 

 

The objects that are not sets are called “atoms.” 

 
584 Eves, Foundations and Fundamental Concepts of Mathematics; Grattan-Guinness, The Search of Mathematical 

Roots: 1870–1940; Kneebone, Mathematical Logic and the Foundations of Mathematics; Leng, Mathematics 

and Reality; Moore, The Infinite; Potter, Set Theory and Its Philosophy; Struik, A Concise History of 

Mathematics. 
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The axiomatization of set theory that has been proposed by Zermelo contains eight 

axioms.585 More precisely, there are two versions of Zermelo’s axiomatization of set theory: 

Zermelo’s axiomatic system 𝑍𝐴𝐶, consisting of axioms I–VII and 𝐴𝐶, as well as Zermelo’s 

axiomatic system 𝑍𝐷𝐶, consisting of axioms I–VII and 𝐷𝐶, where: 

 

i. Axiom of Extensionality: If 𝐴 and 𝐵 are two arbitrar 

ii. y sets, then 

𝐴 = 𝐵 ⇔ (∀𝑥)[𝑥 ∈ 𝐴 ⇔ 𝑥 ∈ 𝐵]. 

In other words, any two sets that contain exactly the same members are the same set, 

and, thus, a set is defined by its members.  

iii. Axiom of Empty Set: There exists a conventional set that contains no elements. 

Remark: The Axiom of Extensionality implies that the empty set, ∅, is unique.  

iv. Axiom of Pairing: For any objects 𝑥 and 𝑦, there exists a set 𝐴 = {𝑥, 𝑦} whose 

elements are exactly 𝑥 and 𝑦, so that  

𝑧 ∈ 𝐴 ⇔ [𝑧 = 𝑥 ˅ 𝑧 = 𝑦].  

Remark: The Axiom of Extensionality implies that there exists exactly one set 𝐴 such 

that 𝐴 contains 𝑥 and 𝑦 and, for any 𝑧, 𝑧 ∈ 𝐴 ⇔ [𝑧 = 𝑥 ˅ 𝑧 = 𝑦]. If 𝑥 = 𝑦, then 

{𝑥, 𝑥} = {𝑥} is said to be the “singleton” of the object 𝑥.  

v. Axiom of Separation: For every set 𝐴 and for every definite condition 𝑃 of one 

variable 𝑥, there exists a set 𝐵 such that 𝑥 ∈ 𝐵 ⇔ [𝑥 ∈ 𝐴 ˄ 𝑃(𝑥)].  

Remark: The Axiom of Extensionality implies that such a set 𝐵 is unique. The 

Axiom of Separation is a restriction of the General Comprehension Principle, and it 

is helpful in order to define important concepts, such as the intersection and the 

difference of two sets: 𝐴 ∩ 𝐵 = {𝑥 ∈ 𝐴|𝑥 ∈ 𝐵} and 𝐴 − 𝐵 = {𝑥 ∈ 𝐴|𝑥 ∉ 𝐵}. In order 

to circumvent Russell’s paradox, the Hungarian-American mathematician and 

computer scientist John von Neumann (1903–57) distinguished between two kinds of 

collections: classes and sets.586 For any set 𝐴, the set 𝑅 = {𝑥 ∈ 𝐴|𝑥 ∉ 𝑥} is not a 

member of 𝐴, and, therefore, the collection of all sets is not a set, namely, there exists 

no set 𝑈 such that 𝑥 ∈ 𝑈 ⇔ 𝑆𝑒𝑡(𝑥), because 𝑅 is a set by the Axiom of Separation, 

and, if 𝑅 ∈ 𝐴, then 𝑅 ∈ 𝑅 ⇔ 𝑅 ∉ 𝑅, which is a contradiction. According to von 

Neumann, a class 𝑢 (i.e., any collection of any definite, distinguishable objects of 

perception or thought conceived as a whole) is a set if there is a class 𝑣 that entirely 

contains 𝑢.  

vi. Axiom of Power Set: For any set 𝐴, the power set ℘(𝐴) of 𝐴 is also a set. Remark: 

The Axiom of Extensionality implies that the power set ℘(𝐴) of any set 𝐴 is unique.  

vii. Axiom of Union: For every object 𝔸, there exists a set 𝐵 such that 

𝑥 ∈ 𝐵 ⇔ (∃𝑋 ∈ 𝔸)[𝑥 ∈ 𝑋], 

namely, the members of 𝐵 are the members of the members of 𝔸. Remark: By the 

Axiom of Extensionality, such a set 𝐵 is unique and is called the “union” of 𝔸, 

denoted by ∪ 𝔸 = {𝑥|(∃𝑋 ∈ 𝔸)[𝑥 ∈ 𝑋]}. 

viii. Axiom of Infinity: There exists a set 𝐴 such that  

∅ ∈ 𝐴 and (∀𝑥)[𝑥 ∈ 𝐴 ⇒ {𝑥} ∈ 𝐴]. 

 
585 Zermelo, “Untersuchungen über die Grundlagen der Mengenlehre I.” 
586 Neumann, “Eine Axiomatisierung der Mengenlehre.”  
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Remark: Notice that 𝑥 ≠ {𝑥}. 

ix. Axiom of Choice (AC): For any binary relation 𝑇 ⊆ 𝐴 × 𝐵, where 𝐴 and 𝐵 are 

arbitrary sets,  

(∀𝑥)(∃𝑦 ∈ 𝐵)[𝑥𝑇𝑦] ⇒ (∃𝑓: 𝐴 → 𝐵)(∀𝑥 ∈ 𝐴)[𝑥𝑇𝑓(𝑥)]. 

Remark: By a “partial function” 𝑓: 𝐴 → 𝐵 from a set 𝐴 to a set 𝐵, we mean any 

function whose domain is a subset of 𝐴 and its range is 𝐵. Then an equivalent way to 

state 𝐴𝐶 is the following: For any set 𝐴, there exists a partial function 𝑓: ℘(𝐴) → 𝐴 

such that  

∅ ≠ 𝑋 ⊆ 𝐴 ⇒ [𝑋 ∈ 𝐷𝑜𝑚𝑎𝑖𝑛(𝑓)˄ 𝑓(𝑋) ∈ 𝑋];  

such a partial function is called a “choice function.” Another equivalent way to state 

𝐴𝐶 is the following: If 𝔼 = {𝐴𝑖 , 𝑖 ∈ 𝐼} is a non-empty family of non-empty pairwise 

disjoint sets, then there exists a set 𝐴 consisting of exactly one element from each 𝐴𝑖. 

A well-known example that clarifies the significance of Zermelo’s Axiom of Choice 

is due to Bertrand Russell. Let A be a set containing pairs of shoes, 𝐵 =∪ 𝐴, and 

𝑥𝑇𝑦 ⇒ 𝑦 ∈ 𝑥, ∀𝑥, 𝑦|𝑥 ∈ 𝐴 𝑎𝑛𝑑 𝑦 ∈ 𝐵. Then the function  

𝑓(𝑥) = 𝑡ℎ𝑒 𝑟𝑖𝑔ℎ𝑡 𝑠ℎ𝑜𝑒 𝑜𝑓 𝑥 

chooses exactly one shoe from each pair 𝑥 ∈ 𝐴, namely: 

(∀𝑥 ∈ 𝐴)[𝑥𝑇𝑓(𝑥)]. 

Thus, according to Russell, for any (even infinite) collection of pairs of shoes, one 

can pick out the left shoe from each pair to obtain an appropriate selection; in this 

case, “pick out the left shoe” is a “choice function.” But, if 𝐴 is a set of pairs of 

socks, so that each pair of socks contains two identical objects, then no function 

𝑓: 𝐴 →∪ 𝐴 can be defined in such a way that it chooses one sock out of each pair. 

Thus, appeal to Zermelo’s Axiom of Choice is necessary in order to overcome the 

problems that are caused by the existence of subsets that one would like to consider 

but that cannot be described by any property, as it happens in the aforementioned 

example.  

Countable Principle of Choice (CC): Given a set 𝐴 and a binary relation 𝑇 ⊆ ℕ × 𝐴, 

where ℕ is the set of all natural numbers,   

(∀𝑛 ∈ ℕ)(∃𝑡 ∈ 𝐴)[𝑛𝑇𝑡] ⇒ (∃𝑓:ℕ → 𝐴)(∀𝑛 ∈ ℕ)[𝑛𝑇𝑓(𝑛)]. 

x. Axiom of Dependent Choices (DC): Given an arbitrary set 𝐴 and a binary relation 

𝑇 ⊆ 𝐴 × 𝐴, 

xi. [𝑎 ∈ 𝐴 ˄ (∀𝑥 ∈ 𝐴)(∃𝑦 ∈ 𝐴)[𝑥𝑇𝑦]] 

⇒ (∃𝑓:ℕ → A)[𝑓(0) = 𝑎 ˄ (∀𝑛 ∈ ℕ)[𝑓(𝑛)𝑇𝑓(𝑛 + 1)]]. 

In other words, for any non-empty set 𝐴 and for any binary relation 𝑇 defined on 𝐴 in 

the aforementioned way, there exists a sequence {𝑥𝑛}𝑛∈ℕ in 𝐴 such that 

𝑥𝑛𝑇𝑥𝑛+1 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛𝜖ℕ. This axiom was introduced by the Swiss mathematician Paul 

Bernays in 1942,587 but, even without 𝐷𝐶, for any 𝑛𝜖ℕ, we can use mathematical 

induction in order to form the first 𝑛 terms of the aforementioned sequence. 

However, 𝐷𝐶 asserts that in this way we can form a countably infinite sequence.588 

Theorem589: (i) 𝐴𝐶 ⇒ 𝐷𝐶; (ii) 𝐷𝐶 ⇒ 𝐶𝐶.  

 
587 Bernays, “A System of Axiomatic Set Theory III.” 
588 See: Illari, Russo, and Williamson, eds., Causality in the Sciences. 
589 Bernays, “A System of Axiomatic Set Theory III.” 
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Proof:  

(i) Given the choice function  

𝐹:℘(𝐴) − {∅} → 𝐴 

and the hypothesis of 𝐷𝐶, the required function in order to establish the conclusion 

of 𝐷𝐶 is 𝑓: ℕ → 𝐴 defined by 

𝑓(𝑛) = 𝑎, 

𝑓(𝑛 + 1) = 𝐹({𝑦 ∈ 𝐴|𝑓(𝑛)𝑇𝑦}). 

(ii) Given the hypothesis of 𝐶𝐶, let 𝐵 = ℕ × 𝐴 and 𝑏 = (0, 𝑎) with 𝑎 ∈ 𝐴 and 0𝑇𝑎. 

If we define the relation 

(𝑛, 𝑥)𝑇∗(𝑚, 𝑦) ⇔ (𝑚 = 𝑛 + 1 ˄ 𝑚𝑇𝑦) 

on 𝐵, then the function 𝑓:ℕ → ℕ× 𝐴, which follows from the conclusion of 𝐷𝐶 for 

𝑏 and 𝑇∗, gives 𝑓(𝑛) = (𝑔(𝑛), ℎ(𝑛)) with 𝑔(0) = 0 and ℎ(0) = 𝑎 for adequate 

functions 𝑔 and ℎ, and, for any 𝑛, 𝑔(𝑛 + 1) = 𝑔(𝑛) + 1 and 𝑔(𝑛 + 1)𝑇ℎ(𝑛 + 1). 

Therefore, for any 𝑛, 𝑔(𝑛) = 𝑛 and 𝑛𝑇ℎ(𝑛).■ 

xii. Axiom of Replacement: As I have already mentioned, John von Neumann has made 

a rigorous distinction between the terms “class” and “set.” Thus, the German-Israeli 

mathematician Abraham Fraenkel has proposed the “Axiom of Replacement”: If 𝐴 is 

a set, and if 𝑓: 𝐴 → 𝔸 is a definite operator in one variable, then the image 𝑓(𝐴) =
{𝑓(𝑥)|𝑥 ∈ 𝐴} of 𝐴 by 𝑓 is a set. The axiomatic system that consists of 𝑍𝐷𝐶 plus the 

Axiom of Replacement is denoted by 𝑍𝐹𝐷𝐶, while the axiomatic system 𝑍𝐹𝐴𝐶 

consists of 𝑍𝐴𝐶 plus the Axiom of Replacement.  

 

However, during the complicated history of set theory, several other concepts and rules 

have been developed.590 For instance, another restrictive hypothesis that is very often used in 

set theory is the 

 

Principle of Purity: There exist no atoms (i.e., every object with which we are concerned 

is a set).  

An object 𝑥 is said to be “ill-founded” if there exists a function 𝑓 with domain ℕ such 

that 𝑥 = 𝑓(0) ∋ 𝑓(1) ∋ 𝑓(2) ∋ ⋯; and, if an object is not ill-founded, then it is “well-

founded.” If 𝐴 ∈ 𝐴, then 𝐴 ∋ 𝐴 ∋ 𝐴 ∋ 𝐴 ∋ ⋯, and, therefore, 𝐴 is ill-founded. Hence, a well-

founded set is not a member of itself. In other words, a binary relation 𝑇 is said to be “well-

founded” on a class 𝑋 if every non-empty subset 𝐴 ⊆ 𝑋 has a least element with regard to 𝑇, 

that is, an element 𝑘 not related to 𝑎𝑇𝑘 for any 𝑎 ∈ 𝐴; symbolically, 𝑇 is well-founded if  

 

(∀𝐴 ⊆ 𝑋)[𝐴 ≠ ∅ ⇒ (∃𝑘 ∈ 𝐴)(∀𝑎 ∈ 𝐴)¬(𝑎𝑇𝑘)].  

 

Equivalently, assuming the Axiom of Dependent Choices, a relation is well-founded if it 

contains no countable infinite descending chains, that is, if there is no infinite sequence 

𝑥0, 𝑥1, 𝑥2, … of elements of X such that 𝑥𝑛+1𝑇𝑥𝑛 for any 𝑛 ∈ ℕ.  

Examples of well-founded relations: 

 

 
590 See: Ferreirós, Labyrinth of Thought; Kleene, Introduction to Meta-Mathematics. 
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a) The natural numbers {1,2,3,… } with the order defined by 𝑎 < 𝑏 if and only if 𝑎 

divides 𝑏 and 𝑎 ≠ 𝑏. 

b) The set of all finite strings over a fixed alphabet with the order defined by 𝑢 < 𝑣 if 

and only if 𝑢 is a proper substring of 𝑣. 

c) The set ℕ× ℕ of pairs of natural numbers ordered by (𝑛1, 𝑛2) < (𝑚1,𝑚2) if and 

only if 𝑛1 < 𝑚1 and 𝑛2 < 𝑚2. 

 

Examples of ill-founded relations: 

 

a) The negative integers {−1,−2,−3,… } with the usual order, because any unbounded 

subset has no least element. 

b) The set of strings over a finite alphabet with more than one element, under the usual 

order, because the sequence B > AB > AAB > AAAB > ⋯ is an infinite descending 

case.  

c) The rational numbers under the standard ordering, because, for instance, the set of 

positive rationals lacks a minimum.  

 

The Russian-Swiss mathematician Dmitry Mirimanoff591 and the American logician 

Dana Scott592 have equipped the axiomatization of set theory with the 

 

Principle of Foundation: Every set is well-founded. 

 

Remark: The Principle of Foundation is valid if and only if, for every non-empty set 𝐴, 

there exists some 𝑢 ∈ 𝐴 such that 𝑢 ∩ 𝐴 = ∅, that is, ∀𝑥, 𝑥 ∈ 𝐴 ⇒ ¬(𝑥 ∈ 𝑢). In other words, 

each non-empty set must contain “atoms” 𝑢, which form its “foundation,” so that the 

following two conditions hold: (i) No non-empty set can be a member of itself. (ii) If 𝐴 and 𝐵 

are distinct non-empty sets, then it is not possible that both 𝐴 ∈ 𝐵 and 𝐵 ∈ 𝐴 are true.  

The most widely accepted system of axioms for sets is denoted by 𝑍𝐷𝐶 and consists of 

𝑍𝐹𝐷𝐶, 𝐴𝐶, the Principle of Purity, and the Principle of Foundation.  

Intimately related to the development of set theory is the development of category theory, 

which is concerned with the very structure of mathematics. The development of set theory by 

Cantor, Zermelo, Gödel, von Neumann, and others was considered to be the solution to the 

problem of finding an appropriate infrastructure for the elaboration of structures needed in 

any branch of mathematics. The fundamental concepts of “structure” and “operation on 

structures” were not regarded as “primitive,” but they were “reduced” to the more 

fundamental concepts of set and membership. However, from the 1930s onward, especially as 

a result of the development of abstract algebra, this attitude has become less firm, because it 

has been observed that certain mathematical fields are characterized by a level of universality 

and necessity that is not directly dependent on their set-theoretical background. This is the 

case, for instance, in abstract algebra, where we study such basic algebraic structures as 

groups (see section 2.1.4).  

 
591 Mirimanoff, “Les Antinomies de Russell et de Burali-Forti et le Problème Fondamental de la Théorie des 

Ensembles.” 
592 Scott, “Axiomatizing Set Theory.” 
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According to Samuel Eilenberg and Saunders Mac Lane,593 a “category” 𝐸 consists of 

two classes: the members of the first class are called “objects” (“structures”), and they are 

denoted by 𝑋, 𝑌, …, while the members of the second class are called “arrows” 

(“morphisms”), and they are denoted by 𝑓, 𝑔,… In other words, from the perspective of 

category theory, functions are arrows between objects, and types are objects whose properties 

are defined by arrows. In this way, category theory tries to speak about different kinds of sets 

without speaking about their structure or about the nature of their elements, but by speaking 

only about interactions between different kinds of sets, namely, about “arrows.” In a sense, 

the underlying reasoning of category theory is closely related to the underlying reasoning of 

the proverb “a man is known by the company he keeps.” Following the logic of functional 

programming (namely, the method of creating software by applying and composing pure 

functions) and trying to cope with the constraints and the needs of functional programming 

(namely, avoiding shared state (i.e., any variable, object, or memory space existing in a 

shared scope), mutable data, and side-effects), category theory describes properties of objects 

(i.e., of kinds of sets) merely in terms of arrows that are incoming into these objects and 

arrows that are outgoing from these objects (in the context of functional programming, a 

function can be thought of as a program that takes input in the form of an argument and 

produces some output in the form of a result, and an object is an argument that is passed to a 

function which it operates on, so that the function is considered the operator, and the object is 

considered the operand). 

Each arrow 𝑓 is assigned an object 𝑋, the “domain” of 𝑓, and an object 𝑌, the 

“codomain” of 𝑓, indicated by writing 𝑓: 𝑋 → 𝑌. If 𝑔: 𝑌 → 𝑍 is an arrow with domain 𝑌, the 

codomain of 𝑓, then there is an arrow 𝑔  ⃘𝑓: 𝑋 → 𝑍 called the “composition” of 𝑓 and 𝑔. Any 

arrows 𝑓:𝑋 → 𝑌, 𝑔: 𝑌 → 𝑍, and ℎ: 𝑍 → 𝑊 are assumed to satisfy the following axioms: 

 

identity: for every object 𝑋, there exists a morphism 𝑖𝑑𝑋𝑋 → 𝑋 called the “identity 

arrow” (or the “identity morphism”) on 𝑋 such that, for every arrow 𝑓: 𝑋 → 𝑌, we 

have 𝑖𝑑𝑌  ⃘𝑓 = 𝑓 = 𝑓  ⃘𝑖𝑑𝑋; and 

associativity: ℎ  ⃘(𝑔  ⃘𝑓) = (ℎ  ⃘𝑔)  ⃘𝑓. 

 

Remarks: In simple terms, a “category” is an assemblage (not necessarily a “set” in the 

strict sense) of objects, and, therefore, it enables us to think at a higher level of abstraction 

than that of traditional set theory. In fact, according to Mc Lane himself,  

 

Category theory starts with the observation that many properties of mathematical systems 

can be unified and simplified by a presentation with diagrams of arrows . . . Many properties 

of mathematical constructions may be represented by universal properties of diagrams.594 

 

Moreover, notice that the preceding formal definition of a category is formulated in a 

first-order language leading to “first-order category theory.” 

Functors are structure-preserving mappings between categories. Eilenberg and Mac 

Lane595 considered a (“covariant”) “functor” 𝐹 from a category 𝐶 to a category 𝐷 to be 

 
593 Eilenberg and Mac Lane, “General Theory of Natural Equivalences.” 
594 Mac Lane, Categories for the Working Mathematician, p.1. 
595 Eilenberg and Mac Lane, “General Theory of Natural Equivalences.” 
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composed of a pair of functions (both denoted by 𝐹), one from the class of objects of 𝐶 to that 

of 𝐷, and another from the class of arrows of 𝐶 to that of 𝐷, sot that, for each object 𝑥 in 𝐶, 

there exists an object 𝐹(𝑥), and, for each arrow 𝑓: 𝑥 → 𝑦 in 𝐶, there exists an arrow 

𝐹(𝑓): 𝐹(𝑥) → 𝐹(𝑦), such that the following properties hold: 

 

𝐹(𝑖𝑑𝑥) = 𝑖𝑑𝐹(𝑥) for every object 𝑥 in 𝐶, and 

𝐹(𝑔  ⃘𝑓) = 𝐹(𝑔)  ⃘𝐹(𝑓) for all arrows 𝑓: 𝑥 → 𝑦 and 𝑔: 𝑦 → 𝑧.  

 

A “contravariant functor” 𝐹: 𝐶 → 𝐷 is like a covariant functor except that it reverses all 

arrows, that is, it is a covariant functor from the “opposite category” 𝐶𝑜𝑝 to 𝐷. According to 

Eilenberg and Mac Lane, the usefulness of the concept of a category derives from “the 

precept that every functor should have a definite class as domain and a definite class as 

range,” so that “the categories are provided as the domains and ranges of functors.”596 Thus, 

category theory can be considered as the study of structures by means of functors. An 

important observation of category theory is that large parts of mathematics can be 

“internalized” in any category (and, thus, defined in terms of category theory) with sufficient 

structure.  

A category 𝐶 is said to be “closed” if, for any pair 𝑎, 𝑏 of objects of 𝐶, the collection of 

arrows (morphisms) from 𝑎 to 𝑏 can be regarded as forming itself an object of 𝐶. A category 

is said to be “Cartesian closed” if any arrow (morphism) defined on a product of two objects 

can be naturally identified with an arrow defined on one of the factors. In a more rigorous 

way, we say that a category 𝐶 is “Cartesian closed” if it satisfies the following axioms: 

 

it has a terminal object, in the sense that there exists an element 𝑇 such that, for every 

object 𝑋 in 𝐶, there exists precisely one morphism 𝑋 → 𝑇; 

any two objects 𝑋 and 𝑌 of 𝐶 have a product 𝑋 × 𝑌 in 𝐶; 

any two objects 𝑌 and 𝑍 of 𝐶 have an exponential 𝑍𝑌 in 𝐶.  

 

These categories are very important in mathematical logic and computer programming, 

because their “internal language” is the simply typed “𝜆-calculus” (“lambda-calculus”), which 

consists of “𝜆-abstractions” (“lambda-abstractions”) and their applications. A 𝜆-abstraction is 

the process of interpreting a formula for a function (or an operation) as defining an actual 

function, specifically, a function 𝑓: 𝐴 → 𝐵 of sets 𝐴 and 𝐵 that respects the binary operation 

(for every 𝑎, 𝑏 in 𝐴, 𝑓(𝑎 ∗ 𝑏) = 𝑓(𝑎) ∗ 𝑓(𝑏)). Let 𝑝 be an expression of some sort involving a 

free variable 𝑥. Then the 𝜆-abstraction, denoted by 

 

𝜆𝑥. 𝑝, 

 

represents the function that takes one input (argument), and its output consists in substituting 

that input for 𝑥 in 𝑝. For instance, the 𝜆-abstraction (𝜆𝑥. (𝑥 + 1)) is the function that adds one 

to its input. Thus, by the term “application,” we mean the manner in which we “undo” 

abstraction by applying a function to an input. The application of the function 𝑓 to the input 𝑝 

is denoted by 𝑓𝑝 or 𝑓(𝑝). In general, “application” is considered to associate to the left, in the 

 
596 Ibid, p. 247.  
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sense that, for instance, 𝑟𝑠𝑡 denotes the application of 𝑟 to 𝑠 followed by the application of 

the result (assuming that it is again a function) to 𝑡. In this way, functions of multiple 

variables can be represented in terms of functions of one variable. This method was originally 

developed by the Russian logician and mathematician Moses Schönfinkel (1889–1942), and it 

was studied further by the American mathematician and logician Haskell Curry (1900–82).597 

It is worth noticing that, in computer science, 𝜆-calculus is inextricably linked to “functional 

programming”: programming in “assembly language,” which underpins the so-called “Turing 

machine,” is the process of building software by telling the computer what to do in a precise 

and imperative way (as follows: take a thing 𝑥 from memory, put 𝑥 into the register, use it as 

an address, and then jump, etc.). Functional programming, developed by the American 

mathematician and logician Alonzo Church (1903–95) on the basis of 𝜆-calculus, is 

declarative rather than imperative, and it constructs programs by applying and composing 

functions, that is, by thinking in terms of mathematical transformations (thus, functional 

programming expresses the logic of a computation without describing its control flow).598 

It is evident that category theory presupposes that we have some class or set theory. 

However, in this case, Zermelo–Fraenkel set theory is inadequate, because, for instance, it 

does not allow a class of all sets, which is necessary in order to define the category “Set,” 

whose objects are all sets, and arrows are all (set) functions. Moreover, Gödel–Bernays–von 

Neumann set theory does not allow any classes having proper classes as elements, which are 

necessary in order to define a category of categories. By Gödel–Bernays–von Neumann set 

theory, we mean a conservative extension of Zermelo–Fraenkel set theory, in the sense that 

Gödel–Bernays–von Neumann set theory introduces the concept of a “class,” which is a 

collection of sets defined by a formula whose quantities range over sets.599 

A solution to the aforementioned problem is given by the addition of Grothendieck 

Universes to Zermelo–Fraenkel set theory. By a Grothendieck Universe, we mean a set 𝑈 that 

satisfies the following axioms: 

 

if 𝑥 is an element of 𝑈, and, if 𝑦 is an element of 𝑥, then 𝑦 is also an element of 𝑈; 

if 𝑥 and 𝑦 are both elements of 𝑈, then {𝑥, 𝑦} is an element of 𝑈; 

if 𝑥 is an element of 𝑈, then the power set ℘(𝑈) of 𝑈, is also an element of 𝑈; and 

if {𝑥𝑘}𝑘∈𝐼 is a family of elements of 𝑈, and, if 𝐼 is an element of 𝑈, then the union 

∪𝑘∈𝐼 𝑥𝑘 is an element of 𝑈. 

 

However, by adding Grothendieck Universes (specifically, sets closed under the usual 

set-theoretical operations) to Zermelo–Fraenkel set theory, we encounter the complication of 

having different categories of all sets for each universe. A more refined method, proposed by 

Horst Herrlich and George E. Strecker, involves only one such universe, which is added to the 

Gödel–Bernays–von Neumann set theory.600 But, even in this case, we encounter a new 

complication, namely, the fact that we have three basic kinds of collections: sets, classes, and 

conglomerates. Hence, the restrictions that were imposed on the formation of classes and on 

 
597 See: Bimbó, Combinatory Logic. 
598 See: Hindley and Seldin, Introduction to Combinators and λ-Calculus. 
599 See: Mendelson, Introduction to Mathematical Logic, Chapter 4.  
600 Herrlich and Strecker, Category Theory.  
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the operations to which these classes are subject in order to avoid set-theoretical antinomies 

have a considerable impact on category theory.  

The American philosopher and mathematician Solomon Feferman approached category 

theory from the perspective of “combinatory logic” (or “calculus of combinators”), which is 

synonymous with “𝜆-calculus,” which, as I have already mentioned, is an internal language 

for Cartesian closed categories, and it signifies an attempt to eliminate the need for quantified 

variables in mathematical logic. In this way, Feferman managedto form a very large class of 

objects including all functions and relations as well as his morphisms.601 However, 

understandably, Feferman’s system uses a very large number of new primitive concepts. A 

more refined system using combinatory logic was proposed by M. W. Bunder in the 1980s.602 

According to Bunder, pure combinatory logic can be thought of as a concrete category 

where the objects and the functions corresponding to the morphisms form the same class. In 

Bunder’s notation, the value of (the function) 𝑋 applied to 𝑌 is denoted by (𝑋𝑌), so that 

morphisms are triplets of the form (𝑌, 𝑋, (𝑋𝑌)). Then (𝑋, 𝑌, 𝑍) is said to be a morphism of 

the pure combinatory logic category if 𝑍 = (𝑌𝑋). The objects of this category (i.e., 

combinatory logic) include three basic combinators 𝐾, 𝑆, and 𝐼 defined as follows: 

 

i. 𝐾𝑋𝑌 ≡ 𝑋, or, equivalently, in simply typed 𝜆-calculus, 

𝐾:𝐴 → (𝐵 → 𝐴); 

ii. 𝑆𝑋𝑌𝑍 ≡ (𝑋𝑍)(𝑌𝑍), or, equivalently, in simply typed 𝜆-calculus, 

𝑆: (𝐴 → (𝐵 → 𝐶)) → ((𝐴 → 𝐵) → (𝐴 → 𝐶)); 

iii. 𝐼𝑥 ≡ 𝑥, or, equivalently, in simply typed 𝜆-calculus, 

𝐼: 𝐴 → 𝐴. 

 

Moreover, other combinators can be defined, such as 𝐵 and 𝐶, where: 

 

𝐵𝑋𝑌𝑍 ≡ 𝑋(𝑌𝑍), or, equivalently, in simply typed 𝜆-calculus, 

𝐵: (𝐵 → 𝐶) → (𝐴 → 𝐵) → (𝐴 → 𝐶), 

 

which has the same type as the composition operation in a closed category; 

 

𝐶𝑋𝑌𝑍 ≡ (𝑋𝑍)𝑌, or, equivalently, in simply typed 𝜆-calculus, 

𝐶: (𝐴 → (𝐵 → 𝐶)) → (𝐵 → (𝐴 → 𝐶)), 

 

which has the type of a symmetry for a closed category.  

Notice that, according to the aforementioned notation, the combinator 𝐼 can be defined as 

𝐶𝐾𝐾. By the term “linear combinatory logic,” we mean the version of combinatory logic that 

includes the aforementioned combinators 𝐵, 𝐶, and 𝐼, and, for this reason, it is usually 

referred to as the “BCI logic.” By the term “affine combinatory logic,” we mean the version 

of combinatory logic that includes the aforementioned combinators 𝐵, 𝐶, 𝐾, and 𝐼, and, for 

this reason, it is usually referred to as the “BCKI logic.” “Traditional combinatory logic” 

could be called “KSI logic.”  

 
601 Feferman, “Categorical Foundations and Foundations of Category Theory.” 
602 Bunder, “Category Theory Based on Combinatory Logic.”  
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However, if combinatory logic is extended with a second primitive predicate⊢, then it 

cannot be represented as a category (except in the formulation of its terms), because predicate 

calculus cannot be formulated as a category, since it is used in order to express category 

theory.  

 

 

3.5.5. Intuitionism603 

 

It should be clear by now that Russell’s discovery of contradictions in Cantor’s set theory 

imperiled the entire discipline of mathematical analysis, since the latter was founded on set-

theoretical concepts. Russell and Whitehead eliminated the contradictions and the ambiguities 

of Cantor’s set theory through the theory of types, and Zermelo eliminated the contradictions 

and the ambiguities of Cantor’s set theory through the axiomatization of set theory. On the 

other hand, the philosophico-mathematical “school” of intuitionism has followed a 

substantially different approach to the foundational problems of mathematics. In 1907, the 

Dutch mathematician Luitzen Egbertus Jan Brouwer completed his dissertation On the 

Foundations of Mathematics (under the supervision of D. J. Korteweg at the University of 

Amsterdam), initiating a systematic intuitionist approach to mathematics, and articulating an 

acute criticism of modern mathematical analysis and especially of Russell’s viewpoints.  

According to Brouwer and his advocates, the foundational problems of modern 

mathematical analysis are deeper than the contradictions of Cantor’s set theory. In contrast to 

Russell, Brouwer argued that modern mathematical analysis was formulated on the basis of 

an insufficient logic, and, therefore, its foundation was not as rigorous as it should be. Thus, 

Brouwer discarded Russell’s and Whitehead’s Principia Mathematica and especially 

Russell’s attempt to underpin Aristotelian logic with Platonic metaphysics. In general, 

intuitionism maintains that Aristotelian logic, even after its modification by Russell and 

Whitehead, cannot be the ultimate foundation of mathematics. In particular, according to 

intuitionism, classical logic was an outgrowth of abstraction within a specific system of 

knowledge of a particular historical era, namely, within the context of ancient Greek 

mathematics. Furthermore, intuitionism maintains that a major attribute of ancient Greek 

mathematics is its finite geometric character, in the sense that ancient Greek mathematicians 

did not interpret geometric figures as point sets, they kept geometry and arithmetic separate 

from each other, and, in general, they treated the realm of continuity and the realm of 

discreteness as two equally primal areas and aspects of mathematics, whereas, with the 

development of infinitesimal calculus, a major attribute of mathematics from the seventeenth 

century onward is the endorsement and the systematic use of the concept of infinity in the 

form of the continuum (namely, the set ℝ of all real numbers) and in the form of cardinal 

arithmetic. Therefore, intuitionists emphatically argue that Aristotelian logic, as an outgrowth 

of abstraction within the context of ancient Greek mathematics, is unsuitable for the rigorous 

manipulation of such concepts as infinity, the continuum, a real number (involving infinite 

decimals), and an infinite set. As a consequence of the aforementioned arguments, 

 
603Eves, Foundations and Fundamental Concepts of Mathematics; Grattan-Guinness, The Search of Mathematical 

Roots: 1870–1940; Kneebone, Mathematical Logic and the Foundations of Mathematics; Leng, Mathematics 

and Reality; Moore, The Infinite; Potter, Set Theory and Its Philosophy; Struik, A Concise History of 

Mathematics. 
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intuitionists refuse to accept set theory as a suitable foundation for mathematical analysis, 

since set theory is characterized by an extensive use of the concept of infinity. Intuitionists 

perceive set theory as part of combinatorics (an area of mathematics that is primarily 

concerned with counting, including graph theory, coding, cryptography, and probability), but 

they believe that, if set theory is used as a foundation of mathematics, then set theory, with its 

extensive use of the concept of infinity, poses serious epistemological risks.  

In view of the foregoing, the first major principle of intuitionism is the following: 

classical logic cannot rigorously manipulate the concept of infinity in the context of modern 

mathematical analysis, and, since set theory is characterized by an extensive use of the 

concept of infinity, set theory is not suitable for the foundation of mathematical analysis. 

Thus, in 1908, at the Fourth International Conference of Mathematicians in Rome, Brouwer 

argued against the general validity of the principle of the excluded middle (according to 

which, given any proposition 𝑃, either 𝑃 or its negation, symbolically, ¬𝑃, holds; and, in 

Aristotle’s terms, “there cannot be an intermediate between contradictions”604). In particular, 

according to Brouwer, the principle of the excluded middle can be imposed and is valid in the 

general case of finite sets, because, in this case, we can determine whether a proposition or its 

negation holds by applying an algorithm, namely, a finite sequence of well-defined 

instructions. In other words, according to Brouwer, the validity of the principle of the 

excluded middle is not a priori, but it is proven by the application of an algorithm to the 

solution of specific problems. However, Brouwer maintains that the application of the 

principle of the excluded middle should not be allowed in the general case of infinite sets, 

unless one proves its validity.  

The second major principle of intuitionism is the thesis that, in mathematics, existence is 

equivalent to constructability, that is, something exists in mathematics if and only if it can be 

constructed. The two major principles of intuitionism are strongly logically interconnected, 

since, in the context of a mathematical system that is determined by finite processes (and, 

hence, it is not based on the concepts of infinity and the continuum), “existence” can be easily 

identified with “constructability.” In order to understand the intuitionists’ principle of 

constructability, we should consider the following issue: In 1904, Zermelo proved the so-

called “Well-Ordering Theorem,” which is equivalent to the Axiom of Choice, and states that 

an arbitrary set can be equipped with an ordering relation such that every non-empty subset of 

the given set has a least element (i.e., an element of the given set that is smaller than any other 

element of the given set) under the given ordering. Let us consider the interval (0,1). 

Obviously, the standard order of numbers cannot give us the least element of (0,1). In 

general, no ordering relation can give us the least element of (0,1), but Zermelo’s Well-

Ordering Theorem assures us that the interval (0,1) has a least element. Thus, great 

mathematicians, such as Henri Poincaré, Émile Borel, and Hermann Weyl, started inquiring 

into and debating about the significance of a theorem that speaks about the existence of 

something that is beyond any specification. For instance, the Axiom of Choice tells us that 

something exists without telling us what it is or how to describe it. On the other hand, 

intuitionism maintains that it is not epistemologically legitimate to argue that a mathematical 

entity exists if we cannot find it, and if it is not present before us. Intuitionists maintain that 

such mathematical propositions as the Axiom of Choice and the famous Bolzano–Weierstrass 

Theorem (i.e., “every infinite and bounded subset of ℝ has at least one accumulation point,” 

 
604 Aristotle, Metaphysics, 1011b23–24.  
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as proven in section 2.3.4) are insignificant metaphysical perceptions of the existence of a 

mathematical entity, since such propositions declare/demonstrate the existence of 

mathematical objects without telling us how to find them.  

From the perspective of intuitionism, mathematics is primarily a human activity, 

originating from experience and the free, creative operation of consciousness, and, therefore, 

intuitionism maintains that the existence of a mathematical entity is equivalent with its 

constructability, that is, with the finding of a method that determines the given mathematical 

entity. Intuitionists accept the value of symbolic logic and the axiomatic method, but they 

refuse to accept symbolic logic as an ultimate foundation of mathematics, and they counter-

argue that symbolic logic has historically originated from mathematics as a product of high-

level abstraction. According to the philosophico-mathematical “school” of intuitionism, there 

is only one reliable, a priori foundation of mathematics, namely, the concept of a natural 

number. In particular, intuitionism maintains that the concept of a natural number is self-

evident, in the sense that it is innate in consciousness, and there is no need to be reduced to 

anything else. Brouwer argues that the very fact that the human being can distinguish two 

different objects implies that the number two and, hence, every other natural number are 

innate in the human intellect.  

The French semi-intuitionists Poincaré and Borel maintain that logic plays an 

indispensable role in a mathematical argument, but logic on its own can yield only 

tautologies, and a “mathematical intuition” is necessary. However, Brower, the acknowledged 

founder of mathematical intuitionism, was the first mathematician who specified intuition, 

namely, he described exactly what is intuited and how this intuition underpins mathematics. 

According to Brouwer, the primal intuition (“ur-intuition”) of mathematics is the system of 

natural numbers, and, from the intuitive counting “one, two, three . . .,” what Brower calls the 

“main theorem” of arithmetic (i.e., the statement that the number of elements of a finite set is 

independent of the order in which they are counted) can be deduced. In contrast to Dedekind, 

Brouwer argues that complete induction is neither a theorem that requires a proof nor an 

axiom, but a natural mathematical act. Thus, when Brouwer argues that the primal intuition 

(“ur-intuition”) of mathematics is the system of natural numbers, he does not refer to the 

natural numbers as a “set,” since, intuitionism discards the concept of a set in its general 

form. From the perspective of intuitionism, since natural numbers increase indefinitely, they 

cannot be regarded as a given, “completed” totality (and, therefore, they cannot be regarded 

as a “set”), but they represent a possibility (similar to Aristotle’s concept of a potential 

infinity), in the sense that, irrespective of how many steps we have taken, we can always find 

a new natural number. According to Brouwer, the fundamental property of natural numbers 

that actualizes their potential infinity is the principle of complete induction, which is an 

essentially constructive property, since we can always find the successor of any natural 

number by adding one. 

In order to understand the controversy between logicism and intuitionism, one has to 

delve into their fundamental assertions. Logicism asserts that mathematical entities are 

completely defined in the language of symbolic logic, and it equips symbolic logic with 

ontological content and ontological underpinnings. Intuitionism asserts that mathematical 

entities are mental constructs, and it equips what Brouwer has called the primal intuition (“ur-

intuition”) with ontological content and ontological underpinnings. Both logicism and 

intuitionism recognize the reality of the world, but they do so in different ways: logicism 

recognizes the reality of the world by identifying it with symbolic logic and, thus, arguing 
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that the reality of the world is 𝜔-complete, and that truth in the reality of the world implies 

provability in accordance with symbolic logic (specifically, the Principia Mathematica); 

whereas intuitionism, denying that the reality of the world is 𝜔-complete, recognizes the 

reality of the world by identifying it with intuition and, thus, arguing that truth in the reality 

of the world implies provability in accordance with the “ur-intuition.” Consequently, for 

logicism, mathematical truth is based on the logical structure of mathematics itself, whereas, 

for intuitionism, mathematical truth is based on the logical structure of the mathematician’s 

mind.  

Brouwer’s awareness of the significance of the knower in the development of 

mathematics led him to such excesses as the belief that only those statements are true which 

are known, specifically, constructively proven, today, and intuitionism tends to make 

mathematics extremely complex and difficult to use, since the basis of the constructivist 

methodology of intuitionism is very restrictive, namely, the system of natural numbers alone. 

Moreover, there are logicist excesses, too, such as the extreme claim that set theory is not part 

of logic. However, both logicism and intuitionism can be reformulated in more moderate 

ways in the context of the dialectic of rational dynamicity, which I expounded in section 1.3. 

Highlighting and analyzing the structural continuity between the reality of the world and the 

reality of consciousness, the dialectic of rational dynamicity overcomes the antithesis between 

(moderate varieties of) logicism and intuitionism: the system of natural numbers (namely, the 

process-system of counting) can be postulated as the primal mathematical intuition according 

to Brower’s intuitionism, but, since thinking is an ontological attribute of the human being (as 

I explained in section 1.1), logic (namely, the science of correct reasoning), at a fundamental 

level, namely, as a tendency to organize and evaluate thinking in a systematic and methodical 

way, can be postulated as part of the primal philosophico-mathematical intuition, thus giving 

rise to a synthesis between Brouwer’s intuitionism and Russell’s and Whitehead’s type 

theory. In this way, the dialectic of rational dynamicity epistemologically legitimizes infinity, 

the continuum, and proofs that do not comply with intuitionism’s constructivist requirements, 

and, simultaneously, the dialectic of rational dynamicity epistemologically legitimizes 

intuitionists’ attempt and ambition to specify the location of mathematical entities in the 

mathematical universe and to find algorithms through which one can know not only the 

existence of a mathematical entity in abstracto but also its existence in concreto, whenever 

this is possible.  

The manner in which radical intuitionism developed in the second half of the twentieth 

century and in the beginning of the twenty first century—namely, by discarding infinity, 

every infinite process, and the continuum, and by equating existence with constructability 

(and, hence, by equating mathematical modelling with algorithmization)—suits and reflects 

the modus operandi and the structure of artificial intelligence more than the modus operandi 

and the structure of human intelligence. By the term “artificial intelligence,” we refer to 

artificial neural networks (ANNs), namely, computer algorithms that imitate particular 

functions of the human brain.605 An artificial neural network (ANN) consists of virtual 

neurons (“nodes,” or “computational units”) that are arranged in interconnected layers, and 

 
605 See: Rojas, Neural Networks. In mathematical terms, a neural network is an algorithm that computes, from an 

input 𝑥, an output 𝑦, that is, such an algorithm defines a function 𝑦 = 𝑓𝑠(𝑥), and the computer program that 

calculates this function is made up of a sequence of several stages, each of which performs elementary 

calculations. 
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they transmit information, thereby performing calculations, much like the neurons of the 

human brain. In the context of an ANN, virtual neurons are actually numbers in the 

corresponding code, typically having values between 0 and 1. In other words, virtual neurons 

are encoded in bites and strings on hard disk drives or silicon chips. Moreover, in the context 

of an ANN, the connections between virtual neurons are also associated with numbers, and 

these numbers are called “weights.” These weights determine the importance of one lawyer’s 

information to the next layer. Thus, the free parameters of an ANN are the values of the 

virtual neurons and the weights of the connections between virtual neural layers. The use of 

ANNs consists in “training” an ANN in order to find those values of the free parameters that 

minimize a certain function that is called the “loss function.” In other words, ANNs solve 

optimization problems, in the context of which “backpropagation” takes place. By the term 

“backpropagation,” we mean that, if the output of an ANN is not scientifically satisfactory 

enough (in terms of the corresponding “loss function”), then we go back and change the free 

parameters, and, thus, the ANN is said to “learn” through trial and error. In other words, as 

training in the context of ANNs begins with random free parameters, and the goal is to adjust 

them so that the output error will be minimal, the purpose of the backpropagation algorithm is 

to reduce this error until the ANN “learns” the training data. In ANNs, each layer of virtual 

neurons is usually fully connected to its previous layer and to its next layer, but the human 

brain does not have lawyers, and it relies on an a priori structure (so that not all regions of the 

human brain are fully interconnected, and each region of the human brain is specialized for 

certain purposes). In ANNs, the layers of virtual neurons are precisely ordered according to 

the successor relation, but the human brain does a lot of parallel processing, and it is not 

constrained by any particular ordering relation. Furthermore, it is important to mention that an 

ANN starts from the beginning, without using anything that already exists, each time, 

whereas the human brain has an important, complex structure wired into its connectivity, and 

it utilizes models that have been proven useful during evolution. Finally, as I explained in 

Chapter 1, the human brain is the most complex entity in the entire (known) universe, and, in 

contrast to ANNs, its learning mechanism is not exhausted in the method of trial and error. As 

a result of the aforementioned attributes of the human brain, the latter is capable not only of 

identifying and classifying patterns but also of creating models of the world. By contrast, 

ANNs are unable to create models of the world, and they can only “learn” to identify and 

classify patterns, and their pattern recognition operations can fail with only small changes.  

From the perspective and in the context of artificial intelligence, the ultimate 

epistemological values and goals are precision and the formulation and application of 

consistent finite processes (specifically, algorithmization). For this reason, several proponents 

of radical intuitionism defend the constructivist methodology of intuitionism by invoking the 

requirements of artificial intelligence and the need for more efficient interplays between 

humans and computing machines. On the other hand, as I have already argued, from the 

perspective and in the context of human intelligence, there are other epistemological values 

and goals, besides precision and the formulation and application of consistent finite processes, 

such as the creation of models of the world itself, the understanding of the world as a 

“whole,” and the elucidation of the objects of consciousness (i.e., the clarification of what one 

means by claiming that one understands or explains something). For this reason, human 

intelligence is a proper superset of artificial intelligence, and, in fact, human intelligence 

transcends artificial intelligence; after all, artificial intelligence has been created by human 
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intelligence in order to imitate particular aspects and functions of human intelligence and 

serve particular human goals.  

It is important to recall the ancient Greek term “epopteia,” which means having seen an 

object in a comprehensive way. “Epopteia” can creatively combine logic, deduction, and the 

axiomatic method, which underpins Euclid’s Elements, with the concepts of infinity, 

universality, and transcendence. This combination is intimately related to the dialectic of 

rational dynamicity.  

 

 

3.5.6. Formalism606 

 

As I explained in section 2.2.1, Peano attempted to equip mathematics with more rigor by 

forming symbolic logic and formalizing proofs (especially in the area of mathematical 

analysis), thus reinforcing the axiomatic method, whose origin can be traced to Euclid’s 

research work. The axiomatic method was further reinforced by the great German 

mathematician David Hilbert (1862–1943). Hilbert’s book entitled Grundlagen der 

Geometrie (Foundations of Geometry), published in 1899, was the first book after Euclid’s 

Elements that provided a logically rigorous formulation of geometry. Hilbert’s axiomatic 

model of Euclidean geometry consists of the following primitive concepts and axioms: 

 

Primitive concepts of Hilbert’s axiomatic model of Euclidean geometry: 

- Three undefined primitive terms: 

Point;  

Line; 

Plane. 

- Three primitive relations: 

“Betweenness”: a triadic relation linking points; 

“Lies on” (“Containment”): three binary relations, one linking points and straight 

lines, one linking points and planes, and one linking straight lines and planes; 

“Congruence”: two binary relations, one linking line segments and one linking 

angles, each denoted by an infix ≅. 

Axioms of Hilbert’s axiomatic model of Euclidean geometry: 

i. Axioms of Incidence: 

1. For every two points 𝐴 and 𝐵, there exists a straight line 𝑙 that contains both of 

them. Then we write 𝐴𝐵 = 𝑙 = 𝐵𝐴 . Apart from using the term “contains,” one 

may say that “𝐴 lies upon 𝑙,” “𝑙 goes through 𝐴 and through 𝐵,” “𝑙 joins 𝐴 to 𝐵,” 

etc.  

2. For every two points, there exists no more than one straight line that contains 

both of them. 

3. There exist at least two points on a straight line, and, given any straight line, 

there exists at least one point not on it. 

 
606 Eves, Foundations and Fundamental Concepts of Mathematics; Grattan-Guinness, The Search of Mathematical 

Roots: 1870–1940; Kneebone, Mathematical Logic and the Foundations of Mathematics; Leng, Mathematics 

and Reality; Moore, The Infinite; Potter, Set Theory and Its Philosophy; Struik, A Concise History of 

Mathematics. 
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4. For every three points 𝐴, 𝐵, and 𝐶 not lying on the same straight line, there 

exists a plane 𝑃 that contains all of them. Every plane contains at least one point. 

5. For every three points 𝐴, 𝐵, and 𝐶 not lying on the same straight line, there 

exists only one plane 𝑃 that contains all three points. 

6. If two points 𝐴 and 𝐵 of a straight line 𝑙 lie on a plane 𝑃, then every point of 𝑙 

lies on 𝑃.  

7. If two planes 𝑃 and 𝑄 have a point 𝐴 in common, then they have at least a 

second point 𝐵 in common. 

8. There exist at least four points not all contained in the same plane. 

ii. Axioms of Order: 

1. If a point 𝐵 lies between points 𝐴 and 𝐶, then 𝐵 is also between 𝐶 and 𝐴, and 

there exists a straight line containing the distinct points 𝐴, 𝐵, and 𝐶. 

2. If 𝐴 and 𝐶 are two points of a straight line, then there exist at least one point 𝐵 

lying between 𝐴 and 𝐶 and at least one point 𝐷 so situated that 𝐶 lies between 𝐴 

and 𝐷. 

3. Of any three points situated on a straight line, there is always exactly one that 

lies between the other two. 

4. Any four points 𝐴, 𝐵, 𝐶, and 𝐷 situated on a straight line can always be so 

arranged that 𝐵 will lie between 𝐴 and 𝐶 as well as between 𝐴 and 𝐷, and, 

furthermore, that 𝐶 will lie between 𝐴 and 𝐷 as well as between 𝐵 and 𝐷.607 

5. Pasch’s Axiom608: Given any three points 𝐴, 𝐵, and 𝐶 that are not situated on the 

same straight line, and given a straight line 𝑙 contained in the plane 𝐴𝐵𝐶 but not 

containing any of the points 𝐴, 𝐵, and 𝐶, it holds that, if 𝑙 contains a point on the 

segment 𝐴𝐵, then 𝑙 also contains a point on the segment 𝐴𝐶 or on the segment 

𝐵𝐶. In other words, if a straight line 𝑙 meets side 𝐴𝐵 of the triangle ∆𝐴𝐵𝐶 but 

contains none of the given triangle’s vertices, then 𝑙 meets side 𝐵𝐶 or side 𝐴𝐶 

but not both.  

iii. Axiom of Parallels (Euclid’s Axiom): In a plane 𝑃, consider an arbitrary straight line 

𝑙 and an arbitrary point 𝐴 that does not lie on 𝑙. Then there exists exactly one straight 

line that passes through the point 𝐴 and does not intersect the straight line 𝑙. 

iv. Axioms of Congruence609: 

1. Given two points 𝐴 and 𝐵 as well as a point 𝐴′ situated on a straight line 𝑙, there 

exist exactly two points 𝐶 and 𝐷 such that 𝐴′ is between 𝐶 and 𝐷, and 𝐴𝐵 ≅ 𝐴′𝐶 

and 𝐴𝐵 ≅ 𝐴′𝐷. Every segment is congruent to itself; symbolically: 𝐴𝐵 ≅ 𝐴𝐵. 

2. If a segment 𝐴𝐵 is congruent to the segment 𝐴′𝐵′ and to the segment 𝐴′′𝐵′′, then 

the segment 𝐴′𝐵′ is congruent to the segment 𝐴′′𝐵′′. 

3. Let 𝐴𝐵 and 𝐵𝐶 be two segments of a straight line 𝑙 that have no points in 

common aside from the point 𝐵, and let 𝐴′𝐵′ and 𝐵′𝐶′ be two segments of the 

 
607 The American mathematicians Eliakim Hastings Moore and Robert Lee Moore have independently proved that 

this axiom is redundant (thus reducing the number of the axioms of Hilbert’s axiomatic model of Euclidean 

geometry to twenty). 
608 This statement is known as Pasch’s Axiom, because, even though it was implicitly used by Euclid, the 

nineteenth-century German mathematician Moritz Pasch discovered its essential role in plane geometry. 
609 Two figures/objects are “congruent” if they have the same shape and size. 
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same or of another straight line 𝑙′ having no point other than 𝐵′ in common. 

Then, if 𝐴𝐵 ≅ 𝐴′𝐵′ and 𝐵𝐶 ≅ 𝐵′𝐶′, it holds that 𝐴𝐶 ≅ 𝐴′𝐶′.  

4. Given an angle ∠𝐴𝐵𝐶 and a ray (i.e., a straight line having one defined endpoint 

and extending endlessly in one direction) 𝐵′𝐶′, there exist exactly two rays 𝐵′𝐷 

and 𝐵′𝐸 such that ∠𝐷𝐵′𝐶′ ≅ ∠𝐴𝐵𝐶 and ∠𝐸𝐵′𝐶′ ≅ ∠𝐴𝐵𝐶.  

5. If, in two triangles ∆𝐴𝐵𝐶 and ∆𝐴′𝐵′𝐶′, the congruences  

𝐴𝐵 ≅ 𝐴′𝐵′, 𝐴𝐶 ≅ 𝐴′𝐶′, and ∠𝐵𝐴𝐶 ≅ ∠𝐵′𝐴′𝐶′ 

hold, then  

∆𝐴𝐵𝐶 ≅ ∆𝐴′𝐵′𝐶′. 

v. Axioms of Continuity: 

1. Axiom of Archimedes: Given a straight line segment 𝐶𝐷 and a ray 𝐴𝐵, there exist 

points 𝐴1, … , 𝐴𝑛 on 𝐴𝐵 such that 𝐴𝑖𝐴𝑖+1 ≅ 𝐶𝐷, where 1 ≤ 𝑖 ≤ 𝑛, and 𝐵 is 

between 𝐴1 and 𝐴𝑛. Equivalently, we can say that, given two arbitrary straight 

line segments 𝐴𝐵 and 𝐶𝐷, there is a natural number 𝑛 such that the sum of 𝑛 

copies of 𝐴𝐵 will be greater than 𝐶𝐷.  

2. Axiom of Completeness: To a system of points, straight lines, and planes, it is 

impossible to add other elements in such a manner that the system thus 

generalized shall form a new geometry obeying all the five aforementioned 

groups of axioms (I–V). In other words, if we regard the five aforementioned 

groups of axioms (I–V) as valid, then the elements of geometry form a system 

that is not susceptible to extension. 

 

Hilbert’s Foundations of Geometry is not only an axiomatization of Euclidean geometry, 

but also a research program of “formal axiomatics.” What Hilbert thought that he had 

demonstrated was that Euclidean geometry provides a true representation of space and that 

the creation of non-Euclidean geometries neither threatened mathematical truth itself nor 

clashed with the existence of Euclidean geometry, provided that the consistency of Euclidean 

and non-Euclidean geometries could be assured. Furthermore, Hilbert attempted to refute 

Kronecker’s argument that geometry is not part of pure mathematics. Thus, in 1904, faced 

with the discovery of contradictions in set theory, Hilbert insisted that it must be possible to 

develop a logically rigorous and completely mathematically satisfying foundation for the 

concept of number that, contra Kronecker’s claims, encompasses both irrational and rational 

numbers. According to Hilbert, if mathematics is “formalizable,” then the consistency 

problem is reducible to the derivability of a formula in a formal system that expresses both a 

statement and its negation. In addition, according to Hilbert, a consistency proof could 

demonstrate that a property of the axioms—which Hilbert called “homogeneousness”—is 

passed on by the rules of the axiomatic system to all of the theorems that are deduced from 

the given axiomatic system.  

Based on the idea that, in analytic geometry, whose axioms are those of real numbers, 

geometric axioms can be logically and mathematically justified, Hilbert attempted to prove 

the consistency of Euclidean geometry within the context of the theory of real numbers, and, 

therefore, he interpreted the “points” and the “lines” of the system of Euclidean geometry as 

pairs of real numbers and linear equations, respectively. In other words, according to Hilbert’s 

research program of “formal axiomatics,” Euclidean geometry has as much claim to truth as 

the theory of real numbers. Thus, Hilbert’s research program of “formal axiomatics” defended 
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geometry against Kronecker’s viewpoints, and it defended the system of real numbers against 

the critics of the continuum and set theory, but it gave rise to new questions regarding the 

truth of pure mathematics itself. 

In 1905, responding to Hilbert’s research work in the foundations of mathematics, 

Poincaré argued that the problem with Hilbert’s attempt to secure the foundations of 

mathematics with consistency proofs for formal systems is that these must refer to every proof 

in the system (and, hence, since they must employ mathematical induction, they cannot be 

used in order to justify mathematical induction). In 1927, Hilbert qualified his position by 

distinguishing two kinds of induction: “contentual” and “formal.” In particular, Hilbert 

argued that, according to his theory, 

 

. . . two distinct methods that proceed recursively come into play when the foundations of 

arithmetic are established, namely, on the one hand, the intuitive construction of the integer as 

numeral . . . that is, contentual induction, and, on the other hand, formal induction proper, 

which is based on the induction axiom and through which alone the mathematical variable can 

begin to play its role in the formal system.610 

 

Hilbert’s priority was to eliminate skepticism from mathematics without jeopardizing the 

possibility of future discoveries, and, therefore, he resorted to metamathematics. 

Consequently, in the context of Hilbert’s research program of “formal axiomatics,” the truth 

of the axioms of a given system is based on and derives from a metamathematical consistency 

proof, and the “interplay” between the given mathematical object and metamathematical 

systems is a dialectical process that accounts for the development of mathematical thought: a 

mathematical object provides the “raw material,” specifically, a system of contentual 

propositions, which are formalized in a metamathematical system, yielding “ideal 

propositions.” Therefore, the concept of “formalization” should not be confused with the 

concept of “axiomatics,” since the former is only one aspect of the latter: whereas axiomatics 

(i.e., the axiomatic method) originated in the research works of ancient Greek 

mathematicians, Hilbert maintains that formalization (i.e., the formalist method) aims to 

render the concept of an axiomatic theory more precise by introducing the concept of a formal 

system as the next stage in the development of axiomatics. In particular, formalism shows that 

mathematical theories themselves can be treated as precise mathematical objects and 

investigated with regard to their consistency and completeness, and it gives rise to a general 

theory of such theories, namely, to a so-called “metatheory.”  

Whereas logicism maintains that mathematical entities can be defined in the language of 

symbolic logic, and whereas intuitionism maintains that mathematical entities are mental 

constructs, formalism maintains that mathematical entities, irrespective of any question about 

their essence, can be studied as terms of a formal language modulo the equivalence relation of 

“provable equality” (i.e., two terms are equivalent, or denote the same entity, if the formula 

obtained by putting an equality sign between them is provable in the given formal language). 

In other words, according to formalism, truth is equivalent to the deduction of theorems from 

a consistent and complete axiomatic system, and, if an axiomatic system is consistent and 

complete, then it is epistemologically legitimate (an it can coexist with other such systems). 

The very term “formalism” implies that one focuses more (or almost exclusively) on the 

 
610 Hilbert, “The Foundations of Mathematics,” pp. 471–2.  
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formal qualities of a mathematical theory over its substantial content and intuitions, for which 

reason, according to Hilbert, mathematical theories rest not only on axioms and rules of 

inference (by means of which theorems are deduced from axioms), but also on undefined 

(primitive) notions. Hilbert’s formalism, like intuitionism, maintains that mathematics is an 

activity of human consciousness, which is free to choose the axioms of the theories that it 

articulates, but this freedom is not absolute, because the truth of a formalized axiomatic 

theory consists in proving that the given formal system is consistent and complete. Thus, in 

the 1920s, Hilbert undertook to formalize the entire discipline of mathematics and, thus, 

transform it into an inventory of provable formulas.  

In the 1930s, the great Austrian mathematician and logician Kurt Gödel undertook to 

evaluate the logical rigor of formalism, specifically, the two most comprehensive formal 

systems that had been developed until that time, namely, Russell’s and Whitehead’s system of 

Principia Mathematica (henceforth PM) and the Zermelo–Fraenkel axiomatic system of set 

theory (further developed by John von Neumann). In 1931, referring to these two formal 

systems, Gödel pointed that they “are so comprehensive that in them all methods of proof 

today used in mathematics are formalized, that is, reduced to a few axioms and rules of 

inference.”611 Therefore, Gödel contended, one could “conjecture that these axioms and rules 

of inference are sufficient to decide any mathematical question that can at all be formally 

expressed in these systems.”612 However, Gödel proved that “this is not the case, that on the 

contrary there are in the two systems mentioned relatively simple problems in the theory of 

integers that cannot be decided on the basis of the axioms.”613 Furthermore, Gödel proved an 

even stronger claim, namely, that the existence of “formally undecidable propositions” is not 

due to the special nature of PM and the Zermelo–Fraenkel axiomatic system of set theory, but 

it “holds for a wide class of formal systems; among these, in particular, are all systems that 

result from the two just mentioned through the addition of a finite number of axioms,” 

provided that they are consistent.614 In particular, in 1931, Gödel proved  

 

Gödel’ Incompleteness Theorem615: If a theory is consistent (i.e., if it neither contains nor 

produces contradictions), and if it is comprehensive enough to contain elementary arithmetic 

as the latter has been encoded by Peano’s axioms for natural numbers, then it is not complete, 

that is, we can prove that there is a statement that is undecidable (i.e., it can be neither proved 

nor disproved) in the given theory.  

 

Sketch of Proof (for simplicity, we shall consider the case of PM): First of all, as Gödel 

has observed, we have to keep in mind the following: (i) the formulas of a formal system, say 

PM, are formalized as finite sequences of primitive signs (i.e., variables, logical constants, 

and parentheses or punctuation dots), and, thus, it can be easily determined with complete 

precision whether a sequence of primitive signs is meaningful; and (ii) in the context of a 

formal system, say PM, proofs are formalized as finite sequences of formulas with certain 

specifiable properties. As regards metamathematics, it does not matter what objects are 

chosen as primitive signs, and, thus, Gödel assigned natural numbers to this case, so that a 

 
611Gödel, “On Formally Undecidable Propositions of Principia Mathematica and Related Systems,” p. 17. 
612 Ibid. 
613 Ibid. 
614 Ibid. 
615 Ibid, pp. 17–47. 
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formula will be a finite sequence of natural numbers, and a proof array will be a finite 

sequence of finite sequences of natural numbers. In this way, the metamathematical concepts 

(i.e., propositions) become concepts (specifically, propositions) about natural numbers or 

sequences of natural numbers, and, therefore, they can, at least in part, be expressed by the 

symbols of the formal system PM itself (i.e., in this way, we obtain an isomorphic image of 

the formal system PM in the domain of arithmetic). In particular, the concepts of a formula, a 

proof array, and a provable formula can be defined in the formal system PM, since we can, 

for instance, find a formula 𝐹(𝑣) of PM with one free variable 𝑣 (of the type of a number 

sequence) such that, if 𝐹(𝑣) is interpreted according to the meaning of the terms of PM, then 

𝐹(𝑣) says: “𝑣 is a provable formula.” In view of the foregoing, Gödel constructed an 

undecidable proposition of the formal system PM, namely, a proposition 𝐴 for which neither 

𝐴 nor ¬𝐴 (i.e., the negation of 𝐴) is provable, in the following way. 

If a formula of PM has exactly one variable, and if its variable is of the type of the natural 

numbers (i.e., a class of classes), then the given formula is said to be a “class sign.” Then 

Gödel assumes that the class signs have been arranged in a sequence in some way, he denotes 

the 𝑛th one by 𝑅(𝑛), and he observes that the concept of a class sign and the ordering relation 

𝑅 can be defined in the formal system PM. Furthermore, Gödel assumes that 𝛼 is an arbitrary 

class sign, he uses the symbol [𝛼; 𝑛] in order to denote the formula that results from the class 

sign 𝛼 when the free variable is replaced by the sign denoting the natural number 𝑛, and he 

observes that the ternary relation 𝑥 = [𝑦; 𝑧] is also definable in the formal system PM. 

Therefore, a class 𝐾 of natural numbers can be defined as follows: 

 

𝑛 ∈ 𝐾 ≡ 𝐵𝑒𝑤̅̅ ̅̅ ̅̅ [𝑅(𝑛); 𝑛],   (1) 

 

where 𝐵𝑒𝑤𝑥 means that 𝑥 is a provable formula, and the bar denotes negation. Given that the 

concepts that occur in the definiens are all definable in PM, the concept 𝐾 formed from them 

is also definable in PM, namely: there is a class sign 𝑆 such that the formula [𝑆; 𝑛], 

interpreted according to the meaning of the terms of PM, states that the natural number 𝑛 

belongs to 𝐾. Since 𝑆 is a class sign, it is identical to some 𝑅(𝑞), so that 

 

𝑆 = 𝑅(𝑞) 

 

for a certain natural number 𝑞. Hence, Gödel managed to prove that the proposition [𝑅(𝑞); 𝑞] 

is undecidable in the formal system PM as follows: If the proposition [𝑅(𝑞); 𝑞] is provable, 

then it is also true. But, in that case, according to the aforementioned definitions, 𝑞 would 

belong to 𝐾, and, by (1), 𝐵𝑒𝑤̅̅ ̅̅ ̅̅ [𝑅(𝑞); 𝑞] would hold, which contradicts the assumption that the 

proposition [𝑅(𝑞); 𝑞] is provable. If, on the other hand, the negation of [𝑅(𝑞); 𝑞] is provable, 

then 𝑞 ∈ 𝐾̅̅ ̅̅ ̅̅ ̅̅ , and, by (1), 𝐵𝑒𝑤[𝑅(𝑞); 𝑞] would hold. But, in that case, both [𝑅(𝑞); 𝑞] and its 

negation would be provable, which again is impossible.■ 

 

Remark: The undecidable proposition [𝑅(𝑞); 𝑞] states that 𝑞 ∈ 𝐾, and, therefore, by (1), 

that [𝑅(𝑞); 𝑞] is not provable. In this way, Gödel constructed a proposition that says about 

itself that it is not provable in PM, without involving the fallacy of circular reasoning, since, 

initially, the given proposition asserts that a certain well-defined formula (specifically, the 

one obtained from the 𝑞th formula in the lexicographic order by a certain substitution) is 
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unprovable, and only subsequently does it turn out that this formula is precisely the one by 

which the original proposition was expressed. In other words, broadly speaking, Gödel 

considered a statement of the type 

 

𝑃 = “This statement is false,” 

 

which leads to the following complicated situation: if 𝑃 = “This statement is false” is true, 

then it is false, but the sentence asserts that it is false, and, if it is, indeed, false, then it must 

be true, and so on. The earliest study of problems pertaining to self-reference in logic is due 

to the seventh-century B.C. Greek philosopher and logician Epimenides, who formulated the 

classical “liar paradox.”616 Gödel’s Incompleteness Theorem shows that such complicated 

situations can occur in any theory that is consistent and comprehensive enough to contain 

elementary arithmetic as the latter has been encoded by Peano’s axioms for natural numbers. 

Consequently, logic is complete for itself, but it cannot ensure the completeness of any theory 

that is consistent and comprehensive enough to contain elementary arithmetic as the latter has 

been encoded by Peano’s axioms for natural numbers. 

According to Gödel, human consciousness, in general, and thought processes, in 

particular, are not merely algorithmic. Gödel established the following argument 

mathematically: “Either . . . the human mind (even within the realm of pure mathematics) 

infinitely surpasses any finite machine, or else there exist absolutely unsolvable Diophantine 

problems.”617 Thus, according to Gödel, logic is a necessary but not a sufficient underpinning 

of mathematics, since mathematical truth is not totally formalizable. Hao Wang, studying 

Gödel’s theorems, points that “the analysis of concepts is essential to philosophy. Science 

only combines concepts and does not analyze concepts . . . Analysis is to arrive at what 

thinking is based on: the inborn intuitions.”618 

 

 

3.5.6. Conclusions 

 

As I mentioned in Chapter 1, philosophy aims to articulate a general method and a 

general criterion for the explanation of every object of philosophical research; ontology is the 

branch of philosophy that seeks to inquire into and ascertain the reality of its object and, 

especially, the reality of being; and epistemology is the branch of philosophy that is 

preoccupied with the validity of knowledge and the different ways in which one can obtain 

valid knowledge. The aforementioned three “schools” of mathematical philosophy, namely, 

logicism, intuitionism, and formalism, express the need of every thorough and conscientious 

mathematician to analyze, evaluate, and found one’s object of mathematical research in a 

rigorous way.  

Scientists cannot be fully aware of what they do and of how they do it, unless they are 

sensitive to ontology and epistemology, that is, unless they philosophize on the object of their 

 
616 See: Fowler, The Elements of Deductive Logic. 
617Gödel, “Some Basic Theorems on the Foundations of Mathematics and Their Implications,” p. 310. By the term 

“Diophantine problems,” we refer to equations with rational solutions (in the third century A.D., the Greek 

mathematician Diophantus of Alexandria published a book entitled Arithmetica, in which he studied such 

problems and paved the way for important advances in number theory). 
618 See: Wang, A Logical Journey, p. 273.  
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research work. As I argued in Chapter 1, mathematics and philosophy are homomorphic, in 

the sense that mathematics plays a deeply philosophical role in science: mathematics equips 

science with criteria and methods of reasoning, computing, and, generally, conducting 

research as well as with suitable means of scientific expression and formalization. Thus, 

mathematics represents the highest level of abstraction vis-à-vis science, but, when 

mathematics reflects on itself in order to fully know itself and to organize itself in a rigorous 

way, mathematics ascends to an even higher level of abstraction, namely, to a level of 

abstraction that transcends mathematics itself, and it is called “mathematical philosophy.” 

As I have already shown, neither logicism, nor intuitionism, nor formalism can stand as a 

general theory of mathematical philosophy: the major weaknesses of Russell’s and 

Whitehead’s Principia Mathematica are that it suffers from intellectual stiffness, it endows 

Aristotelian logic (further developed by Russell and Whitehead) with Platonic ontological 

authority, and it does not provide a proof of the assumed consistency of the theory of types; 

the major weaknesses of Brower’s and his advocates’ intuitionism are that it is characterized 

by unnecessarily extreme complexity, its constructivist methodology (specifically, the 

argument that a mathematical object should only be viewed as real if it can be explicitly 

constructed) entails the rejection of major parts and aspects of set theory, topology, and 

mathematical analysis, and it cultivates a restrictive mindset (for which reason, paraphrasing 

Hilbert, one could fairly argue that, doing mathematics merely under the constraints of 

constructivism is like trying to box without using one’s fists); the major weakness of Hilbert’s 

formalism is that its attempt to found the truth of the system Principia Mathematica and of 

the Zermelo–Fraenkel axiomatic system of set theory (further developed by John von 

Neumann) on the principle of consistency and, thus, achieve the total formalization of 

mathematical truth was proved to be necessarily (i.e., intrinsically) ineffective by Gödel. As 

Edna E. Kramer has summarized Gödel’s research work in the foundations of mathematics, 

Gödel showed that “there must be ‘undecidable’ statements in any system, that is, 

propositions which can neither be proved nor refuted using the rules of the system, and that 

consistency is one of these undecidable propositions.”619 However, this state of affairs does 

not imply that the aforementioned great mathematicians’ research works in the domain of 

mathematical philosophy were fruitless or unsuccessful, because, on the contrary, they paved 

new ways of thinking about mathematics, and they gave rise to new awarenesses; in 

particular: they clarified the epistemological potential and the limits of the axiomatic method 

as a way of systematizing mathematics, they managed to found set theory and other 

mathematical areas (such as topology) in a rigorous way, and they gave rise to the 

development of metamathematics as a systematic way of reflecting on and evaluating 

mathematical work.  

By the second half of the twentieth century, none of the aforementioned three “schools” 

of mathematical philosophy existed separately, in its original, pure form, and the borders 

between logicism, intuitionism, and formalism became blurred. Thus, from the middle of the 

twentieth century onward, mathematicians became preoccupied with new, broader 

epistemological debates, which, in fact, have prevailed in every scientific discipline (both in 

the natural sciences and in the social sciences), and they center around the following two 

issues: (i) the difference between “truth as a discovery” and “truth as an invention”; and (ii) 

 
619 Kramer, The Nature and Growth of Modern Mathematics, p. 686.  
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the determination of the degrees of truth and the difference between “correctness” and 

“fallacy.” I shall study these two epistemological debates in sections 3.7 and 3.8. 

 

 

3.6. THE PROBLEM OF EMPIRICAL RELEVANCE  

IN THE CONTEXT OF SCIENCE 
 

As I mentioned in section 1.2.3, the modern scientific worldview implies that a sentence 

makes a cognitively significant assertion if and only if it is either 𝐿-determinate or non-𝐿-

deterimate, where 𝐿 stands for the relevant formal language: the truth value of an 𝐿-

determinate statement is determined in 𝐿 by an interpretation of the symbols in 𝐿; on the other 

hand, a non-𝐿-deterimate statement is called true or false not only on the basis of the rules of 

interpretation in the relevant deductive system, but also on the basis of a rule of disposition by 

reference to empirical data (non-𝐿-deterimate statements for which a rule of disposition by 

reference to empirical data has been established are called “factual statements,” and the 

deductive systems in which they appear are called “applied”). Therefore, from the 

aforementioned perspective, the formulation of particular criteria of empirical significance 

depends on the aforementioned general principle of cognitive significance. Furthermore, in 

order to be able to study particular criteria of empirical significance, one must be, first of all, 

aware of certain requirements that must be met by any criterion of cognitive significance, 

namely, one must formulate some condition of adequacy for criteria of cognitive significance. 

The following necessary (though not sufficient) condition (here called “Condition A”) of 

adequacy for criteria of cognitive significance is originally due to Carl Gustav Hempel620: 

 

Condition A: Let 𝐶 be a criterion of cognitive significance. If, under 𝐶, a sentence 𝑆 is 

non-significant (i.e., 𝑆 cannot be significantly assigned a truth value), then so must 

be all truth-functional compound sentences containing 𝑆. 

Corollary A1: If, under 𝐶, 𝑆 is non-significant, then so must be ¬𝑆 (i.e., the negation of 

𝑆). 

Corollary A2:If, under 𝐶, 𝑆 is non-significant, then so must be 𝑆˄𝑆′ and 𝑆˅𝑆′, where 𝑆′ 

is any sentence, significant or non-significant under 𝐶. 

 

Based on the above preliminaries, we can now study and evaluate different criteria of 

empirical significance. The oldest such criterion is the verifiability criterion: 

 

The Criterion of Complete Verifiability in Principle (CV)621: A necessary and sufficient 

condition that a sentence has empirical meaning is that it is not 𝐿-determinate and follows 

logically from some finite and logically consistent class of observation sentences (these 

observation sentences may be false, since the criterion refers to testability “in principle”). 

The above criterion, however, has many defects. First of all, it is worth mentioning that, 

originally, (CV) had restricted the permissible evidence to what is observable by the speaker 

 
620 Hempel, Aspects of Scientific Explanation. 
621 See: Ayer, Language, Truth and Logic; Russell, Human Knowledge. 
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or one’s fellow beings during their lifetimes.622 In that form, (CV) had an important defect, 

namely, under such a criterion, all statements about the distant future or the remote past are 

cognitively meaningless.623 This defect can be overcome if the concept of verifiability in 

principle is construed as referring to logically possible evidence as expressed by observation 

sentences, so that the class of statements that are verifiable in principle includes statements 

about the distant future, the remote past, and, generally, about phenomena that are not 

observable by the speaker or one’s fellow beings (for instance, the sentence “Mars and the 

Antarctic existed before humanity discovered them”). 

Nevertheless, even after the above refinement, the verifiability criterion still has serious 

defects, as has been argued, among others, by Hempel.624 Following Hempel’s reasoning, let 

us, first, assume that the properties of being a cat and of having a tail are both observable 

characteristics and that the former does not logically entail the latter. Then the sentence  

 

“All cats have a tail” (𝑆∗) 

 

is neither 𝐿-determinate nor contradictory, and, furthermore, it is not deducible from any 

finite set of observation sentences. Thus, under (CV), the above sentence is devoid of 

empirical significance and so are all other sentences expressing general laws. But, because 

sentences of the above type constitute a significant part of a scientific theory, it follows that 

(CV) is too restrictive. Second, the negation of (𝑆∗), namely, the sentence 

“There exists at least one cat that has not a tail” (¬𝑆∗) 

is cognitively significant under (CV), but (𝑆∗) is not, and this contradicts Corollary A1. 

Third, if 𝑆 is a sentence that does and 𝑆′ a sentence that does not satisfy (CV), then 𝑆 is 

deducible from some set of observation sentences, so that 𝑆˅𝑆′ is deducible from the same set 

(i.e., 𝑆˅𝑆′ is cognitively significant), which contradicts Corollary A2. 

Moreover, Karl R. Popper criticizes the verifiability criterion on the grounds that the 

positivist argument that empirical science is a system of statements satisfying certain logical 

criteria does not make provisions for what Popper considers to be the major distinguishing 

feature of empirical statements, namely, their susceptibility to revision.625 In other words, 

Popper’s approach to the question of empirical meaninglessness calls for a systematic study 

of the manner in which science advances and a choice is made between conflicting systems of 

theories. Thus, Popper proposes the falsifiability criterion as an alternative to the verifiability 

criterion: 

 

The Criterion of Complete Falsifiability in Principle (CF)626: A necessary and sufficient 

condition that a sentence has empirical meaning is that it its negation is not 𝐿-determinate and 

follows logically from some finite and logically consistent class of observation sentences. 

However, (CF) indirectly contains (CV), since (CF) qualifies a sentence as empirically 

meaningful if its negation satisfies (CV). Therefore, Hempel has pointedly argued that (CF) 

has similar defects with (CV).627 Indeed, (CF) has the following defects: (i) it rules out purely 

 
622 Ibid.  
623 Ibid. 
624 Hempel, Aspects of Scientific Explanation. 
625 Popper, The Logic of Scientific Discovery. 
626 Ibid. 
627 Hempel, Aspects of Scientific Explanation. 
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existential hypotheses (for instance, the statement “There exists at least one cat that has not a 

tail”) as cognitively insignificant; (ii) if 𝑃 is an observation predicate, then the assertion that 

all things satisfy 𝑃 is significant under (CF), but its negation—being a purely existential 

hypothesis—is not significant under (CF), and this contradicts Corollary A1; (iii) if a 

sentence 𝑆 does and a sentence 𝑆′ does not satisfy (CF), then 𝑆˄𝑆′ does satisfy (CF) (since, if 

¬𝑆 is entailed by a class of observation sentences, then ¬(𝑆˄𝑆′) is entailed by the same 

class), and this contradicts Corollary A2.  

Given that both (CV) and (CF) have been proved to be too restrictive and susceptible to 

serious defects, the British philosopher Sir Alfred Ayer attempted to formulate a criterion of 

confirmability that avoids the defects of (CV) and (CF) by construing the testability criterion 

as consisting in a partial and possibly indirect confirmability of empirical hypotheses by 

observational evidence.628 In particular, Ayer’s confirmability criterion states that a sentence 

𝑆 is empirically significant if 𝑆 in conjunction with suitable auxiliary hypotheses imply 

observation sentences that cannot be derived from the auxiliary hypotheses alone. However, 

Ayer himself, in the second edition of his book Language, Truth and Logic (1946), 

recognized that the previous confirmability criterion is too liberal.629 For instance, if 𝑆 is the 

sentence “The totality is everything,” and if one chooses as an auxiliary hypothesis the 

statement “If the totality is everything, then the cat is black,” the following observation 

sentence can be deduced: “The cat is black.” Therefore, Ayer restricted the auxiliary 

hypotheses mentioned in the initial version of his confirmability criterion to sentences that 

either are 𝐿-determinate or can independently be shown to be testable in the sense of the 

refined confirmability criterion.630 Nevertheless, not even this refinement of the 

confirmability criterion is enough; for, as Hempel has pointed out, it allows empirical 

significance to any conjunction 𝑆˄𝑆′ where 𝑆 does and 𝑆′ does not satisfy Ayer’s criterion 

(e.g., 𝑆′ is a sentence such that “The totality is everything”). 

A general remark that applies to all the above-mentioned criteria of empirical 

significance is that they are all based on an attempt to define the concept of empirical 

significance in terms of certain logical connections that should hold between a significant 

sentence and suitable observation sentences. Moreover, all these criteria have been proved to 

have serious defects. Therefore, one might reasonably attempt to avoid the defects of the 

above-mentioned criteria by proposing an alternative way of explicating the concept of 

empirical significance. Such an alternative approach may be based on the characterization of 

cognitively significant sentences by certain conditions that their own constituent terms must 

satisfy.631 In particular, all extralogical terms632 in a significant sentence must have empirical 

content, and, therefore, their meanings must be explicable by reference to observables only.633 

In other words, the aforementioned testability criteria of meaning (i.e., (CV), (CF), and 

Ayer’s confirmability criterion) were based on an attempt to characterize cognitively 

significant sentences by means of certain logical connections in which they must stand to 

 
628 Ayer, Language, Truth and Logic (both first edition: 1936 and second edition: 1946). 
629 Ayer, Language, Truth and Logic, second edition (1946), chapter 1. 
630 Ibid. 
631 Hempel, Aspects of Scientific Explanation.  
632 By an “extralogical term,” we should always understand a term that does not belong to the specific vocabulary of 

logic. For instance, the following phrases and those definable by means of them are logical terms: “or,” “and,” 

“if . . . then . . .,” “all,” “some,” “is an element of class . . .,” etc.  
633 Hempel, Aspects of Scientific Explanation. 
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some observation sentences, whereas this alternative approach aims to specify the vocabulary 

itself (i.e., the constituent elements) that may be used in order to form significant sentences. 

This vocabulary, the class of significant terms,634 is characterized by the condition that each 

of its elements is either a logical term or a term with empirical significance.635 In this way, the 

defects of the previous criteria can be overcome (e.g., if 𝑆 is a significant sentence, then so is 

¬𝑆). 

Nevertheless, the last conclusion cannot end the discussion about significance, since 

another important question remains open: Which are the appropriate logical connections 

between empirically significant terms and observation terms that can give rise to an adequate 

criterion of cognitive significance (notice that “adequate” means that it satisfies Condition 

A)? In the empiricist literature, a well-known attempt to answer the aforementioned question 

consists in the criterion of definability.636 

 

Criterion of Definability (CD)637: Any empirically significant term must be explicitly 

definable by means of observation terms. 

The criterion of definability is too stringent, since it rules out many important scientific 

and prescientific terms that are not explicitly definable by means of observation terms. For 

instance, the German-American philosopher Rudolf Carnap argues that the attempt to provide 

explicit definitions in terms of observables fails when it encounters disposition terms, such as 

“soluble,” “malleable,” etc.638 

Carnap proposes an alternative to the criterion of definability (CD). He introduces the 

concept a reduction sentence, namely, a sentence that, unlike definitions, specifies the 

meaning of a term only conditionally or partially.639 In order to understand the difference 

between a definition and a reduction sentence, let us consider, for instance, the word “elastic.” 

One can define elastic behavior as follows: An object 𝑥 is elastic if and only if, at any time 𝑡 

that it is deformed (e.g., when 𝑥 is stretched), the deformation is reversible at time 𝑡′. If the 

statement connectives of the previous definition are construed truth-functionally, then the 

given definition can be written symbolically as follows: 

 

𝐸𝑥 ≡ (𝑡)(𝐷𝑥𝑡 ⊃ 𝑅𝑥𝑡′). 

 

But then one faces the following problem: if 𝑦 is any object that is not elastic but such 

that it has never been deformed during its existence, then 𝐷𝑦𝑡 is false, and, therefore, it holds 

that 𝐷𝑦𝑡 ⊃ 𝑅𝑦𝑡′ for any 𝑡, so that the observation predicate 𝐸 (elastic) is true in the case of 

𝐸𝑦 even though 𝑦 is not elastic. To remedy that defect, one can follow Carnap’s theory of 

reduction sentences, so that the term “elastic” can be expressed by the following reduction 

sentence: 

 

(𝑥)(𝑡)[𝐷𝑥𝑡 ⊃ (𝐸𝑥 ≡ 𝑅𝑥𝑡′)], 

 

 
634 Any term contained in a cognitively significant sentence is said to be a “cognitively significant term.” 
635 Hempel, Aspects of Scientific Explanation. 
636 This criterion has been critically studied by Hempel in his book Aspects of Scientific Explanation. 
637 Ibid. 
638 Carnap, “Testability and Meaning.” 
639 Ibid. 
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which states that, if 𝑥 is deformed at any time 𝑡, then 𝑥 is elastic if and only if that 

deformation of 𝑥 is reversible at time 𝑡′. 

On the other hand, reduction sentences cannot account for the use of theoretical 

constructs, which play an important role in the construction of scientific theories. For 

instance, in classical physics, the length in meters between two points may assume any 

positive real number as its value. But one cannot use observables in order to formulate a 

sufficient condition for the applicability of such an expression as “𝑥 has a length of 10−30 

m,” or “𝑥 has a length of 1030 m,” namely, extremely small or extremely large numbers. 

Theoretical constructs should be construed as being stated in the form of hypothetico-

deductive systems. The extralogical terms of deductively developed axiomatized systems are 

of two kinds: “primitive terms” (or “basic terms”), which are not defined within the theory, 

and “defined terms,” which are explicitly defined by means of the primitives. The primitive 

and the defined terms together with the terms of logic constitute the vocabulary in terms of 

which all the sentences of a given theory are construed. Moreover, the statements of a theory 

are of two kinds: “axioms” or “postulates,” which are not derived from any other statements 

in the theory, and “derived statements,” which follow from the postulates by logical 

deduction. Empiricism maintains that such deductively developed systems can constitute 

empirical scientific theories if they have gained empirical content. As I have already argued, 

an empirical science presupposes the assignment of a meaning in terms of observables to 

certain terms or sentences of a given deductive system (i.e., an interpretation of the given 

deductive system). An interpretation may take the form of a partial assignment of meaning. 

For instance, the rules for the measurement of weight by means of a standard weight may 

stand as a partial empirical interpretation of the term “the weight, in grams, of an object 𝑥.” 

However, in the aforementioned example, the suggested method of measuring weight is 

applicable to weights ranging within a certain interval, and, furthermore, it cannot be regarded 

as a full interpretation, since it does not constitute the only way of measuring weight.  

Consequently, one should not focus one’s methodological research on the “empirical 

content” of specific terms or sentences; for, usually, no individual statement in a scientific 

theory implies any observation sentences. In fact, a sentence can entail the occurrence of 

certain observation phenomena only if it is conjoined with other auxiliary hypotheses 

(namely, observation sentences and provisionally accepted theoretical statements). In 

particular, Hempel argues that the empirical significance of a given expression 𝑈 is related to 

the language 𝐿 to which 𝑈 belongs (𝐿 contains the rules of inference) and to the theoretical 

context in which 𝑈 occurs (the theoretical context of 𝑈 consists of the statements in 𝐿 that 

may stand as auxiliary hypotheses). 

Conclusively, a criterion of cognitive significance should refer to an entire theoretical 

system formulated by means of a well-defined language. Additionally, the basis of cognitive 

significance in such a system is the possibility of its interpretation in terms of observables; 

such an interpretation may be formulated by means of (bi)conditional sentences connecting 

non-observable terms of the system with observation terms in the given language. Yet, the 

requirement of partial interpretation is too liberal, since it can be satisfied by a system 

consisting of an empirical theory, say modern physics, with some set of isolated sentences, 

even if the latter have no empirical interpretation. Notice that an “isolated sentence” is 

defined to be a sentence that is neither a purely formal truth or falsehood nor does it have any 

empirical content. In other words, isolated sentences can be construed as sentences of 
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speculative metaphysics, where “metaphysics” refers to doctrines about the fundamental 

nature of substances, or about tautological matters, or about our relation to external objects. 

The following criterion deals with the problem of isolated sentences: 

 

Criterion of Cognitive Significance (CCS)640: A necessary and sufficient condition that a 

theoretical system is cognitively significant is that it is partially interpreted to such an extent 

that in no system equivalent to it at least one postulate is isolated. 

Nevertheless, it is not direct observation of phenomena that can lead to the formulation of 

generalizations of great scope or rigor. Such generalizations need theoretical constructs. In 

fact, properly defined theoretical constructs provide the framework within which new general 

connections may be discovered, which otherwise (i.e., if one adopts a strict phenomenalist or 

positivist approach implied by (CCS) and, thus, rules out certain terms and sentences because 

of (CCS)) would remain in the dark. 

Hempel has conjectured that no successful alternative to (CCS) can be found, and that, 

therefore, one cannot formulate a precise criterion by means of which those partially 

interpreted systems whose isolated sentences might be said to have a significant function can 

be separated from those in which the isolated sentences are redundant.641 Hence, instead of 

trying to modify (CCS), one should recognize that cognitive significance in a theoretical 

system varies. In fact, significant systems range from those all of whose extralogical terms 

consist of observation terms, through systems that depend heavily on theoretical constructs, 

on to systems whose empirical relevance is marginal. For instance, positive economics, 

dealing with facts and behavior in an economy, does not consist of pure deductive systems, 

whereas normative economics, dealing with what “ought to be” in an economy, does consist 

of pure deductive systems. 

Therefore, instead of espousing a sharp dichotomy between significant and non-

significant systems, one should compare different theoretical systems with respect to the 

following characteristics that have been originally formulated by Hempel642: 

 

(C1) the level of accuracy that characterizes the manner in which a theory is formulated 

and the manner in which the logical relationships of its elements to each other and 

to observation sentences have been made explicit; 

(C2) the ability of a theory to explain and/or predict observable phenomena; 

(C3) the formal simplicity of a theory in terms of which explanation and prediction will 

take place; 

(C4) the extent to which a theory has been empirically confirmed. 

 

 

3.7. TRUTH AS A DISCOVERY AND TRUTH AS AN INVENTION 
 

Truth, in general, can be defined as a structure, specifically, as a set of relations, say 

{𝑅1, 𝑅2, … , 𝑅𝑛}, which determine if and the extent to which the representation of reality 

 
640 For a thorough study of this criterion, see: Hempel, “The Concept of Cognitive Significance: A 

Reconsideration.” 
641 Hempel, Aspects of Scientific Explanation. 
642 Ibid. 
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within consciousness, namely, the knowledge of reality, is in concordance with the presence 

of reality itself, namely, with the nature of reality.  

The way in which Plato defines propositional truth in Sophist, 261e–262d, can be 

summarized and interpreted as follows: a sentence stating that “𝑎 is 𝑥” is true if and only if it 

states about 𝑎 things as they are, that is, 𝑎 is really 𝑥; otherwise, the given statement is false. 

Thus, from Plato’s perspective, “truth” signifies the concordance between a being or thing 

and its idea (i.e., the corresponding beingly being), so that a being or thing is true if and to the 

extent that it is in concordance with its idea. Given that Plato’s conception of truth is 

intimately related to a metaphysical intuition, which underpins Plato’s theory of philosophical 

vision, Plato says nothing about “correspondence” or about “facts.” It was Thomas Aquinas 

who, interpreting Aristotle’s philosophy, defined truth as “the correspondence between the 

intellect [of the knower] and the thing [the known]” (“adaequatio rei et intellectus”), as I 

mentioned in section 1.2.1. During the Middle Ages and the Renaissance, most of the 

philosophies that affirmed the possibility of obtaining valid knowledge endorsed Aquinas’s 

correspondence theory of truth. According to Aquinas’s Aristotelianism, there is a gap 

between reality and consciousness, and this gap can be interpreted as the distance that 

determines the reflection of reality in consciousness. However, the aforementioned Thomistic 

perception of truth is deficient, because it does not clarify whether the aforementioned 

reflection gives rise to the existence of a reversed (or, generally, distorted) image of reality in 

consciousness.  

Descartes and, in general, Cartesianism oppose Aquinas’s Aristotelianism, by rejecting 

the definition of truth as a relation and by identifying truth with reality. According to 

Descartes, in particular, understanding (or intellection) is the basic reality, and it is activated 

by conceiving itself (hence, Descartes’s famous dictum: “cogito ergo sum”). According to 

Malebranche, who is one of the most important Cartesian philosophers, and, simultaneously, 

he espouses various elements of Augustine’s and Thomas’s philosophies, truth does not 

merely exist within the absolute, but it is identified with the absolute, and, therefore, we 

partake of truth to the extent that we partake of the absolute. Thus, in his Treatise Concerning 

the Search after Truth, Malebranche thinks of truth as a transcendent object, existing 

independently of consciousness, and he argues that consciousness can know truth by 

identifying itself with truth, specifically, either through the absorption of truth by 

consciousness or through the absorption of consciousness by truth. In fact, the 

aforementioned approach to the problem of truth can give rise to various syntheses between 

Cartesianism and mysticism.  

The French epistemologist Bachelard’s approach to the problem of truth is similar to 

Malebranche’s approach to the same problem, but Bachelard emphasizes the process of 

objectification that takes place in the context of science. In particular, Malebranche refers to a 

truth that is being increasingly approached by consciousness as the latter is trying to remove 

the border between itself and its object, a border that has been drawn by consciousness itself 

in order to help consciousness to take distance from the world and, thus, develop a rational 

stance toward the world and achieve its scientific goals. Bachelard argues that humanity’s 

initial contact with the world is grounded in humanity’s primitive drives, which induce 

reverie and dream, preceding any kind of reflection: “We are being faithful to a primitive 

human feeling, to an elemental organic reality, a fundamental oneiric temperament.”643 In 

 
643 Bachelard, Water and Dreams, p. 5. 
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Bachelard’s view, this oneiric aspect of humanity’s primary encounter with the reality of the 

world is characteristic of the way in which the reality of everyday life is constructed. 

According to Bachelard, only when humanity overcomes the aforementioned oneiric state can 

a rational stance toward the world come into being. Thus, Bachelard maintains that rationality 

is a continuous process of overcoming primary impulses, and, in particular, he argues as 

follows: “In point of fact I see no solid basis for a natural, direct, elemental rationality . . . 

Rationalist? That is what we are trying to become.”644 

In view of the foregoing, we realize that, in the context of modern philosophy, the 

conception of truth as a discovery does not imply a static conception of truth, but, on the 

contrary, it is inextricably linked to a dynamic cognitive process. This dynamic approach to 

truth characterizes the conception of truth as an invention, too. Truth can be conceived as a 

creation, that is, as a reality that is continuously under formation and reformation by 

consciousness. The conception of truth as a creation can be further clarified by Bachelard’s 

notion of an “objective meditation”: “subjective [Cartesian] meditation is bent on attaining 

clear and definitive knowledge; objective mediation differs from this by the very fact that it 

makes progress, by its intrinsic need always to go further, to extend the limits of the 

known.”645 Thus, Bachelard characterizes science as a dynamic process both guided by and 

striving for rationality. According to Descartes, the changing qualities of the wax force us to 

dismiss the trustworthiness of sensory-sensuous knowledge, but, according to Bachelard, it is 

precisely the experimental revealing of the morphological diversity of the wax that allows for 

its objectification, and, therefore, scientific consciousness should be continuously open to 

experience new objects, which are constituted by the manner in which different aspects of 

them are experimentally revealed. Truth as an invention can be regarded as a possibility that 

is being increasingly actualized and specified due the interplay between consciousness and 

the reality of the world. In this case, the interplay between consciousness and the reality of the 

world is similar but not identical to some Thomistic/Aristotelian notion of a relation (or 

“correspondence”) regarding truth: from the perspective of any Thomistic/Aristotelian notion 

of a relation (or “correspondence”) regarding truth, consciousness is a passive mirror of 

reality, whereas, according to the aforementioned conception of truth as an invention, 

consciousness, due to its rationality, plays a much more active and responsible role in the 

acquisition of valid knowledge.  

In view of the arguments that I have already put forward in this section and in section 3.6, 

truth is neither a pure essence nor a pure relation (or “correspondence”), but it is a dynamic 

and rational contemplation of the world and of consciousness as consciousness (re)integrates 

itself into the world. Therefore, truth should be construed neither as a discovery alone nor as 

an invention alone, but as the outcome of the contact and the interaction between 

consciousness and the reality of the world. The integration of consciousness into the world is 

both a volitional act and an existential necessity. However, when conscious beings integrate 

themselves into the world, they do not only accept the reality of the world as a substantial 

presence, but also they attempt to understand and interpret the reality of the world. Even 

when consciousness cannot enter into and partake of the reality of a particular aspect the 

world or of a particular situation, consciousness can create a pertinent concept. Hence, as I 

explained in section 3.6, theoretical constructs play a necessary and substantial role in 

 
644 Ibid, p. 7. 
645 Bachelard, The New Scientific Spirit, p. 171. 
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science. Moreover, Kant has masterfully proved that scientific laws are neither connatural to 

reality nor innate in it, but they are kinds of relations, specifically, hypothetico-deductive 

systems, through which consciousness understands and interprets reality. During the process 

of scientific explanation, the consciousness of a scientist creates new, more complete systems 

of relations (i.e., hypothetico-deductive systems) in order to improve one’s understanding and 

interpretation of reality, thus replacing older, scientifically degenerating systems of relations 

with new ones, which have a broader explanatory domain (this reasoning underpins Hempel’s 

approach to the problem of significance, which I studied in section 3.6).  

When consciousness establishes a correspondence between the intellect and the thing, it 

is not passive, but active. In particular, consciousness conceives structures that concur with its 

own structure, and it (re)integrates itself into the world in accordance with these structures. 

Thus, the philosophy of rational dynamicity discards both the idealist argument that reality is 

a mere extension of consciousness and the pragmatist argument that one should merely 

opportunistically seek for a congenial, even temporal, way of settling the contradiction 

between “success” and “failure.” Furthermore, the philosophy of rational dynamicity discards 

any variety of philosophical realism that assigns a passive role to consciousness in the context 

of the correspondence theory of truth. According to the philosophy of rational dynamicity, 

consciousness does not only observe reality, but also it structures and restructures reality, and, 

for this reason, a theory is not a set of observed occurrences and recorded associations, but it 

is instead an explanation of them. In particular, the transition from causal speculations based 

on factual studies to theoretical formulations requires the following methods: (i) isolation, 

namely, viewing particular factors and forces with certain ceteris paribus assumptions (i.e., 

assuming that other things remain equal); (ii) abstraction; (iii) aggregation, namely, grouping 

data together according to the criteria of the corresponding theory; and (iv) idealization, 

namely, conceiving an ideal state or a state in which a limit has been reached. Consequently, 

truth should be construed as the specification of the intentionality of consciousness as the 

latter attempts to impose an interpretation of the world and, thus, to (re)structure the world, in 

accordance with the goals of consciousness.  

In the context of the Thomistic-Aristotelian variety of the correspondence theory of truth, 

consciousness plays a mainly passive role. By contrast, the philosophy of rational dynamicity 

reverses the Thomistic-Aristotelian correspondence between reality and consciousness, and it 

highlights not only the dynamic role of consciousness, but also the potential adaptation of 

reality to the intentionality of consciousness. In particular, according to the philosophy of 

rational dynamicity, consciousness aims to (re)structure reality not according to some 

arbitrary idealist vision, but according to the dialectic of rational dynamicity, which I 

expounded in section 1.3.3. Consequently, truth is continuously being created by the contact 

and the interaction between consciousness and reality, and, even though the so-obtained truth 

is relative and partial, it does not prohibit humanity from struggling for the attainment of the 

absolute truth in any area of reality.  

 

 

3.8. DEGREES OF TRUTH 
 

As I have already argued, truth has a triple nature: it has an epistemological nature (as a 

rigorous creation of consciousness), an axiological nature (as a judgment and, specifically, as 
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a logical value), and an ontological nature (as a correspondence). The process of 

understanding and articulating truth is complex and arduous, and it includes tasks that are 

susceptible to distortion and error. In ancient times, Plato argued that the divergence from the 

correct path of truth is due to ignorance, in the sense that one “does not willingly err.”646 In 

modern times, Descartes partially endorsed the aforementioned Platonic argument. According 

to Plato, consciousness may be led to a fallacy due to a mechanical intellectual process, which 

Plato described in Theaetetus, 197c–d, as follows: one who possesses knowledge may not 

really have it, just as, for instance, a man who keeps pigeons in an aviary “has acquired power 

over them, since he has brought them under his control in his own enclosure,” but “he has 

none of them,” in the sense that, due to the turmoil that prevails in the aviary, when he tries to 

catch one of these pigeons, he catches another instead of another. However, according to 

Descartes, consciousness may be led to a fallacy due to the distortive effects of an 

intervention of volition in pure thinking.647 Thus, Plato interprets ignorance in terms of 

mechanism, whereas Descartes interprets ignorance in terms of dynamism. Moreover, 

Aristotle has distinguished between those fallacies which are involuntary logical sins and 

those fallacies which are sophisms, namely, deliberate distortions of truth.648 

Francis Bacon, one of the most prominent scholars of the British Enlightenment, 

analyzed the distortions that consciousness may undergo as a result of mental “idols,” 

namely, deeply rooted fallacies, which govern human societies and obstruct human 

consciousness from understanding real situations with which it has to deal and of which it has 

to form intellectual representations.649 In particular, Bacon divides the aforementioned “idols” 

into the following four categories: (i) “Idols of the tribe”: they have their origin in the 

tendency of consciousness to focus its attention on favorable approaches to a problem and to 

beautify and simplify particular things of the world (e.g., things pertaining to one’s own 

nation-state, social group, vested interests, etc.); (ii) “Idols of the cave”: they refer to Plato’s 

myth of the cave,650 and they are due to the preconditioned system of every person, 

comprising education, custom, and/or contingent experiences. (iii) “Idols of the Market 

 
646 Plato, Republic, 589c. 
647 See: Cottingham, ed., The Cambridge Companion to Descartes.  
648 Aristotle, On Sophistical Refutations. 
649 See: Bacon, The Advancement of Learning. 
650 In his work Republic, 514a–520a, Plato narrates the following myth, which is known as the “myth of the cave,” 

and it symbolizes humanity’s relationship with the good-in-itself as a process of education and psychological 

remolding: In the depths of a gloomy, underground chamber like a cave, are men who have been prisoners 

there since they were children. They are fastened in such a way that they cannot turn their heads. Some way 

off, behind and higher up, a fire is burning. Between the fire and the prisoners and above them runs a road, in 

front of which a curtain-wall has been built, like the screen at puppet shows between the operators and their 

audience. Furthermore, there are men carrying all sorts of gear along behind the curtain-wall, projecting above 

it. Hence, due to the way in which the prisoners’ legs and necks are fastened, the only things that the prisoners 

can see are the shadows of the objects carried along the road (these shadows are thrown by the fire on the wall 

of the cave opposite them). Suppose that one of these prisoners were let loose, suddenly compelled to stand up 

and turn his head and look and walk toward the fire and that, ultimately, he were forcibly dragged up the steep 

and rugged ascent and not let go until he had dragged out into the sunlight. The previous process would be a 

painful one, to which the prisoner would much object. However, during his march toward the sun, the prisoner 

would realize that, apart from the shadows, there were other things, too, such as a burning torch and several 

objects carried along the road, and, when, at last, he would manage to get out of the cave, he would see things 

in the upper world outside the cave, and, finally, he would manage to look at the sun itself. Later on, he would 

come to the conclusion that, when he was in the cave, he was looking at the shadows of things and not at 

things themselves. 
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Place”: they are based on false conceptions that derive from social and political interactions 

between humans. (iv) “Idols of the theater”: they stem from sophistry and arbitrary 

mysticism, and they manifest themselves as arbitrary generalizations and abstractions, 

errantly drawn analogies, and irrational meditations.  

In view of the arguments that I put forward in sections 1.3.3, 3.4, and 3.7, the problem of 

logical values cannot be adequately understood as a sharp distinction between truth and 

falsehood. From the perspective of classical logic, there are only two logical values, namely, 

truth and falsehood, but modern logic has shown that infinitely many logical values can be 

defined, thus giving rise to 𝑛-valued logics, where 𝑛 ≥ 2 represents the corresponding 

number of logical values, two of which are the classical logical values of truth and falsehood. 

Therefore, one must study the problem of logical values in a more careful way, utilizing the 

dialectic of rational dynamicity, instead of being intellectually trapped in a simplistic logical 

dualism.  

First of all, we should clarify the difference between the terms “truth,” “correctness,” and 

“fallacy.” The term “correctness” signifies the definition of the final result of a process aimed 

to obtain the most general conception of truth, and, therefore, the correct truth per se is a 

unique truth. However, the attempt to obtain the most general conception of truth includes 

“fallacies.” The term “fallacy” signifies an approximation of correctness (i.e., of the correct 

truth).651 It is worth mentioning that the Greek term for “fallacy” is “plāne” (“πλάνη”), which 

also means a wandering, a straying about (in fact, the Greek term “planētes” (i.e., planet) 

derives from “plāne”). Therefore, apart from referring to an error, the term “fallacy” also 

refers to the free and rational wandering of thinking consciousness as it seeks truth freely and 

decisively. Consequently, the aforementioned conception of truth-as-fallacy is substantially 

different from Nietzsche’s argument that “man’s truths . . . are his irrefutable errors.”652 

In contrast to the notions of a falsehood and an irrationality, a fallacy is susceptible to 

correction, since it is an imperfect step toward the knowledge of truth-as-correctness. The 

difference between the correct truth and anyone of its approximations is the measure of 

fallacy of the corresponding approximate truth. In other words, a fallacy can be construed as 

an approximate model of correctness that consists of a set of terms that can be determined a 

priori and of a set of terms that can only be determined a posteriori, since the context in 

which a model holds cannot be completely determined beforehand. For instance, consider the 

expression 𝑤 = (𝑎, 𝑏), where 𝑤 is a member of the power set ℘(𝑊) of the states of the 

world 𝑊 under consideration, 𝑎 is the interpreted component of 𝑤, and 𝑏 is the uninterpreted 

component of 𝑤. Moreover, let us assume that  

 

 
651 The awareness that the correct truth can be gradually and rationally approximated through fallacies was 

inculcated in me by Michael Nicholson, with whom I cooperated in 1998 at the University of Sussex, where he 

was teaching epistemology and methodology of international relations. Michael Nicholson was one of the 

most eminent European scholars in the formal analysis of war and conflict and the possibility of peaceful 

resolution of disputes, and he supported Imre Lakatos’s methodology of scientific research programs. 

Summarizing Lakatos’s methodology of scientific research programs, Nicholson has written the following: 

“According to Lakatos, a theory is not refuted in the abstract merely because of a few counter-instances . . . A 

theory is refuted only in terms of another which explains all the other did and more besides . . . A research 

program should continue, provided it is still ‘progressive’ . . . In the competition between research programs, 

which according to Lakatos is the usual state of affairs, a degenerate program slowly gives way to a 

progressive program” (Nicholson, Causes and Consequences in International Relations, pp. 72–4 ). 
652 Nietzsche, The Joyful Wisdom, aphorism 265. 
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𝑤 = (𝑤1, … ,𝑤𝑖 , … ,𝑤𝑛), 

 

where 𝑛 is an arbitrary positive integer, 

 

𝑎 = (𝑤1′ , … ,𝑤𝑖′ , … ,𝑤𝑛′), and 

𝑏 = (𝑤1′′ , … , 𝑤𝑖′′ , … ,𝑤𝑛′′), 

 

such that  

 

𝑛 = 𝑛′ + 𝑛′′, and 𝑛 ≠ 0. 

 

Then the quotient  

 
𝑛′

𝑛
= 𝑔, where 0 < 𝑔 ≤ 1, 

 

is the measure of generality of expression 𝑤; and, for 𝑔 = 1, the measure of fallacy of 

expression 𝑤 is equal to zero, so that we obtain an expression representing correctness. 

Consequently, the “scientific” work of both the natural scientists and the social scientists can 

be construed as an attempt to construct expressions whose measure of generality is as close to 

1 as possible. Inherent in the aforementioned statement is the awareness that, far from 

signifying opposition to truth, a fallacy may be construed as a subset of truth, from which, 

finally, correctness emerges. This dynamic and rational process, according to which fallacy 

operates as the midwife of truth, is governed by the dialectic of rational dynamicity, which 

was expounded in section 1.3.3, and it is in agreement with Imre Lakatos’s concept of 

“sophisticated falsificationalism” and his “methodology of scientific research programs.”653 

As Lakatos has pointedly argued, even a bad research program is better than nothing.  

The term “falsehood” signifies, specifically, the exact opposite of “correctness,” not the 

exact opposite of “truth” in general. Moreover, we should clarify the difference between the 

terms “falsehood,” “error,” “absurdity,” and “irrationality.” The term “error” signifies that a 

syllogism is intrinsically (that, is structurally and automatically) mistaken, and that it is the 

result of a misinterpretation and/or a misapplication of the rules of logic. An errant syllogism 

cannot be corrected, and, therefore, it can only be dismissed. Falsehood is the expression of 

an error. The term “absurdity” signifies that a syllogism is definitively mistaken (as is the 

case with an “error”), but it can operate as a criterion for the correction of a series of 

syllogisms into which it has been deliberately inserted, according to the form of argument that 

is known as reductio ad absurdum.654 The term “irrationality” signifies the output of an 

inconsistent series of syllogisms. When a series of irrationalities is taken to its ideal natural 

conclusion, it converges to falsehood, whereas, when a series of fallacies is taken to its ideal 

natural conclusion, it converges to correctness. Therefore, an irrationality can be construed as 

the exact opposite of a fallacy, which is an approximation of correctness. 

 
653 Lakatos and Musgrave, eds., Criticism and the Growth of Knowledge. 
654Absurdity: (𝑝 → 𝑐) → ¬𝑝, 

where 𝑝 denotes a proposition, and 𝑐 a “contradiction.” 

Reductio ad absurdum: (𝑝 → 𝑞) ↔ [(𝑝˄¬𝑞) → 𝑐], 

where 𝑝 and 𝑞 stand for propositions, and 𝑐 stands for “contradiction.” 
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The above definitions can be summarized as follows: 

 

i. Oppositional concepts at the highest level of generality: 

Correctness versus Falsehood. 

ii. Oppositional concepts in the context of approximations: 

Fallacies versus Irrationalities, 

where fallacies are approximations of correctness, and irrationalities are 

approximations of falsehood.  

 

René Thom has emphasized the importance of the qualitative, structural aspect of the 

approximation of correctness through fallacy.655 In particular, he has considered the following 

case656: Let us suppose that the experimental study of a phenomenon 𝛷 gives an empirical 

graph 𝑔 whose equation is 𝑦 = 𝑔(𝑥), and that a theorist attempting to explain 𝛷 has available 

two theories, say 𝜃1 and 𝜃2. In Figure 3.3, we see the empirical graph 𝑦 = 𝑔(𝑥) of the 

phenomenon 𝛷, the graph 𝑦 = 𝑔1(𝑥) of theory 𝜃1 and the graph 𝑦 = 𝑔2(𝑥) of theory 𝜃2. 

Neither the graph 𝑦 = 𝑔1(𝑥) nor the graph 𝑦 = 𝑔2(𝑥) fits the graph 𝑦 = 𝑔(𝑥) well. As 

shown in Figure 3.3, the graph 𝑦 = 𝑔1(𝑥) fits better quantitatively, in the sense that, over the 

interval considered, ∫|𝑔 − 𝑔1| is smaller than ∫|𝑔 − 𝑔2|. On the other hand, Figure 3.3 

clearly shows that the graph 𝑦 = 𝑔2(𝑥) fits better qualitatively, in the sense that it has the 

same shape and appearance (e.g., more specifically, similar monotonicity and similar 

curvature) as 𝑦 = 𝑔(𝑥). Hence, René Thom argues that, “in this situation, one would lay odds 

that the theorist would retain 𝜃2 rather than 𝜃1 even at the expense of a greater quantitative 

error, feeling that 𝜃2, which gives rise to a graph of the same appearance as the experimental 

result, must be a better clue to the underlying mechanisms of 𝛷 than the quantitatively more 

exact 𝜃1.”657 

Being an integral part of the structuralist philosophical tradition, the dialectic of rational 

dynamicity implies and underpins a rational and dynamic approach toward both fallacious 

deduction and fallacious induction. In particular, by the term “fallacious deduction,” 

statisticians refer to “errors frequently made by imputing to each member of a group the 

‘average’ behavior of the group,”658 and, by the term “fallacious induction,” statisticians refer 

to the fact that “induction—moving from a part to the whole—is a fruitful source of error in 

the collection and analysis of quantitative data.”659 

 

 
655 Thom, Structural Stability and Morphogenesis. 
656 Ibid, p. 4. 
657 Ibid. 
658 Neiswanger, Elementary Statistical Methods, p. 34. In particular, Neiswanger gives the following example: 

given that the U.S. does not export more than ten per cent of its national output, foreign trade is not vital to the 

U.S. economy, but, “if reference is made to particular industries, it is found, as Jerome B. Cohen has pointed 

out, that about 50 per cent of the cotton crop is exported, 35 per cent of the tobacco crop, and 25 per cent of 

the wheat crop” (ibid).  
659 Ibid, p. 37. In particular, Neiswanger has pointed out that, “if the part of the data brought forth for analysis is 

carefully chosen by modern methods of statistical sampling, one may be as well or even better off than though 

he attempted to work with the entire mass (population) from which the sample came,” but “serious trouble 

enters . . . when some perhaps unsuspected influence colors the selection so that only certain parts—a chunk—

of the population are heard from, resulting in wrong estimates of the whole” (ibid).  
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Figure 3.3. Approximations. 

Conclusively, we realize that, according to the dialectic of rational dynamicity, the 

domain of truth consists of both correctness and fallacy, since correctness refers to a unique 

expression of truth increasingly approximated by a series of fallacies. Truth is not something 

definitively given, a crystallized datum, but it is something implicitly discerned, gradually 

emerging, adjustable, revisable, and susceptible to restructuring according to the 

intentionality of consciousness. The rationalism and the dynamism of this intentionality are 

expressed according to the dialectic of rational dynamicity.  

 

 

3.9. FROM LOGICAL VALUES TO MORAL VALUES:  

ETHICS AND SOCIAL THEORY FROM THE PERSPECTIVE  

OF RATIONAL DYNAMICITY 
 

As I argued in Chapter 1, if action is as an autonomous activity, and not the result of 

coercion, then it is guided by a purpose, which has been adopted by consciousness. Moreover, 

this purpose is underpinned by the intentionality of consciousness. The transition from the 

conception of an action by consciousness to the practical implementation, the actualization of 

that action is determined by the value system of consciousness. Thus, the value system of 

consciousness is the major attractor of conscious free action. In this way, conscious free 

action has a quantitative aspect and a qualitative aspect: the quantitative aspect of conscious 

free action consists in a fact, and the qualitative aspect of conscious free action consists in a 

value, namely, in a judgment.  

As the French philosopher Louis Lavelle (one of the greatest French metaphysicians of 

the twentieth century) has argued, every value is an object of a desire and of a judgment.660 

Hence, even though, as Kant has argued in his Critique of Practical Reason, values are 

mainly created by consciousness, they are completely experienced by consciousness only 

when they are objectified. According to Lavelle, consciousness distances itself from values in 

the context of their objectification, and, in this way, consciousness reaffirms its creation, 

 
660 See: Smith, Contemporary French Philosophy, Part 1. 
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namely, values, by intentionally moving toward them. The aforementioned dialectical process 

allows one to overcome the contradiction between the subjectivist theory of values (according 

to which values are determined by the way in which an acting individual characterizes 

something in relation to the achievement of one’s desired ends and according to one’s 

judgment) 661 and the objectivist theory of values (according to which each value is a 

particular mode of being, thus qualitatively enriching the “basic modes of being,” which are 

studied in ontology662). Moreover, through the aforementioned dialectical process, 

consciousness creates and manipulates values, and, therefore, it imposes itself as an 

autonomous value that organizes every other particular value into a value system. The return 

of consciousness to the values that it has created in the context of the aforementioned 

dialectic expresses and is determined by the rational dynamicity of consciousness. Hence, the 

determination of values depends on the rational dynamicity of consciousness, which was 

expounded in Chapter 1. 

As I mentioned in section 1.1, when the consciousness of existence operates as a judge, it 

is called moral consciousness. In other words, moral consciousness is not a distinct kind of 

consciousness, but a particular operation of the consciousness of existence itself. Moral 

consciousness is a function of the following variables: sentiments, volition, and reason (see 

also section 1.1). Sentiments are emotions equipped with judgments, and, therefore, they are 

the strongest underpinnings of moral consciousness, since they can help moral consciousness 

to make decisions even when one’s will falters and/or when one’s intellect is irresolute. 

Volition is guided by the principle of pleasure, which expresses attraction to life. Reason 

expresses the power of consciousness to control itself. From the perspective of the philosophy 

of rational dynamicity, all the aforementioned partial aspects of moral consciousness can and 

should be synthesized with each other into a unified moral criterion according to the dialectic 

of rational dynamicity. In this way, morality expresses the intentionality of consciousness, as 

the latter seeks a better life and utilizes every aspect of morality in order to achieve its goals.  

Intimately related to the development of moral consciousness is a state of inner vigilance. 

Due to the development of moral consciousness, humanity becomes increasingly vigilant, 

and, therefore, it becomes increasingly able to discern the difference between being intelligent 

and merely demonstrating intelligent behavior, between having certain merits and merely 

demonstrating meritorious behavior, as well as between having certain conscious qualities 

and merely simulating them. It is worth mentioning that Gregory of Nyssa (a Byzantine 

theologian who served as the bishop of Nyssa in the fourth century A.D.) has cited the 

following example, paraphrasing a similar story originally narrated by the ancient satirist and 

rhetorician Lucian: 

 

An animal trainer in Alexandria taught a monkey to skillfully impersonate a female 

dancer on stage. The spectators at the theatre praised the monkey, which was dressed as a 

female dancer and danced to the beat of the music. But while the viewers were occupied 

 
661 As an advocate of the subjectivist theory of value, Sartre, for instance, maintains that one’s own freedom is the 

only foundation of one’s values, and that, apart from one’s freedom, nothing else can justify the adoption of 

any value or any system of values (Sartre, Being and Nothingness).  
662 This interpretation of the objectivist theory of values was formulated by Gabriel Marcel in his book Les Hommes 

Contre l’Humain. Moreover, advocating the objectivist theory of value, René Le Senne, in his book La 

Destinée Personnelle, argues that the ego cannot produce values, since the very fact that it seeks for values 

implies that the ego cannot provide itself with values. 
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observing such a novel spectacle, some comedian decided to show everyone that a monkey is 

nothing more than a monkey. While they all shouted and applauded at the skill of the monkey, 

the comedian threw some sweets onto the stage that monkeys particularly like. As soon as the 

monkey saw the sweets, it forgot the dance, the applause, and the elaborate costume, and 

dashed around, groping with its paws for the sweets; and since its dress interfered, it began to 

tear it apart with its nails, attempting to remove it. And in place of praise and amazement, 

laughter broke out among the spectators.663 

 

The value of moral consciousness has been scrutinized and disputed by a multifaceted 

current of moral skepticism. The origins of moral skepticism can be traced in the reasoning of 

ancient Greek sophists, such as Gorgias and Thrasymachus, as well as in the reasoning of 

such modern philosophers as Michel de Montaigne and Blaise Pascal. Furthermore, moral 

skepticism was reinforced by theorists and practitioners of Realpolitik in the nineteenth and 

the twentieth centuries, and it was provided with postmodern intellectual underpinnings in the 

late twentieth century and in the early twenty-first century, not only by postmodern scholars 

but also by politicians who understand and practise politics more in terms of rhetoric, public 

relations, and a trade of legislation664 than in terms of principles and convictions.  

Indeed, moral consciousness can be judged according to the stability or the instability of 

its manifestations; and, indeed, a student of world history and, generally, any careful observer 

of social life can identify cases in which moral consciousness remains unvaried and other 

cases in which moral consciousness exhibits variations in its operation. These changes in the 

state of moral consciousness have led skeptical philosophers and social theorists to articulate 

negative evaluations of moral consciousness. However, moral skepticism, in general, has 

failed to recognize that, even though moral consciousness is subject to change, the changes 

that take place in the field of moral consciousness are not arbitrary, but they are characterized 

by progressive patters. Hence, it is important to find answers to a number of difficult 

methodological and epistemological questions that have always bedeviled the social sciences, 

and they are raised in acute form when attention is drawn to the subject matter of historical 

sociology. At the heart of these questions is the problem associated with the relationship 

between agency and structure, which lies at the core of the philosophy of rational dynamicity. 

According to the distinguished American social anthropologist and social theorist Clyde 

Kluckhohn, (social) values play a substantial role in the integration and the maintenance of 

the social body and of the personality of the human being, thus underpinning both social 

identity and individual identity.665 This awareness echoes Augustine of Hippo’s germane 

argument that a commonwealth (a “people”) is made of rational humans united by love of a 

common thing.666 Thus, civilizations can be judged according to their fundamental 

underpinning values. Moreover, in this way, we can explain why, when scientific and 

 
663Patrologia Graeca, vol. 46, 240C. 
664 In 2015, Thomas Ferguson (Professor of Political Science at the University of Massachusetts), Paul Jorgensen 

(Assistant Professor of Political Science at the University of Texas Rio Grande Valley), and Jie Chen 

(University Statistician at the University of Massachusetts) co-authored and published a rigorous analysis of 

the strong correlation between campaign funding and electability to the U.S. Congress (Ferguson, Jorgensen, 

and Chen, “How Money Drives US Congressional Elections”). Moreover, Michael Parenti has rigorously 

analyzed the foreign policy of the United States in relation to the system of class power within the United 

States (Parenti, Power and the Powerless).  
665Kluckhohn, “Values and Value-Orientation in the Theory of Action.” 
666 Augustine, De Civitate Dei, Book 19. 
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technological achievements are used by agents that represent morally superior civilizations, 

they produce and underpin good historical results, whereas, when scientific and technological 

achievements are used by agents that represent morally inferior civilizations, they produce 

and underpin evil historical results.  

    In the history of civilization and political theory, the term “Enlightenment” refers to a 

movement of intellectual change that expanded throughout Europe (and America) during the 

eighteenth century. The essential goal of the Enlightenment was to emancipate human reason 

from the thraldom of prejudice and superstition (and especially from the established systems 

of political and religious despotism), and to apply it to the cause of social and political reform 

in accordance with the intentionality of rational human consciousness. The Enlightenment 

emphasized the presence of human consciousness in the world, and, from this perspective, it 

can be regarded as the major underpinning of modern Western civilization’s superiority vis-à-

vis other civilizations, which have not assimilated the essence of the Enlightenment. 

However, during industrialization, the modern Western world was gradually conquered by 

capitalism, due to which modern West ultimately betrayed and abandoned its greatest 

achievement, namely, the Enlightenment. As a result of the subjugation of modern West to 

capitalism, the Enlightenment’s rationalism (as it has been explained and highlighted by 

Kant) was gradually substituted with the rationalism of the “homo economicus” (“economic 

man”), whose rationalism was, ultimately, subjugated to selfish passions, thus becoming a 

shadow of itself. Moreover, as a result of the subjugation of modern West to capitalism, the 

Enlightenment’s arguments for the rational emancipation of humanity (as they have been put 

forward and explained by Kant) were gradually substituted with the emancipation of capital. 

On the other hand, in the twentieth century, the essence of the Enlightenment was preserved 

and defended in Europe by the socialist movement as it was represented by such scholars and 

ideologues as Alexander Bogdanov, Antonio Gramsci, Ágnes Heller, Karel Kosík, Alec 

Nove, etc., as well as by several social-liberation movements around the world. Moreover, the 

development of cybernetics in the Soviet Union and other socialist states that where strategic 

allies of the Soviet Union was a continuation of the spirit of the Enlightenment in the 

twentieth century, after the capitalist West’s betrayal of the Enlightenment. In fact, the 22nd 

Congress of the Communist Party of the Soviet Union (1961) declared that cybernetics was 

one of the “major tools of the creation of a communist society,” provoking opposition and 

subversive reactions from obscurantist Soviet factions and the Western capitalist “camp.” 

From the perspective of the philosophy of rational dynamicity, and according to the 

arguments that I have put forward in my book Taking the Bull by the Horns: Causes, 

Consequences and Perspectives in Politology and Political Economy (originally published in 

Greek in Athens, Greece, in 2021, by ΚΨΜ Publications), socialism is both the perfection of 

modern liberalism and the dialectical transcendence of modern liberalism toward higher 

levels of rationalism and humanism. 

A scientifically rigorous study of the history of civilization, in general, and of the history 

of politics, in particular, allows one to identify and analyze progressive patterns of 

development of moral consciousness. As Michele Moody-Adams has pointed out, “moral 

progress in belief involves deepening our grasp of existing moral concepts, while moral 

progress in practices involves realizing deepened moral understandings in behavior or social 

institutions.”667 Allen Buchanan’s and Russell Powell’s typology of moral progress is 

particularly helpful in order to identify and analyze progressive patterns of development of 

moral consciousness668: As regards moral concepts themselves, the understanding of the 

virtues, moral reasoning, and moral motivation, world history exhibits the following 

 
667 Moody-Adams, “The Idea of Moral Progress.” 
668 Buchanan and Powell, The Evolution of Moral Progress. 
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progressive patterns: (i) an increasing specification of morality, in the sense that moral rules 

tend to be increasingly differentiated from religion and law; (ii) an increasing internalization 

of morality, in the sense that, as Kant has pointedly argued, moral consciousness evaluates 

actions not only on the basis of their consequences, but also on the basis of the agent’s 

motives; (iii) an increasing individualization of morality, in the sense that, in addition to 

group rights, individual rights are increasingly highlighted, esteemed, and protected, 

especially as people mature psycho-spiritually; (iv) an increasing expansion of morality, in 

the sense that human rights (namely, “rights we have simply because we exist as human 

beings—they are not granted by any state”669) are increasingly highlighted, esteemed, and 

protected, especially as modernity is consolidated and develops. As regards the understanding 

of moral standing, moral statuses, and justice, world history exhibits the following 

progressive pattern: humanity’s increasing desire and efforts to create and impose new 

institutions in order to achieve higher levels of justice. The abolition of slavery and the 

development of international law on the basis of the International Bill of Human Rights670 are 

two characteristic cases in point. As regards the proper moralization of humanity and the 

understanding of the nature of morality, world history exhibits the following progressive 

pattern: several manifestations of inhuman and degrading treatment that were considered to 

be normal in previous societies (e.g., child abuse, torture, gender discrimination, various 

forms of political and spiritual despotism, etc.) are unacceptable to and morally condemned 

by the modern human being, and, even though, in the contemporary world, human rights 

abuses continue to take place, the authorities that are responsible for or involved in such types 

of immoral behavior try to find justifications for them, and they usually do not dare to commit 

human rights abuses in a blatant way.  

However, the identification of the above progressive patterns of development of moral 

consciousness can only partially refute the arguments of moral skepticism. The history of 

humanity is characterized by both cases of moral progress and cases of moral setback. In fact, 

one can discern whole segments of historical space-time that are overwhelmed by morally 

negative and unacceptable situations, such as those caused by capitalist oligarchies during the 

“Long Depression” (1873–96) and the “Great Depression” (1929–39), the twentieth-century 

fascist/Nazi regimes, the twentieth-century regimes of bureaucratic socialism, etc. Therefore, 

neither the viewpoint that is focused on progressive patterns of development of moral 

consciousness nor the viewpoint that is focused on the instability of moral consciousness and 

on cases of moral setback can lead to a comprehensive and rigorous way of understanding the 

dynamics of moral consciousness. 

In order to obtain a comprehensive and rigorous way of understanding the dynamics of 

moral consciousness, one must extricate oneself from both the intellectual shackles of moral 

progressivism (i.e., the viewpoint that is focused on progressive patterns of development of 

moral consciousness) and the intellectual shackles of moral skepticism (i.e., the viewpoint 

that is focused on the instability of moral consciousness and on cases of moral setback), and 

to search for those structural elements of moral consciousness that enable one to argue that 

moral consciousness is characterized by structural stability. By maintaining that one should 

inquire into the structural stability of the operation of moral consciousness, I mean that one 

should inquire into the qualitative features of moral consciousness that are recurrent. In 

particular, if we inquire into the contents of moral values, then we realize that, in different 

 
669 This is the basic definition of “human rights” according to the United Nations: https://www.ohchr.org/en/issues/ 

pages/whatarehumanrights.aspx. 
670 See: https://www.ohchr.org/en/issues/pages/whatarehumanrights.aspx. 
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segments of historical space-time, different values were placed at the apex of the 

corresponding “moral pyramid.”  

For instance, as regards the prevailing moral criterion, the study of the history of the 

European and the modern American civilizations implies the following: in early Antiquity, 

the prevailing moral criterion was bravery, and the corresponding anthropological ideal was a 

hero; in classical Antiquity, the prevailing moral criterion was education, and the 

corresponding anthropological ideal was a wise person or a philosopher; in late Antiquity, the 

prevailing moral criterion was sanctity (in the sense of psychical beauty); in the Middle Ages, 

the prevailing moral criterion was chivalry (with its integrated religious, moral, and social 

code); in the seventeenth-century French society, the prevailing moral criterion was honesty 

(paving the way for the conception of the modern nation-state as the social space in which 

“honesty” is manifested and becomes meaningful and, thus, underpinning nationalism and the 

French notion of the “human of the State” (“homme d’État”)); in the nineteenth-century 

British society, the prevailing moral criterion was social success, and the corresponding 

anthropological ideal was a person who complies with the Victorian model of social 

discipline and control (underpinning Great Britain’s capitalist system and imperial policy); in 

the nineteenth-century American society, the prevailing moral criterion was individual 

success, namely, success that originates from and is based on an individual’s own actions, 

thoughts, and will, and the corresponding anthropological ideal was a “self-made individual” 

(in particular, the phrase “self-made man” was coined on 2 February 1842 by Henry Clay Sr. 

in the United States Senate to describe individuals whose success was an entirely individual 

achievement, and, by the mid-1950s, “success” in the U.S.A. generally implied “business 

success,” underpinning the United States’ capitalist system and neo-imperial policy, 

ideologized in a systematic and radical way by the American economist Milton Friedman). 

Additionally, nationalism has significantly contributed to the relativization of many 

people’s perceptions of morality and rationality. The age of nationalism in its most precise 

sense is usually dated from the eighteenth century, and it is intimately related to the American 

and the French revolutions. However, the European system of nation-states had already 

emerged from the European wars of religion, which began in the sixteenth century (after the 

Protestant Reformation). In particular, the aforementioned system was a system of sovereign 

princes whose cultural rivalries were kept in check by the principle “whosoever’s territory, 

his religion” (“cuius region eius religio”), and whose political rivalries were kept in check by 

a system that is known as the “balance of power.” The system of balance of power was 

weakened but not destroyed by the revolutions that broke out in the nineteenth century, and it 

was restored by the so-called Holy Alliance after the defeat of Napoleon Bonaparte in 1815. 

However, nationalism and its states-system were internationalized in the aftermath of the First 

World War. The principles of national sovereignty and national self-determination have been 

systematically used and invoked by nationalists in order to counter classical ontology, and 

especially its quest for universal values and principles, as well as in order to equip national 

bourgeois elites and state bureaucracies with ultimate authority over moral questions and with 

powerful means for the conduct of psychological operations (for instance, the rhetoric about 

“patriotism” and “national security” has often served as a pretext for the violation of human 

rights and liberties by national governments and for the development of the industry of war).  

Even though, in different segments of historical space-time, different values were placed 

at the apex of the corresponding “moral pyramid,” certain values, such as “veracity,” 

“uprightness,” “accountability,” “strength,” and “perseverance,” irrespective of the particular 
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ways in which they are interpreted by different human communities, seem to have been 

exerting indisputable moral authority over humanity throughout its known history. In 

addition, if we inquire into the forms of moral values, and if we approach morality in a 

formalist way, then we realize that, in every segment of historical space-time, humanity 

makes a fundamental distinction between “good,” perceived as moral positivity, and “evil,” 

perceived as moral negativity. Therefore, by inquiring into the contents of moral values and 

into the forms through which moral values are manifested, we realize that moral 

consciousness has some recurrent qualitative features (meaning that it is characterized by 

structural stability). 

It goes without saying that the social system exerts significant influence over moral 

consciousness, and the latter internalizes and reflects social values. But the social system does 

not create moral consciousness itself, and moral consciousness can always judge and change 

the established system of values, instead of passively complying with it. Hence, moral 

consciousness seems to be an innate attribute of the human being. In particular, through a 

combination of sentiments, volition, and reason, moral consciousness obtains a conception of 

the “good,” and it determines the conditions under which the “good” can be historically 

objectified and, thus, become historically meaningful. 

Let us consider the transition from feudalism to capitalism, and the birth of socialism. 

Feudalism, the dominant system in medieval Europe, was a system characterized by a rigid 

social stratification, according to which everyone had a rigidly instituted position within an 

“organic whole,” whose major constituent components were the class of the feudal lords, the 

class of the serfs, and the church, whose major social role was to maintain a balance between 

the feudal lords and the serfs through religion. By the late Middle Ages, the bourgeois class 

(namely, a social class of professionals who were neither feudal lords nor serfs) deprecated 

the political, economic, and spiritual despotism of the feudal system, it revolted against 

feudalism, and it proclaimed that the social position of an individual should not be determined 

by feudal institutions, but it should be freely determined by individual action and by the 

interaction between individuals in the context of a free and fair society. One of the most 

characteristic examples of a bourgeois revolution in the modern era is the French Revolution 

of 1789, whose major motto was “Liberty, Equality, Fraternity.” However, the elite of the 

bourgeois class conceived capitalism as the embodiment of human freedom in the domain of 

economics, and, for this reason, after the displacement of feudalism by capitalism, the liberty 

and the rights of the human individual were gradually largely displaced by and subordinated 

to the liberty and the rights of the capital itself and the capitalist elite. By the middle of the 

nineteenth century, the European peoples realized that capitalism had displaced feudalism, 

but, instead of ushering in liberty, equality, and fraternity among the people, capitalism tends 

to replace the authoritarian and exploitative relationship between the feudal lords and the 

serfs with a new authoritarian and exploitative relationship, namely, that between the 

capitalist class and the proletariat (working-class).671 Therefore, socialism emerged as a 

criticism of and a revolt against capitalism, just as the bourgeois ideology had previously 

emerged as a criticism of and a revolt against feudalism. In fact, the term “socialism” first 

appeared in 1832 in Le Globe, a liberal French newspaper of the French philosopher and 

political economist Pierre Leroux, and, by the 1840s, socialism had already become the object 

of rigorous social-scientific analysis by the German economist and sociologist Lorenz von 

 
671 See, for instance: Engels, The Condition of the Working Class in England. 
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Stein. Moreover, the English socialist intellectual and activist Thomas Hodgskin (1787–1869) 

articulated a thorough critical analysis of capitalism and of the labor class under capitalism, 

and his writings exerted a significant influence on subsequent generations of socialists, 

including Karl Marx. In particular, from the perspective of Thomas Hodgskin, socialism 

signifies an attempt to create a free and fair market, in the context of which production and 

exchange are based on the labor theory of value (freed from exploitative institutions) as part 

of natural right, which endows moral consciousness, the freedom of the individual, social 

justice, and social autonomy with ontological underpinnings (in accordance with Thomas 

Hodgskin’s deism). 

However, it is worth mentioning that one of the biggest mistakes of Karl Marx and the 

orthodox Marxist “school” of socialism is that they maintain that the human being is a 

product of historical becoming, in the sense that human consciousness reflects the historical 

environment. This argument contradicts the dynamic nature of the history of world 

civilization, and it implies that there is no moral barrier to molding moral consciousness 

anyway one wishes. If no element of moral consciousness, not even an inner drive to act 

freely and creatively, is innate to the human being, then there is no moral reason for 

instituting a free society, and then a ruling class (e.g, the Central Committee of the 

Communist Party, the ruling elite of a fascist state, the capitalist-corporate elite, a religious 

elite, etc.) can mold humans into being what it thinks they ought to be.  

Furthermore, given that, in the era of advanced modernity, one of the most complex and 

heated debates is the debate about the positive and the negative consequences of artificial 

intelligence (i.e., of intelligent behavior demonstrated by machines), I should mention that the 

dialectic of rational dynamicity, as I expounded it in section 1.3.3, is an adequate method for 

relating the multiplication of choices that arises as a result of artificial intelligence to moral 

criteria and for determining the moral criteria and the norms that should govern the 

development and the implementation of artificial intelligence. The dialectic of rational 

dynamicity provides a creative and rigorous way of understanding and handling the 

relationship between agency and structure as well as the relationship between change and 

control. In particular, the application of the dialectic of rational dynamicity to artificial 

intelligence ensures the development of artificial intelligence according to the intentionality 

of human consciousness and not according to an autonomous inner momentum of artificial 

intelligence. 

From the perspective of the philosophy of rational dynamicity, a society that operates 

according to the dialectic of rational dynamicity chooses its values not in order to be enslaved 

to these values, or to a tradition, but because its values are characterized by rational 

dynamicity, and they are susceptible to criticism according to the dialectic of rational 

dynamicity. In other words, a society that is founded on the dialectic of rational dynamicity 

lacks neither tradition nor values, but it refuses to accept all those traditions and values which 

are not characterized by rational dynamicity and are not susceptible to criticism. A society 

that is founded on the dialectic of rational dynamicity stresses the right and the ability of 

criticism neither as an end-in-itself nor as a pleasant habit, but as an expression of a human 

community’s decision to implement the dialectic of rational dynamicity as a method of 

policy-making.  

In the scholarly discipline of economics, the moral concept of a value is objectified and 

manifested as the economic concept of a price, and, in the scholarly discipline of politics, the 

moral concept of a value is objectified and manifested as the political concept of a norm or a 
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law. In accordance with Louis Lavelle, I maintain that values are judgments, whereas prices, 

political norms, and laws are facts.  

Every human organization (whether political or economic or cultural) is a deterministic 

nonlinear feedback system, because it is characterized by decision-making rules and by 

specific interpersonal relations between the people who belong to the same organization or to 

different organizations—in fact, this is what social scientists mean by the term “institutional 

framework.” The feedback loops that are created by people when they interact with each 

other, that is, when they form a network, are nonlinear because of the following reasons: (i) in 

human systems, the actors’ choices are based on subjective perceptions that lead to 

disproportionately big or small reactions; (ii) there are almost always many possible outcomes 

that can follow an action; (iii) due to the action of structural forces, group behavior is 

something more than the mere sum of individual behaviors; (iv) outcomes are usually 

individual; and (v) small changes can escalate and lead to outcomes of major significance. 

Hence, the assumption of nonlinearity is necessary in order to formulate models that can 

account for the five aforementioned characteristics of human systems. The linear models that 

are often used in the context of classical macroeconomics and in classical microeconomics 

are only approximations of the actual state of affairs in macroeconomics and in 

microeconomics within a specific historical context. 

In any deterministic nonlinear feedback system, actors must necessarily move around 

nonlinear feedback loops, which are formed by the corresponding institutional framework, 

and it is exactly for this reason that the system within which actors act is deterministic. On the 

other hand, every time an actor moves around such a loop, one is free to transform, ignore, or 

even overthrow the given institutional framework, because actors follow decision-making 

rules and specific models of behavior, but these rules and these models allow freedom of 

choice, that is, they are subject to change (this is the reason why, for instance, human history 

includes scientific breakthroughs, business innovations, social revolutions, changes in 

legislation, changes in morals and customs, etc.). Therefore, on the one hand, social actors 

cannot escape from the fact that the interactions between them have the character of a 

nonlinear feedback system, nor can they escape from the consequences of this nonlinear 

feedback, but, on the other hand, economic actors can, indeed, change the rules and the 

patterns that govern their behavior on different occasions, in accordance with their 

intentionality. The consequences that free choice has for the system can be divided into the 

following three categories: 

 

i. Stable outcomes: If all social actors accept a given set of decision rules and make 

their choices according to these rules, then the whole system will end up in a state of 

stable equilibrium (i.e., it will exhibit a “regular” behavior). In this case, the 

corresponding system operates on the basis of negative feedback, which underpins 

the exhibition of regular, predictable behavior. 

ii. Unstable outcomes: If all social actors continuously change the rules that govern 

their behavior, then none of them will be able to depend on others, and the whole 

system will be attracted to a state of unstable equilibrium due to positive feedback. In 

other words, as the level of conflict (“social entropy”) increases in a human system, 

then this system leaves a state in which it is attracted to stability and moves toward a 

state in which it is attracted to a behavior of unstable equilibrium.  
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iii. A state of rational dynamicity: The alternative to either stability or instability lies in 

the border between them—specifically, in a state of rational dynamicity—where both 

negative feedback and positive feedback, both stability and instability, operate 

simultaneously to cause the emergence of changing patterns of behavior. If an 

organization is attracted only to the state of behavior that we call stability, then it will 

cease to be creative; and, if an organization is attracted only to the state of behavior 

that we call instability, then it will be dissolved. When a nonlinear feedback system 

operates in a state characterized by rational dynamicity, then it contains and utilizes 

both forces of stability and forces of instability in a rational way, in accordance with 

the given system’s entelechy and intentionality. Therefore, due to the operation of 

forces of instability, the behavior of such a system is not totally algorithmizable, but, 

due to the operation of forces of stability, there is an identifiable qualitative structure 

in such a system’s behavior. 

 

As I explained in Chapter 2, many mathematical models of physical and social systems 

consist of differential equations. The concept of a dynamical system is a generalization of the 

concept of a differential equation.672 Let us consider a differential equation of the form 

 

𝑥′ = 𝑓(𝑡, 𝑥), 

 

where 𝑡 ∈ ℝ, 𝑥 = (𝑥1, … , 𝑥𝑛) ∈ ℝ
𝑛 (i.e., a system of differential equations),  

 

𝑓:𝐷 → ℝ𝑛 

 

is a continuous function, and 𝐷 ⊂ ℝ×ℝ𝑛 is an open and connected set. A solution of the 

aforementioned differential equation is a function 

 

𝑥0: (𝑎0, 𝑏0) → ℝ𝑛 with 𝑥0
′ (𝑡) = 𝑓(𝑡, 𝑥0). 

 

A solution that passes through the point (𝑡0, 𝑣0) ∈ 𝐷, which represents the initial 

condition of the given system, has the property that 𝑥0(𝑡0) = 𝑣0 ∈ ℝ
𝑛. The solution with 

initial condition (𝑡0, 𝑣0) is defined in a “maximum” interval (𝑎0, 𝑏0). A (topological) 

“dynamical system” is defined to be a 3-tuple (ℝ,𝑋, 𝜑) where 𝑋 is a locally compact metric 

space (i.e., for each 𝑥 ∈ 𝑋, there exists a neighborhood 𝑁 of 𝑥 such that the closure 𝐶𝑙𝑠(𝑁) is 

compact; by definition, 𝑁 is open), and 𝜑:ℝ × 𝑋 → 𝑋 is a continuous mapping (known as the 

“action mapping” of the given dynamical system) that has the following properties: 

 

i. 𝜑(0, 𝑥) = 𝑥, ∀𝑥 ∈ 𝑋, and 

ii. 𝜑(𝑡1, 𝜑(𝑡2, 𝑥)) = 𝜑(𝑡1 + 𝑡2, 𝑥), ∀𝑡𝑖 ∈ ℝ &𝑥 ∈ 𝑋. 

 

The “orbit” of 𝑥 ∈ 𝑋 is defined as ℝ(𝑥) = {𝜑(𝑡, 𝑥)|𝑡 ∈ ℝ} ⊆ 𝑋. In general, an “orbit” is 

a collection of points related by the action mapping of the given dynamical system. From the 

perspective of the theory of dynamical systems, “stability” refers to the behavior of the orbits 
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of a dynamical system (resp. of the solutions of a differential equation) “around” a periodic 

orbit (resp. a solution). Let us now study the stability of a dynamical system, as shown in 

Figure 3.4.673 

 

 
(a)       (b)      (c)       (d) 

Figure 3.4. The Stability of a Dynamical System. 

Let 𝑥0 ∈ ℝ
𝑛 be a pointwise orbit of the dynamical system (ℝ, 𝑋, 𝜑), where 𝑋 ⊂ ℝ𝑛 is 

open. Then 𝑥0 is said to be a “Lyapunov-stable fixed point” of the given dynamical system if, 

for every neighborhood 𝑈 of 𝑥0, there exists a neighborhood 𝑉 ⊂ 𝑈 of 𝑥0 such that 𝑥 ∈ 𝑉 ⇒

ℝ+(𝑥) ⊂ 𝑈, as shown, for instance, in Figure 3.4(b); 𝑥0 is said to be an “asymptotically 

stable fixed point” if it is Lyapunov-stable, and, additionally, it holds that 𝑡𝑥 → 𝑥0 as 𝑡 → +∞ 

and for 𝑥 ∈ 𝑉, as shown, for instance, in Figure 3.4(c); a fixed point 𝑥0of a dynamical system 

may be Lyapunov-stable without being asymptotically stable, as shown, for instance, in 

Figure 3.4(d); otherwise (i.e., if 𝑥0 is not stable), 𝑥0 is said to be an “unstable fixed point,” as, 

shown, for instance, in Figure 3.4(a). 

Inextricably linked to moral consciousness is intentionality. Intentionality gives an 

external direction to the states of consciousness, and, thus, intentionality can operate 

according to a hierarchy of relations that range from a minimum to a maximum. The levels of 

this hierarchy can be called “orders.” The intentionality chain is underpinned by rational 

dynamicity.  

From the perspective of the philosophy of rational dynamicity, the reason of the beings 

that exist in the world consists in the way in which they participate in the corresponding 

species/form, in their entelechy, in the way in which they relate to each other in the context of 

the cosmic harmony and order, and in the way in which they express their intentionality. 

Therefore, “reason” includes both the concept of the efficient cause (which refers to one’s 

participation in the corresponding species) and the concept of the final cause (which refers to 

one’s entelechy). Furthermore, “reason” refers to the relationship of participation in the 

formation of the entire world as well as to the intentionality of consciousness. On 4 February 

1923, the noted British-Indian geneticist and physiologist John Burdon Sanderson Haldane 

read a paper entitled “Daedalus, Or Science and the Future” to the Heretics Society at the 

University of Cambridge, in which he highlighted the development of reason as a liberating 

process by arguing that “the conservative has but little to fear from the man whose reason is 

the servant of his passions, but let him beware of him in whom reason has become the 

greatest and most terrible of the passions,” since “such men are interested primarily in truth as 
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such, but they can hardly be quite uninterested in what will happen when they throw down 

their dragon’s teeth into the world.”674 

The dialectic of rational dynamicity precludes and discards any fundamentalist, ossified 

response to practical questions about social organization. According to the philosophy of 

rational dynamicity, we should never short-circuit a practical question about social 

organization by having a fundamentalist, ossified mentality that a particular course of action 

is necessarily and universally the optimum course of action, while an alternative course of 

action should be necessarily and universally discarded. Thus, according to the philosophy of 

rational dynamicity, one should be strategically immutable (being firmly oriented toward 

specific existential goals and values) but tactically flexible, exactly in order to better serve 

one’s strategic vision by applying discretion. The dialectic of rational dynamicity implies that 

social problems can be properly addressed only when one deals with the structure of an 

organization, irrespective of its formal characteristics and status. For instance, from the 

perspective of the dialectic of rational dynamicity, the dilemma of choosing between a market 

economy that is controlled by a private oligarchy and a planned economy that is controlled by 

an oligarchy of state officials is ultimately a deceptive dilemma, or at least an ill-posed 

dilemma, because both of these models are structurally similar, namely, they are oligarchies. 

One can argue that a private oligarchy aims to impose a social system characterized by 

Lyapunov-stability, as described in Figure 3.4(b), while a state oligarchy aims to impose a 

social system characterized by asymptotic stability, as described in Figure 3.4(c). As I have 

already explained, Lyapunov-stability means that a system starting in some ball of radius 

𝛿around the equilibrium will not leave a ball of radius 𝜀 around the equilibrium for some 𝜀 >

𝛿; and, in a system of private/liberal oligarchy, the corresponding parameter 𝜀 is determined 

and dictated by the interests, the perceptions, and the commands of the ruling private/liberal 

oligarchy. Moreover, as I have already explained, asymptotic stability means that a system 

starting in some ball of radius 𝛿 around the equilibrium will converge to the equilibrium; and, 

in a system of state/authoritarian oligarchy, the corresponding equilibrium, to which the 

established social system is supposed (and forced) to converge, is determined and dictated by 

the interests, the perceptions, and the commands of the ruling state/authoritarian oligarchy. 

The ancient Greek society―especially the city of Athens from the eighth to the fifth 

century B.C.―is the first society in the history of humankind that founded its operation on a 

continuous critical evaluation and re-evaluation of its own self. It is the first society in the 

history of humankind that demands from itself to be able to explain (to itself and to others) 

why it is what it is. Thus, whereas all societies institutionalize mechanisms for the coercive 

imposition of their constitutive “logos,” or reason-principle (specifically, their constitutive 

values and norms), on their members, the Athenian democracy is the first society in the 

history of humankind that institutionalized mechanisms of rational self-control (that is, a 

reflective political attitude), too. Additionally, contrary to twentieth-century diplomatic 

clichés, domestic and foreign policy are strongly interrelated, not only because, in a 

democracy, in explaining what needs to be done, a statesman needs to have the conscious 

approval of the people, but also because, as the distinguished U.S. statesman and scholar 

Joseph Nye, Jr. has pointed out, “it is tautological or at best trivial to say that all states try to 
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act in their national interest,” and “the important question is how leaders choose to define and 

pursue that national interest under different circumstances.”675 

Nye’s aforementioned arguments are reminiscent of Plato’s Statesman. In his Statesman, 

Plato maintains that the real acquisition of real political power requires a deep awareness of 

historical becoming, which, in turn, requires a deep awareness of the teleology of historical 

action. According to Plato, a real statesman is one who is aware that, even though one has to 

act in the context of historical becoming, one has to transcend the logic of historical becoming 

itself, since, according to Plato, the purpose of a real statesman is “poīesis” (genuine creation) 

and not merely managerial tasks. Thus, in his Statesman, 261a–b, Plato poses the following 

question: “Take the case of all those whom we conceive of as rulers who give commands: 

shall we not find that they all issue commands for the sake of producing something?” A real 

statesman acts within a world marked by necessities, but the ultimate purpose of a real 

statesman’s political activity is the actualization of one’s strategic vision, which transcends 

the corresponding historical context, and, according to Plato, it should be guided by values 

that transcend the logic of one’s historical conditions. Moreover, the end of “poīesis” is 

known prior to action (in Greek “prāxis”), and, therefore, it is characterized by a mode of 

disclosing that Aristotle called “tēchne” (art proper), which can be construed as “authoritative 

knowledge” or “expertise.” According to Aristotle,676 “phrōnesis” is a bridging concept 

between theory and practice, and, in fact, it serves to mediate the gap between theory and 

practice in such a way that practice refers to a kind of objective knowledge (thus highlighting 

the reality of the world), and theory refers to a personalistic view of the world (thus 

highlighting the reality of consciousness). It goes without saying that the philosophy of 

rational dynamicity is intimately related to and in alignment with the aforementioned 

Aristotelian synthesis.  

As we read in Thucydides’s History of the Peloponnesian War, 2:35–2:46, Pericles (ca. 

495–29 B.C.), one of the most prominent and influential statesmen and generals of Athens, 

argued that, in the Athenian political system, the principles of freedom and respect for law are 

united, and the activities of the city are based on the voluntary co-operation and on the critical 

thought of the citizens. Democracy, as it was invented and institutionalized in classical 

Athens, is neither a technical procedure nor a bourgeois political ritual, but a humanistic 

political culture, which is based on the premise that every law and every social institution are 

continuously and freely subject to rational criticism as regards their merits and their historical 

relevance. Thus, each law that was passed by the assembly of classical Athens bore the 

following clause: “It seemed good to the dēmos [people] and the Boulē [Council].” The 

philosophy of rational dynamicity advocates and reinforces the aforementioned classical 

democratic ethos by equipping its partakers and practitioners with the rationality and the 

dynamism that are necessary in order to make such a model of social organization historically 

meaningful and effective.  

A being exists truly if and to the extent that it is united with its reason, it manifests its 

reason, and it practically affirms its reason. According to classical Greek political philosophy, 

the essence of politics consists in the provision and the maintenance of those existential 

conditions which allow, encourage, and help humans to exist truly in the aforementioned 

sense. In particular, the ancient Greek “polis”(city-state) has a unique characteristic on the 
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basis of which and due to which the institution of “polis” has been differentiated from other 

forms of organized collective behavior, and has given rise to the notions of “political art,” 

“political virtue,” and “political science.” This unique characteristic of the ancient Greek 

conception of a “polis” consists in a collective attempt to institute a community whose 

“telos,” or existential purpose, is not exhausted in the management of needs, but it is an 

attempt to live in harmony with the principle of truth, which, according to Aristotle’s 

Nicomachean Ethics, X and II–VI, signifies the disclosure of reason. Therefore, from the 

perspective of the philosophy of rational dynamicity, the purpose of a polity should be to 

provide and maintain those existential conditions which allow and enable humans to live in a 

rationally dynamic way, specifically, according to the dialectic of rational dynamicity. 
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